
Network Working Group M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track R. Hamilton
Expires: September 22, 2016 Google
 March 21, 2016

Porting QUIC to Transport Layer Security (TLS)
draft-thomson-quic-tls-00

Abstract

 The QUIC experiment defines a custom security protocol. This was
 necessary to gain handshake latency improvements. This document
 describes how that security protocol might be replaced with TLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson & Hamilton Expires September 22, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft QUIC over TLS March 2016

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. Protocol Overview . 3
2.1. Handshake Overview 4

3. QUIC over TLS Structure 5
4. Mapping of QUIC to QUIC over TLS 6
4.1. Protocol and Version Negotiation 7
4.2. Source Address Validation 8

5. Record Protection . 8
5.1. TLS Handshake Encryption 9
5.2. Key Update . 9
5.3. Sequence Number Reconstruction 10
5.4. Alternative Design: Exporters 10

6. Pre-handshake QUIC Messages 11
6.1. QUIC Extension . 11
6.2. Unprotected Frames Prior to Handshake Completion 15
6.2.1. STREAM Frames . 15
6.2.2. ACK Frames . 15
6.2.3. WINDOW_UPDATE Frames 15
6.2.4. FEC Packets . 16

6.3. Protected Frames Prior to Handshake Completion 16
7. Connection ID . 17
8. Security Considerations 18
9. IANA Considerations . 18
10. References . 18
10.1. Normative References 18
10.2. Informative References 18

Appendix A. Acknowledgments 19
 Authors' Addresses . 19

1. Introduction

 QUIC [I-D.tsvwg-quic-protocol] provides a multiplexed transport for
 HTTP [RFC7230] semantics that provides several key advantages over
 HTTP/1.1 [RFC7230] or HTTP/2 [RFC7540] over TCP [RFC0793].

 The custom security protocol designed for QUIC provides critical
 latency improvements for connection establishment. Absent packet
 loss, most new connections can be established with a single round
 trip; on subsequent connections between the same client and server,
 the client can often send application data immediately, that is, zero
 round trip setup. TLS 1.3 uses a similar design and aims to provide
 the same set of improvements.

 This document describes how the standardized TLS 1.3 might serve as a
 security layer for QUIC. The same design could work for TLS 1.2,

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc0793

Thomson & Hamilton Expires September 22, 2016 [Page 2]

Internet-Draft QUIC over TLS March 2016

 though few of the benefits QUIC provides would be realized due to the
 handshake latency in versions of TLS prior to 1.3.

 Alternative Designs: There are other designs that are possible; and
 many of these alternative designs are likely to be equally good.
 The point of this document is to articulate a coherent single
 design. Notes like this throughout the document are used describe
 points where alternatives were considered.

 Note: This is a rough draft. Many details have not been ironed out.
 Ryan is not responsible for any errors or omissions.

1.1. Notational Conventions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It's not shouting; when they are capitalized, they have
 the special meaning defined in [RFC2119].

2. Protocol Overview

 QUIC [I-D.tsvwg-quic-protocol] can be separated into several modules:

 1. The basic frame envelope describes the common packet layout.
 This layer includes connection identification, version
 negotiation, and includes the indicators that allow the framing,
 public reset, and FEC modules to be identified.

 2. The public reset is an unprotected frame that allows an
 intermediary (an entity that is not part of the security context)
 to request the termination of a QUIC connection.

 3. The forward error correction (FEC) module provides redundant
 entropy that allows for frames to be repaired in event of loss.

 4. Framing comprises most of the QUIC protocol. Framing provides a
 number of different types of frame, each with a specific purpose.
 Framing supports frames for both congestion management and stream
 multiplexing. Framing additionally provides a liveness testing
 capability (the PING frame).

 5. Crypto provides confidentiality and integrity protection for
 frames. All frames are protected after the handshake completes
 on stream 1. Prior to this, data is protected with the 0-RTT
 keys.

 6. Multiplexed streams are the primary payload of QUIC. These
 provide reliable, in-order delivery of data and are used to carry
 the encryption handshake and transport parameters (stream 1),

https://datatracker.ietf.org/doc/html/rfc2119

Thomson & Hamilton Expires September 22, 2016 [Page 3]

Internet-Draft QUIC over TLS March 2016

 HTTP header fields (stream 3), and HTTP requests and responses.
 Frames for managing multiplexing include those for creating and
 destroying streams as well as flow control and priority frames.

