
Workgroup: Network Working Group

Internet-Draft: draft-thomson-tls-snip-01

Published: 4 January 2021

Intended Status: Informational

Expires: 8 July 2021

Authors: M. Thomson

Mozilla

Secure Negotiation of Incompatible Protocols in TLS

Abstract

An extension is defined for TLS that allows a client and server to

detect an attempt to force the use of less-preferred application

protocol even where protocol options are incompatible. This

supplements application-layer protocol negotiation, which allows

choices between compatible protocols to be authenticated.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the TLS Working Group

mailing list (tls@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/tls/.

Source for this draft and an issue tracker can be found at https://

github.com/martinthomson/snip.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 July 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/tls/
https://mailarchive.ietf.org/arch/browse/tls/
https://github.com/martinthomson/snip
https://github.com/martinthomson/snip
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Incompatible Protocols and SVCB

4. Authenticating Incompatible Protocols

5. Incompatible Protocol Selection

6. Protocol Authentication Scope

6.1. The Default Scope

6.2. SVCB Scope

6.3. QUIC Version Negotiation Scope

7. Other Discovery Methods

7.1. Alternative Services

8. Operational Considerations

9. Security Considerations

10. IANA Considerations

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Acknowledgments

Author's Address

1. Introduction

With increased diversity in protocol choice, some applications are

able to use one of several semantically-equivalent protocols to

achieve their goals. This is particularly notable in HTTP where

there are currently three distinct protocols: HTTP/1.1 [HTTP11],

HTTP/2 [HTTP2], and HTTP/3 [HTTP3]. This is also true of protocols

that support variants based on both TLS [TLS] and DTLS [DTLS].

For protocols that are mutually compatible, Application-Layer

Protocol Negotiation (ALPN; [ALPN]) provides a secure way to

negotiate protocol selection.

In ALPN, the client offers a list of options in a TLS ClientHello

and the server chooses the option that it most prefers. A downgrade

attack occurs where both client and server support a protocol that

the server prefers more than than the selected protocol. ALPN

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

protects against this attack by ensuring that the server is aware of

all options the client supports and including those options and the

server choice under the integrity protection provided by the TLS

handshake.

This downgrade protection functions because protocol negotiation is

part of the TLS handshake. The introduction of semantically-

equivalent protocols that use incompatible handshakes introduces new

opportunities for downgrade attack. For instance, it is not possible

to negotiate the use of HTTP/2 based on an attempt to connect using

HTTP/3. The former relies on TCP, whereas the latter uses UDP. These

protocols are therefore mutually incompatible.

This document defines an extension to TLS that allows clients to

discover when servers support alternative protocols that are

incompatible with the currently-selected TLS version. This might be

used to avoid downgrade attack caused by interference in protocol

discovery mechanisms.

This extension is motivated by the addition of new mechanisms, such

as [SVCB]. SVCB enables the discovery of servers that support

multiple different protocols, some of which are incompatible. The

extension can also be used to authenticate protocol choices that are

discovered by other means.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Two protocols are consider "compatible" if it is possible to

negotiate either using the same connection attempt. In comparison,

protocols are "incompatible" if they require separate attempts to

establish a connection.

3. Incompatible Protocols and SVCB

The SVCB record [SVCB] allows a client to learn about services

associated with a domain name. This includes how to locate a server,

along with supplementary information about the server, including

protocols that the server supports. This allows a client to start

using a protocol of their choice without added latency, as the

lookup can be performed concurrently with other name resolution. The

added cost of the additional DNS queries is minimal.

However, SVCB provides no protection against a downgrade attack

between incompatible protocols. An attacker could remove DNS records

¶

¶

¶

¶

¶

¶

¶

for client-preferred protocols, leaving the client to believe that

only less-prefered, mutually-incompatible options are available. The

client only offers compatible options to a server in its TLS

handshake. Even if a client were to inform the server that it

supports a more preferred protocol, the server would not be able to

act upon it.

