
QUIC M. Thomson
Internet-Draft Mozilla
Intended status: Informational December 07, 2017
Expires: June 10, 2018

More Apparent Randomization for QUIC
draft-thomson-quic-grease-00

Abstract

 Options for creating more apparent randomization in the QUIC header
 are discussed.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 10, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Expires June 10, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft More Apparent Randomization for QUIC December 2017

1. More Grease for QUIC

 The QUIC invariants draft [INVARIANTS] commits QUIC [QUIC] to a small
 set of traits that are intended to remain stable across all version
 of QUIC. However, there are some protocol traits in QUIC version 1
 [QUIC] that we do that remain readable.

 This note explores a few options for protecting QUIC against casual
 inspection by entities other than the endpoints participating in the
 connection. These techniques are aimed espectially at making any
 form of inspection considerably more difficult if the QUIC version of
 a packet is unknown.

 The intent of applying this protection is to encourage the use of
 protocol fields that are intentionally designed to be readable to
 non-participating entities (see also [SIGNALS]). For those fields
 that can be recovered without access to negotiated cryptographic
 keys, the intent is to create an incentive to implement version-
 specific handling rather than to assume that certain properties don't
 change between versions.

2. Overall Design

 Protocol fields that deploy with predictable values or a limited
 range of values can ossify. Ossification is the effect whereby the
 use of values in a way that is contradictory to established patterns
 triggers adverse reactions from the network. Usually, this is a
 result of middleboxes having developed assumptions about how
 protocols operate.

 The idea that ossification actively prevents the deployment of
 modified protocols remains a little contentious in the community. On
 the other hand, we have plenty of evidence from TLS deployment to
 suggest that this happens. Appendix D.4 of [TLS13] describes an
 example of ossification and describes the measures that were
 necessary to counteract it.

 If it is possible to provide a measure of protection against protocol
 ossification without inordinate expense, then it is the view of at
 least this author that doing so would have some potential value.
 Provided the costs are indeed low enough

 This describes changes to some of the version-specific fields in QUIC
 version 1 [QUIC]. Any invariant [INVARIANTS] would not be affected
 by this change.

 The simplest defense against ossification is to apply a reversible
 permutation to these values. A pseudo-random function (PRP) is the

Thomson Expires June 10, 2018 [Page 2]

Internet-Draft More Apparent Randomization for QUIC December 2017

 obvious choice. If the key of that function is only known to
 endpoints, then the values will be readily accessible to endpoints.

3. Keying

 There are two different contexts in which we might consider applying
 this sort of protection, and the keys we can use differ.

 QUIC already has the tools necessary to derive keys. Handshake
 packets use a key that is derived from a combination of a version-
 specific key (or salt) and the connection ID. A similar approach
 could be used here.

 For packets that have packet protection, there are many options
 available. The secret used for generating the packet number gap
 (packet_number_secret) is a candidate. It might however be better to
 derive a key from the packet protection secrets (client_pp_secret_<N>
 or server_pp_secret_<N>).

4. Pseudo-Random Permutations

 There are many PRP functions that could apply to this case. Most
 come from cryptographic contexts and therefore assume inputs and
 state spaces that exceed the size of the fields we're interested in.
 This section presents three options of varying complexity. It's
 likely that there are many more.

 It is critical to note that these functions are not intended to
 provide any real confidentiality - you need strong keys and ciphers
 for that. None of the functions include any integrity protection
 either - QUIC already provides integrity protection for its headers.

 These techniques might be used to enable unlinkability in some
 circumstances.

4.1. Remainder

 The first is a simple masking using a remainder remainder operation.
 This assumes that there are a limited number of valid values for a
 given field. Valid values are either constrained to or mapped to a
 contiguous range starting from 0. Then, select a modulus |m| that is
 greater than the largest value and encryption and decryption are
 simple:

 m = max(x) + k
 E(x) = x + random() * m
 D(x) = x % m

Thomson Expires June 10, 2018 [Page 3]

Internet-Draft More Apparent Randomization for QUIC December 2017

 The drawback here is that you don't get a uniform distribution. If
 we use this for the long header and an Initial packet is type 0, then
 it will never pick anything that isn't a multiple of |m|. Also, the
 number of values that |k| can assume is small. The benefit is that
 this is trivial to implement. Also, an implementation that chooses
 not to randomize still produces values that can be understood.

4.2. XOR

 This PRP uses a simple exclusive OR:

 D(x) = E(x) = x ^ k

 This method is the easiest to implement. The drawback here is
 that |k| is stable and is therefore trivially recovered when multiple
 messages use the same key.

4.3. FFX Lite

 FFX [1] is a mode of format-preserving encryption that encrypts
 values from a space of essentially arbitrary size. FFX would be
 ideal apart from one significant drawback: FFX is extremely
 computationally expensive for smaller values, as it uses more rounds
 for short values to ensure that it continues to preserve its security
 margins.

 On the other hand, we're not looking for any actual security, so we
 wouldn't need to have the obscene number of rounds that FFX depends
 on for small values (their recommended parameters don't include
 values for 5 bit values,).

 If you make a few choices (cryptographers rarely do this for you, and
 FFX has the usual cornucopia of tuning parameters), you can produce a
 set of parameters that makes FFX quite simple and performant. This
 is essentially two rounds of FFX with radix=2, P={}, addition=0,
 method=2, split(n)=floor(n/2), rnds(n)=2, and F(x)=AES(k, x).