 7. Congestion management includes packet acknowledgment and other
 signal required to ensure effective use of available link
 capacity.

 8. HTTP mapping provides an adaptation to HTTP that is based on
 HTTP/2.

 The relative relationship of these components are pictorally
 represented in Figure 1.

 +----+------+
 | HS | HTTP |
 +----+------+------------+
 | Streams | Congestion |
 +-----------+------------+
 | Frames |
 + +------------+
 | | FEC +--------+
 + +--------+------------+ Public |
 | | Crypto | Reset |
 +--+---------------------+--------+
 | Envelope |
 +---------------------------------+
 | UDP |
 +---------------------------------+

 *HS = Crypto Handshake

 Figure 1: QUIC Structure

 This document describes a replacement of the cryptographic parts of
 QUIC. This includes the handshake messages that are exchanged on
 stream 1, plus the record protection that is used to encrypt and
 authenticate all other frames.

2.1. Handshake Overview

 TLS 1.3 provides two basic handshake modes of interest to QUIC:

 o A full handshake in which the client is able to send application
 data after one round trip and the server immediately after
 receiving the first message from the client.

Thomson & Hamilton Expires September 22, 2016 [Page 4]

Internet-Draft QUIC over TLS March 2016

 o A 0-RTT handshake in which the client uses information about the
 server to send immediately. This data can be replayed by an
 attacker so it MUST NOT carry a self-contained trigger for any
 non-idempotent action.

 A simplified TLS 1.3 handshake with 0-RTT application data is shown
 in Figure 2, see [I-D.ietf-tls-tls13] for more options.

 Client Server

 ClientHello
 (Finished)
 (0-RTT Application Data)
 (end_of_early_data) -------->
 ServerHello
 {EncryptedExtensions}
 {ServerConfiguration}
 {Certificate}
 {CertificateVerify}
 {Finished}
 <-------- [Application Data]
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 Figure 2: TLS Handshake with 0-RTT

 Two additional variations on this basic handshake exchange are
 relevant to this document:

 o The server can respond to a ClientHello with a HelloRetryRequest,
 which adds an additional round trip prior to the basic exchange.
 This is needed if the server wishes to request a different key
 exchange key from the client. HelloRetryRequest might also be
 used to verify that the client is correctly able to receive
 packets on the address it claims to have (see Section 4.2).

 o A pre-shared key mode can be used for subsequent handshakes to
 avoid public key operations. This might be the basis for 0-RTT,
 even if the remainder of the connection is protected by a new
 Diffie-Hellman exchange.

3. QUIC over TLS Structure

 QUIC completes its cryptographic handshake on stream 1, which means
 that the negotiation of keying material happens within the QUIC
 protocol. QUIC over TLS does the same, relying on the ordered

Thomson & Hamilton Expires September 22, 2016 [Page 5]

Internet-Draft QUIC over TLS March 2016

 delivery guarantees provided by QUIC to ensure that the TLS handshake
 packets are delivered reliably and in order.

 +-----+---------+
 | TLS | HTTP |
 +-----+----------+------------+
 | Streams | Congestion |
 +----------------+------------+
 | Frames |
 | +------------+
 | | FEC +--------+
 | +----------+------------+ Public |
 | | TLS Record Protection | Reset |
 +-----+-----------------------+--------+
 | Envelope |
 +--------------------------------------+
 | UDP |
 +--------------------------------------+

 Figure 3: QUIC over TLS

 In this design the QUIC envelope carries QUIC frames until the TLS
 handshake completes. After the handshake successfully completes the
 key exchange, QUIC frames are then protected by TLS record
 protection.

 QUIC stream 1 is used to exchange TLS handshake packets. QUIC
 provides for reliable and in-order delivery of the TLS handshake
 messages.

 Prior to the completion of the TLS handshake, QUIC frames can be
 exchanged. However, these frames are not authenticated or
 confidentiality protected. Section 6 covers some of the implications
 of this design.

 Alternative Design: TLS could be used to protect the entire QUIC
 envelope. QUIC version negotiation could be subsumed by TLS and
 ALPN [RFC7301]. The only unprotected packets are then public
 resets and ACK frames, both of which could be given first octet
 values that would easily distinguish them from other TLS packets.
 This requires that the QUIC sequence numbers be moved to the
 outside of the record.