Authenticating all of the information presented in SVCB records

might provide clients with complete information about server

support, but this is impractical for several reasons:

it is not possible to ensure that all server instances in a

deployment have the same protocol configuration, as deployments

for a single name routinely include multiple providers that

cannot coordinate closely;

the ability to provide a subset of valid DNS records is integral

to many strategies for managing servers; and

it is difficult to ensure that cached DNS records are

synchronized with server state.

Overall, an authenticated TLS handshake is a better source of

authoritative information about the protocols that are supported.

4. Authenticating Incompatible Protocols

The incompatible_protocols(TBD) TLS extension provides clients with

information about the incompatible protocols that are supported by

servers.

A client that supports the extension advertises an empty extension.

In response, a server that supports this extension includes a list

of application protocol identifiers. The "extension_data" field of

the value server extension uses the ProtocolName type defined in

[ALPN], which is repeated here. This syntax is shown in Figure 1.

¶

¶

*

¶

*

¶

*

¶

¶

¶

enum {

 incompatible_protocols(TBD), (65535)

} ExtensionType;

¶

¶

Figure 1: TLS Syntax for incompatible_protocols Extension

This extension only applies to the ClientHello and

EncryptedExtensions messages. An implementation that receives this

extension in any other handshake message MUST send a fatal

illegal_parameter alert.

A server deployment that supports multiple incompatible protocols

MAY advertise all protocols that are supported. Each protocol is

paired with an identifier for the Protocol Authentication Scope,

which defines how endpoints for that protocol might be discovered;

see Section 6.

A server needs to ensure that protocols advertised in this fashion

are available to the client within the same protocol authentication

scope.

A server MUST omit any compatible protocols from this extension.

That is, any protocol that the server might be able to select, had

the client offered the protocol in the

application_layer_protocol_negotiation extension. Clients are

expected to include all compatible protocols in the

application_layer_protocol_negotiation extension.

A server MAY limit the incompatible protocols that it advertises to

those that have similar semantics to protocols that the client lists

in its application_layer_protocol_negotiation extension.

The definition of what a server includes is intentionally flexible.

It is better that a server offer more information than less as the

enum {

 default(0), svcb(1), quic(2), (255)

} ProtocolAuthenticationScope;

opaque ProtocolName<1..2^8-1>;

struct {

 ProtocolAuthenticationScope scope;

 ProtocolName protocol;

} IncompatibleProtocol;

struct {

 select (Handshake.msg_type) {

 case client_hello:

 Empty;

 case encrypted_extensions:

 IncompatibleProtocol incompatible_protocols<3..2^16-1>;

 };

} IncompatibleProtocols;

¶

¶

¶

¶

¶

needs of a client are not necessarily well reflected in its ALPN

extension. However, it might not be feasible for a server to

advertise all potential protocols; see Section 8 for more discussion

on this point.

5. Incompatible Protocol Selection

This document expands the definition of protocol negotiation to

include both compatible and incompatible protocols and provide

protection against downgrade for both types of selection. ALPN

[ALPN] only considers compatible protocols: the client presents a

set of compatible options and the server chooses its most preferred.

With an selection of protocols that includes incompatible options,

the client makes a selection between incompatible options before

making a connection attempt. Therefore, this design does not enable

negotiation, it instead provides the client with information about

other incompatible protocols that the server might support.

Detecting a potential downgrade between incompatible protocols does

not automatically imply that a client abandon a connection attempt.

It only provides the client with authenticated information about its

options. What a client does with this information is left to client

policy.

In brief:

For compatible protocols, the client offers all acceptable

options and the server selects its most preferred

For incompatible protocols, information the server offers is

authenticated and the client is able to act on that

For a protocol like HTTP/3, this might not result in the client

choosing to use HTTP/3, even if HTTP/3 is preferred and the server

indicates that a service endpoint supporting HTTP/3 is available.

Blocking of UDP or QUIC is known to be widespread. As a result,

clients might adopt a policy of tolerating a downgrade to a TCP-

based protocol, even if HTTP/3 were preferred. However, as blocking

of UDP is highly correlated by access network, clients that are able

to establish HTTP/3 connections to some servers might choose to

apply a stricter policy when a server that indicates HTTP/3 support

is unreachable.