Thomson Expires June 10, 2018 [Page 4]

Internet-Draft More Apparent Randomization for QUIC December 2017

 E(x):
 split = num_bits(x) / 2
 a = x >> split
 b = s & (1 << split - 1)
 tmp = a ^ AES(k, b)
 result = (tmp << split) | (b ^ AES(k, tmp))

 D(x):
 split = num_bits(x) / 2
 a = x >> split
 b = s & (1 << split - 1)
 tmp = b ^ AES(k, a)
 result = ((a ^ AES(k, tmp)) << split) | tmp

4.4. Predictability

 The XOR and FFX-based methods exhibit properties similar to
 encryption with AES-ECB mode. That is, for a given key, the same
 plaintext will always encrypt to the same ciphertext.

 That means that if input values do not vary over time, it will be
 possible to infer underlying values easily. The goal is to ensure
 that the protected values change for each new connection, for which a
 changing key is sufficient. As stated, the goal is not to provide
 confidentiality against a determined attacker, only to defend against
 a lazy observer.

5. Scrambling QUIC Packet Headers

 There are two fields in the QUIC header that merit some degree of
 scrambling: the packet type and the packet number. The other fields
 of QUIC packets: invariant bits, connection ID, version, and the
 message payload are either:

 o invariant and thus important to leave unmodified,

 o explicitly designed for consumption by middleboxes and thus
 important to leave unmodified, or

 o already protected by other means, such as an AEAD [AEAD].

 It's possible that this technique could be applied to invariant
 fields, but that is likely to have less immediate utility. Worse, it
 would commit every future version of the protocol to employ the same
 technique. Limiting this to version-specific fields allows the
 technique to improve with successive protocol versions.

Thomson Expires June 10, 2018 [Page 5]

Internet-Draft More Apparent Randomization for QUIC December 2017

5.1. Scrambling Packet Types

 We have two values here, a 7-bit value that is used for the long
 header, and a 5-bit value that is used for the short header. It is
 possible that the KEY_PHASE bit in the short header could also be
 covered.

 Any of the described methods could work to obscure these fields. The
 remainder method would however degrade as new packet types are
 defined, though the current set of types is very small.

 The cost of scrambling for packet types is that the entire space of
 values is then used, which could make multiplexing with realtime
 protocols more challenging. However, it is possible that those
 protocols could use their out-of-band negotiation to influence the
 scrambling. For instance, they might mandate the use of a connection
 ID from a set of values that produce values that are compatible with
 the multiplexing scheme in use (determining such a value would be
 easy).

5.2. Scrambling Packet Numbers

 Scrambling packet numbers is relatively straightforward to apply.
 The remainder method doesn't work here, though the XOR and FFX-based
 techniques both work well.

 The cost of scrambling the packet number is that it would make it
 more difficult to use packet numbers to support the use of other
 features, like the heuristics necessary to use the spin bit in the
 presence of loss and reordering.

 If a variable-length integer is used to represent a packet number and
 FFX is chosen, the length would need to be separately scrambled.
 That suggests that retaining the packet number length in the type
 field is desirable if FFX is chosen.

 For a packet number, the XOR-based technique would not provide any
 appreciable barrier to recovery of the underlying value.

5.2.1. Taking Packet Number Scrambling Further

 If packet numbers are scrambled, it is possible to use that
 scrambling instead of both initial packet number randomization and
 the packet number gap.

 For the initial packet number, scrambling would be sufficient to
 ensure that the packet number field could contain all possible
 values. That removes the need to reserve 1024 values to avoid

Thomson Expires June 10, 2018 [Page 6]

Internet-Draft More Apparent Randomization for QUIC December 2017

 overflow of the 32-bit space before a peer receives the initial
 value. Packet numbers would always start at 0, but the wire encoding
 would be encoded.

 For the packet number gap, if the key calculation takes connection ID
 as input, the need for a packet number gap is eliminated. Switching
 to a new connection ID would cause packet numbers to become
 unlinkable with previous ones. Deriving the per-connection-ID key
 with HKDF would ensure that even with a simple XOR, the two keys
 can't be correlated.

6. Security Considerations

 This section exists so that I can submit a draft without being
 badgered about this. There are almost certainly security concerns
 here, but I don't care. This draft is a throwaway.

7. References

7.1. Informative References

 [AEAD] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [INVARIANTS]
 Thomson, M., "Version-Independent Properties of QUIC",

draft-thomson-quic-invariants-00 (work in progress),
 November 2017.

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-08 (work
 in progress), December 2017.

 [SIGNALS] Hardie, T., "Path signals", draft-hardie-path-signals-02
 (work in progress), November 2017.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-22 (work in progress),
 November 2017.

7.2. URIs

 [1] https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-
Techniques/documents/BCM/proposed-modes/ffx/ffx-spec.pdf

https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/draft-thomson-quic-invariants-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-08
https://datatracker.ietf.org/doc/html/draft-hardie-path-signals-02
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-22
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/ffx/ffx-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/ffx/ffx-spec.pdf

Thomson Expires June 10, 2018 [Page 7]

Internet-Draft More Apparent Randomization for QUIC December 2017

Author's Address

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

Thomson Expires June 10, 2018 [Page 8]