4. Mapping of QUIC to QUIC over TLS

 Several changes to the structure of QUIC are necessary to make a
 layered design practical.

https://datatracker.ietf.org/doc/html/rfc7301

Thomson & Hamilton Expires September 22, 2016 [Page 6]

Internet-Draft QUIC over TLS March 2016

 These changes produce the handshake shown in Figure 4. In this
 handshake, QUIC STREAM frames on stream 1 carry the TLS handshake.
 QUIC is responsible for ensuring that the handshake packets are re-
 sent in case of loss and that they can be ordered correctly.

 QUIC operates without any record protection until the handshake
 completes, just as TLS over TCP does not include record protection
 for the handshake messages. Once complete, QUIC frames and forward
 error control (FEC) messages are encapsulated in using TLS record
 protection.

 Client Server

 QUIC STREAM Frame <stream 1>
 ClientHello
 + QUIC Setup Parameters
 (Finished) -------->
 (Replayable QUIC Frames <any stream>)
 (end_of_early_data <1>) -------->
 QUIC STREAM Frame <1>
 ServerHello
 {EncryptedExtensions}
 {ServerConfiguration}
 {Certificate}
 {CertificateVerify}
 {Finished}
 <-------- [QUIC Frames/FEC]
 QUIC STREAM Frame <1>
 {Finished} -------->

 [QUIC Frames/FEC] <-------> [QUIC Frames/FEC]

 Figure 4: QUIC over TLS Handshake

 The remainder of this document describes the changes to QUIC and TLS
 that allow the protocols to operate together.

4.1. Protocol and Version Negotiation

 The QUIC version negotiation mechanism is used to negotiate the
 version of QUIC that is used prior to the completion of the
 handshake. However, this packet is not authenticated, enabling an
 active attacker to force a version downgrade.

 To ensure that a QUIC version downgrade is not forced by an attacker,
 version information is copied into the TLS handshake, which provides
 integrity protection for the QUIC negotiation. This doesn't prevent
 version downgrade during the handshake, though it does prevent a

Thomson & Hamilton Expires September 22, 2016 [Page 7]

Internet-Draft QUIC over TLS March 2016

 connection from completing with a downgraded version, see
Section 6.1.

 ISSUE: The QUIC version negotiation has poor performance in the
 event that a client is forced to downgrade from their preferred
 version.

4.2. Source Address Validation

 QUIC implementations describe a source address token. This is an
 opaque blob that a server provides to clients when they first use a
 given source address. The client returns this token in subsequent
 messages as a return routeability check. That is, the client returns
 this token to prove that it is able to receive packets at the source
 address that it claims.

 Since this token is opaque and consumed only by the server, it can be
 included in the TLS 1.3 configuration identifier for 0-RTT
 handshakes. Servers that use 0-RTT are advised to provide new
 configuration identifiers after every handshake to avoid passive
 linkability of connections from the same client.

 A server that is under load might include the same information in the
 cookie extension/field of a HelloRetryRequest. (Note: the current
 version of TLS 1.3 does not include the ability to include a cookie
 in HelloRetryRequest.)

5. Record Protection

 Each TLS record is encapsulated in the QUIC envelope. This provides
 length information, which means that the length field can be dropped
 from the TLS record.

 The sequence number used by TLS record protection is changed to deal
 with the potential for packets to be dropped or lost. The QUIC
 sequence number is used in place of the monotonically increasing TLS
 record sequence number. This means that the TLS record protection
 employed is closer to DTLS in both its form and the guarantees that
 are provided.

 QUIC has a single, contiguous sequence number space. In comparison,
 TLS restarts its sequence number each time that record protection
 keys are changed. The sequence number restart in TLS ensures that a
 compromise of the current traffic keys does not allow an attacker to
 truncate the data that is sent after a key update by sending
 additional packets under the old key (causing new packets to be
 discarded).

Thomson & Hamilton Expires September 22, 2016 [Page 8]

Internet-Draft QUIC over TLS March 2016

 QUIC does not rely on there being a continuous sequence of
 application data packets; QUIC uses authenticated repair mechansims
 that operate above the layer of encryption. QUIC can therefore
 operate without restarting sequence numbers.

5.1. TLS Handshake Encryption

 TLS 1.3 adds encryption for handshake messages. This introduces an
 additional transition between different record protection keys during
 the handshake. A consequence of this is that it becomes more
 important to explicitly identify the transition from one set of keys
 to the next (see Section 5.2).

5.2. Key Update

 Each time that the TLS record protection keys are changed, the
 message initiating the change could be lost. This results in
 subsequent packets being indecipherable to the peer that receives
 them. Key changes happen at the conclusion of the handshake and and
 immediately after a KeyUpdate message.

 TLS relies on an ordered, reliable transport and therefore provides
 no other mechanism to ensure that a peer receives the message
 initiating a key change prior to receiving the subsequent messages
 that are protected using the new key. A similar mechanism here would
 introduce head-of-line blocking.

 The simplest solution here is to steal a single bit from the
 unprotected part of the QUIC header that signals key updates, similar
 to how DTLS signals the epoch on each packet. The epoch bit is
 encoded into 0x80 of the QUIC public flags.

 Each time the epoch bit changes, an attempt is made to update the
 keys used to read. Peers are prohibited from sending multiple
 KeyUpdate messages until they see a reciprocal KeyUpdate to prevent
 the chance that a transition is undetected as a result of two changes
 in this bit.

 The transition from cleartext to encrypted packets is exempt from
 this limit of one key change. Two key changes occur during the
 handshake. The server sends packets in the clear, plus packets
 protected using handshake and application data keys. With only a
 single bit available to discriminate between keys, packets protected
 with the application data keys will have the same bit value as
 cleartext packets. This condition will be easily identified and
 handled, likely by discarding the application data, since the
 encrypted packets will be highly unlikely to be valid.

Thomson & Hamilton Expires September 22, 2016 [Page 9]

Internet-Draft QUIC over TLS March 2016

5.3. Sequence Number Reconstruction

 Each peer maintains a 48-bit send sequence number that is incremented
 with each packet that is sent (even retransmissions). The least
 significant 8-, 16-, 32-, or 48-bits of this number is encoded in the
 QUIC sequence number field in every packet. A 16-bit send epoch
 number is maintained; the epoch is incremented each time new record
 protection keying material is used. The least significant bit of the
 epoch number is encoded into the epoch bit (0x80) of the QUIC public
 flags.

 A receiver maintains the same values, but recovers values based on
 the packets it receives. This is based on the sequence number of
 packets that it has received. A simple scheme predicts the receive
 sequence number of an incoming packet by incrementing the sequence
 number of the most recent packet to be successfully decrypted by one
 and expecting the sequence number to be within a range centered on
 that value. The receive epoch value is incremented each time that
 the epoch bit (0x80) changes.

 The sequence number used for record protection is the 64-bit value
 obtained by concatenating the epoch and sequence number, both in
 network byte order.

5.4. Alternative Design: Exporters

 An exporter could be used to provide keying material for a QUIC-
 specific record protection. This could draw on the selected cipher
 suite and the TLS record protection design so that the overall effort
 required to design and analyze is kept minimal.

 One concern with using exporters is that TLS doesn't define an
 exporter for use prior to the end of the handshake. That means the
 creation of a special exporter for use in protecting 0-RTT data.
 That's a pretty sharp object to leave lying around, and it's not
 clear what the properties we could provide. (That doesn't mean that
 there wouldn't be demand for such a thing, the possibility has
 already been raised.)

 An exporter-based scheme might opt not to use the handshake traffic
 keys to protect QUIC packets during the handshake, relying instead on
 separate protection for the TLS handshake records. This complicates
 implementations somewhat, so an exporter might still be used.

 In the end, using an exporter doesn't alter the design significantly.
 Given the risks, a modification to the record protocol is probably
 safer.

Thomson & Hamilton Expires September 22, 2016 [Page 10]

Internet-Draft QUIC over TLS March 2016

6. Pre-handshake QUIC Messages

 Implementations MUST NOT exchange data on any stream other than
 stream 1 prior to the TLS handshake completing. However, QUIC
 requires the use of several types of frame for managing loss
 detection and recovery. In addition, it might be useful to use the
 data acquired during the exchange of unauthenticated messages for
 congestion management.

 The actions that a peer takes as a result of receiving an
 unauthenticated packet needs tobe limited. In particular, state
 established by these packets cannot be retained once record
 protection commences.

 There are several approaches possible for dealing with
 unauthenticated packets prior to handshake completion:

 o discard and ignore them

 o use them, but reset any state that is established once the
 handshake completes

 o use them and authenticate them afterwards; failing the handshake
 if they can't be authenticated

 o save them and use them when they can be properly authenticated

 o treat them as a fatal error

 Different strategies are appropriate for different types of data.
 This document proposes that all strategies are possible depending on
 the type of message.

 o Transport parameters and options are made usable and authenticated
 as part of the TLS handshake (see Section 6.1).

 o Most unprotected messages are treated as fatal errors when
 received except for the small number necessary to permit the
 handshake to complete (see Section 6.2).

 o Protected packets can be discarded, but can be saved and later
 used (see Section 6.3).

6.1. QUIC Extension

 A client describes characteristics of the transport protocol it
 intends to conduct with the server in a new QUIC-specific extension
 in its ClientHello. The server uses this information to determine

Thomson & Hamilton Expires September 22, 2016 [Page 11]

Internet-Draft QUIC over TLS March 2016

 whether it wants to continue the connection, request source address
 validation, or reject the connection. Having this information
 unencrypted permits this check to occur prior to committing the
 resources needed to complete the initial key exchange.

 If the server decides to complete the connection, it generates a
 corresponding response and includes it in the EncryptedExtensions
 message.

 These parameters are not confidentiality-protected when sent by the
 client, but the server response is protected by the handshake traffic
 keys. The entire exchange is integrity protected once the handshake
 completes.

 This information is not used by TLS, but can be passed to the QUIC
 protocol as initialization parmeters.

 The "quic_parameters" extension contains a declarative set of
 parameters that establish QUIC operating parameters and constrain the
 behaviour of a peer. The connection identifier and version are first
 negotiated using QUIC, and are included in the TLS handshake in order
 to provide integrity protection.

Thomson & Hamilton Expires September 22, 2016 [Page 12]

Internet-Draft QUIC over TLS March 2016

 enum {
 receive_buffer(0),
 (65535)
 } QuicTransportParameterType;

 struct {
 QuicTransportParameterType type;
 uint32 value;
 } QuicTransportParameter;

 uint32 QuicVersion;

 enum {
 (65535)
 } QuicOption;

 struct {
 uint64 connection_id;
 QuicVersion quic_version;
 QuicVersion supported_quic_versions<0..2^8-1>;
 uint32 connection_initial_window;
 uint32 stream_initial_window;
 uint32 implicit_shutdown_timeout;
 QuicTransportParameter transport_parameters<0..2^16-1>;
 QuicOption options<0..2^8-2>;
 } QuicParametersExtension;

 This extension MUST be included if a QUIC version is negotiated. A
 server MUST NOT negotiate QUIC if this extension is not present.

 Based on the values offered by a client a server MAY use the values
 in this extension to determine whether it wants to continue the
 connection, request source address validation, or reject the
 connection. Since this extension is initially unencrypted, the
 server can use the information prior to committing the resources
 needed to complete a key exchange.

 If the server decides to use QUIC, this extension MUST be included in
 the EncryptedExtensions message.

 The parameters are:

 connection_id: The 64-bit connection identifier for the connection,
 as selected by the client.

 quic_version: The currently selected QUIC version that is used for
 the connection. This is the version negotiated using the
 unauthenticated QUIC version negotiation (Section 4.1).

Thomson & Hamilton Expires September 22, 2016 [Page 13]

Internet-Draft QUIC over TLS March 2016

 supported_quic_versions: This is a list of supported QUIC versions
 for each peer. A client sends an empty list if the version of
 QUIC being used is their preferred version; however, a client MUST
 include their preferred version if this was not negotiated using
 QUIC version negotiation. A server MUST include all versions that
 it supports in this list.

 connection_initial_window: The initial value for the connection flow
 control window for the endpoint, in octets.

 connection_initial_window: The initial value for the flow control
 window of new streams created by the peer endpoint, in octets.

 implicit_shutdown_timeout: The time, in seconds, that a connection
 can remain idle before being implicitly shutdown.

 transport_parameters: A list of parameters for the QUIC connection,
 expressed as key-value pairs of arbitrary length. The
 QuicTransportParameterType identifies each parameter; duplicate
 types are not permitted and MUST be rejected with a fatal
 illegal_parameter alert. Type values are taken from a single
 space that is shared by all QUIC versions.

 ISSUE: There is currently no way to update the value of
 parameters once the connection has started. QUIC crypto
 provided a SCFG message that could be sent after the connection
 was established.

 options: A list of options that can be negotiated for a given
 connection. These are set during the initial handshake and are
 fixed thereafter. These options are used to enable or disable
 optional features in the protocol. The set of features that are
 supported across different versions might vary. A client SHOULD
 include all options that it is willing to use. The server MAY
 select any subset of those options that apply to the version of
 QUIC that it selects. Only those options selected by the server
 are available for use.

 Note: This sort of optional behaviour seems like it could be
 accommodated adequately by defining new versions of QUIC for
 each experiment. However, as an evolving protocol, multiple
 experiments need to be conducted concurrently and continuously.
 The options parameter provides a flexible way to regulate which
 experiments are enabled on a per-connection basis.

Thomson & Hamilton Expires September 22, 2016 [Page 14]

Internet-Draft QUIC over TLS March 2016

6.2. Unprotected Frames Prior to Handshake Completion

 This section describes the handling of messages that are sent and
 received prior to the completion of the TLS handshake.

 Sending and receiving unprotected messages is hazardous. Unless
 expressly permitted, receipt of an unprotected message of any kind
 MUST be treated as a fatal error.

6.2.1. STREAM Frames

 "STREAM" frames for stream 1 are permitted. These carry the TLS
 handshake messages.

 Receiving unprotected "STREAM" frames that do not contain TLS
 handshake messages MUST be treated as a fatal error.

6.2.2. ACK Frames

 "ACK" frames are permitted prior to the handshake being complete.
 However, an unauthenticated "ACK" frame can only be used to obtain
 NACK ranges. Timestamps MUST NOT be included in an unprotected ACK
 frame, since these might be modified by an attacker with the intent
 of altering congestion control response. Information on FEC-revived
 packets is redundant, since use of FEC in this phase is prohibited.

 "ACK" frames MAY be sent a second time once record protection is
 enabled. Once protected, timestamps can be included.

 Editor's Note: This prohibition might be a little too strong, but
 this is the only obviously safe option. If the amount of damage
 that an attacker can do by modifying timestamps is limited, then
 it might be OK to permit the inclusion of timestamps. Note that
 an attacker need not be on-path to inject an ACK.

6.2.3. WINDOW_UPDATE Frames

 Sending a "WINDOW_UPDATE" on stream 1 might be necessary to permit
 the completion of the TLS handshake, particularly in cases where the
 certification path is lengthy. To avoid stalling due to flow control
 exhaustion, "WINDOW_UPDATE" frames with stream 1 are permitted.

 Receiving a "WINDOW_UPDATE" frame on streams other than 1 MUST be
 treated as a fatal error.

 Stream 1 is exempt from the connection-level flow control window.

Thomson & Hamilton Expires September 22, 2016 [Page 15]

Internet-Draft QUIC over TLS March 2016

 The position of the flow control window MUST be reset to defaults
 once the TLS handshake is complete. This might result in the window
 position for either the connection or stream 1 being smaller than the
 number of octets that have been sent on those streams. A
 "WINDOW_UPDATE" frame might therefore be necessary to prevent the
 connection from being stalled.

 Note: This is only potentially problematic for servers, who might
 need to send large certificate chains. In other cases, this is
 unlikely given that QUIC - like HTTP [RFC7230] - is a protocol
 where the server is unable to exercise the opportunity TLS
 presents to send first.

 If a server has a large certificate chain, or later modifications
 or extensions to QUIC permit the server to send first, a client
 might reduce the chance of stalling due to flow control in this
 first round trip by setting larger values for the initial stream
 and connection flow control windows using the "quic_parameters"
 extension (Section 6.1).

 Editor's Note: Unlike "ACK", the prohibition on "WINDOW_UPDATE" is
 much less of an imposition on implementations. And, given that a
 spurious "WINDOW_UPDATE" might be used to create a great deal of
 memory pressure on an endpoint, the restriction seems justifiable.
 Besides, I understand this one a lot better.

6.2.4. FEC Packets

 FEC packets MUST NOT be sent prior to completing the TLS handshake.
 Endpoints MUST treat receipt of an unprotected FEC packet as a fatal
 error.

6.3. Protected Frames Prior to Handshake Completion

 Due to reordering and loss, protected packets might be received by an
 endpoint before the final handshake messages are received. If these
 can be decrypted successfully, such packets MAY be stored and used
 once the handshake is complete.

 Unless expressly permitted below, encrypted packets MUST NOT be used
 prior to completing the TLS handshake, in particular the receipt of a
 valid Finished message and any authentication of the peer. If
 packets are processed prior to completion of the handshake, an
 attacker might use the willingness of an implementation to use these
 packets to mount attacks.

 TLS handshake messages are covered by record protection during the
 handshake, once key agreement has completed. This means that

https://datatracker.ietf.org/doc/html/rfc7230

Thomson & Hamilton Expires September 22, 2016 [Page 16]

Internet-Draft QUIC over TLS March 2016

 protected messages need to be decrypted to determine if they are TLS
 handshake messages or not. Similarly, "ACK" and "WINDOW_UPDATE"
 frames might be needed to successfully complete the TLS handshake.

 Any timestamps present in "ACK" frames MUST be ignored rather than
 causing a fatal error. Timestamps on protected frames MAY be saved
 and used once the TLS handshake completes successfully.

 An endpoint MUST save the last protected "WINDOW_UPDATE" frame it
 receives for each stream and apply the values once the TLS handshake
 completes.

 Editor's Note: Ugh. This last one is pretty ugly. Maybe we should
 just make the TLS handshake exempt from flow control up to the
 Finished message. Then we can prohibit unauthenticated
 "WINDOW_UPDATE" messages. We would still likely want to account
 for the packets sent and received, since to do otherwise would
 create some hairy special cases. That means that stalling is
 possible, but it means that we can avoid ugly rules like the
 above.

7. Connection ID

 The QUIC connection identifier serves to identify a connection and to
 allow a server to resume an existing connection from a new client
 address in case of mobility events. However, this creates an
 identifier that a passive observer [RFC7258] can use to correlate
 connections.

 TLS 1.3 offers connection resumption using pre-shared keys, which
 also allows a client to send 0-RTT application data. This mode could
 be used to continue a connection rather than rely on a publicly
 visible correlator. This only requires that servers produce a new
 ticket on every connection and that clients do not resume from the
 same ticket more than once.

 The advantage of relying on 0-RTT modes for mobility events is that
 this is also more robust. If the new point of attachment results in
 contacting a new server instance - one that lacks the session state -
 then a fallback is easy.

 The main drawback with a clean restart or anything resembling a
 restart is that accumulated state can be lost. Aside from progress
 on incomplete requests, the state of the HPACK header compression
 table could be quite valuable. Existing QUIC implementations use the
 connection ID to route packets to the server that is handling the
 connection, which avoids this sort of problem.

https://datatracker.ietf.org/doc/html/rfc7258

Thomson & Hamilton Expires September 22, 2016 [Page 17]

Internet-Draft QUIC over TLS March 2016

 A lightweight state resurrection extension might be used to avoid
 having to recreate any expensive state.

8. Security Considerations

 There are likely to be some real clangers here eventually, but the
 current set of issues is well captured in the relevant sections of
 the main text.

 Never assume that because it isn't in the security considerations
 section it doesn't affect security. Most of this document does.

9. IANA Considerations

 This document has no IANA actions. Yet.

10. References

10.1. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-11 (work in progress),
 December 2015.

 [I-D.tsvwg-quic-protocol]
 Hamilton, R., Iyengar, J., Swett, I., and A. Wilk, "QUIC:
 A UDP-Based Secure and Reliable Transport for HTTP/2",

draft-tsvwg-quic-protocol-02 (work in progress), January
 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

10.2. Informative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-11
https://datatracker.ietf.org/doc/html/draft-tsvwg-quic-protocol-02
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793

Thomson & Hamilton Expires September 22, 2016 [Page 18]

Internet-Draft QUIC over TLS March 2016

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <http://www.rfc-editor.org/info/rfc7258>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

Appendix A. Acknowledgments

 Christian Huitema's knowledge of QUIC is far better than my own.
 This would be even more inaccurate and useless if not for his
 assistance. This document has variously benefited from a long series
 of discussions with Ryan Hamilton, Jana Iyengar, Adam Langley,
 Roberto Peon, Ian Swett, and likely many others who are merely
 forgotten by a faulty meat computer.

Authors' Addresses

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

 Ryan Hamilton
 Google

 Email: rch@google.com

https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
http://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540

Thomson & Hamilton Expires September 22, 2016 [Page 19]