6. Protocol Authentication Scope

A protocol authentication scope includes a set of service endpoints

that are provided downgrade protection by this mechanism. There are

multiple types of protocol authentication scope, each identified by

¶

¶

¶

¶

¶

*

¶

*

¶

¶

a different type. The type of protocol authentication scope is

encoded in the ProtocolAuthenticationScope enum.

The type of protocol authentication scope describes how a client

might learn of all of the service endpoints that a server offers in

that scope. If a client has attempted to discover service endpoints

using the methods defined by the protocol authentication scope,

receiving an incompatible_protocols extension from a server is a

strong indication of a potential downgrade attack.

A client considers that a downgrade attack might have occurred if

all of the following occur:

A server advertises that there are endpoints that support a

protocol that the client prefers over the protocol that is

currently in use.

The protocol authentication scope associated with that protocol

is understood by the client and the client attempted to

discover services in that scope.

In response to detecting a potential downgrade attack, a client

might abandon the current connection attempt and report an error. A

client that supports discovery of incompatible protocols, but

chooses not to make a discovery attempt under normal conditions

might instead not fail, but it could use what it learns as cause to

initiate discovery.

6.1. The Default Scope

The default protocol authentication scope reserves an identifier of

0. A client cannot act on information about incompatible protocols

advertised with this scope. A server MUST NOT advertise incompatible

protocols with this scope; however, a client MUST ignore

advertisements it receives.

The default protocol authentication scope is reserved for discovery

methods that have no explicit scope; see Section 7 for more on this

subject.

6.2. SVCB Scope

The SVCB protocol authentication scope uses an identifier of 1. A

server that lists incompatible protocols with this scope indicates

that SVCB records ServiceForm records with the same SvcDomainName

exist that refer to services that support the indicated protocol.

The SVCB protocol authentication scope also applies to records that

use the SVCB form, like HTTPS.

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

¶

This ensures that the final choice a client makes between

ServiceForm SVCB records is protected by this extension. If the

client does not receive a SVCB record for a protocol that the server

includes in its incompatible_protocols extension, then it can assume

that this omission was caused by an error or attack.

A choice between AliasForm records (or CNAME or DNAME records) is

not authenticated, but choices between ServiceForm records is. This

allows for server deployments for the same name to have different

administrative control and protocol configurations.

6.3. QUIC Version Negotiation Scope

The QUIC version negotiation protocol authentication scope uses an

identifier of 2. A server that lists incompatible protocols with

this scope indicates that QUIC version negotiation at the same

server IP and port could be used to learn of incompatible QUIC

versions that support the indicated protocol.

Using this protocol authentication scope depends on application

protocols that are dependent on a specific QUIC version.

7. Other Discovery Methods

For other discovery methods, a definition for protocol

authentication scope is needed before a client can act on what is

learned using the incompatible_protocols extension. That definition

needs to define how to discover server instances that support all

incompatible protocols in the scope.

In particular, a server that is discovered using forms of DNS-based

name resolution other than SVCB uses the default protocol

authentication scope; see Section 6.1. Discovering services in this

way does not provide enough information to locate other incompatible

protocols.

For instance, an HTTPS server that is discovered using purely A or

AAAA records (and CNAME or DNAME records) might advertise support

for incompatible protocols, but as there is no way to determine

where those protocols are supported, a client cannot act on the

information. Note that Alternative Services do not change the

protocol authentication scope.

Deployments of discovery methods that define a protocol

authentication scope larger than the default need to ensure that

every server provides information that is consistent with every

protocol authentication scope that includes that server. A server

that fails to indicate support for a protocol that is within a

protocol authentication scope does not offer any protection against

attack; a server that advertises a protocol that the client cannot

¶

¶

¶

¶

¶

¶

¶

discover risks this misconfiguration being identified as an attack

by clients.

7.1. Alternative Services

It is possible to negotiate protocols based on an established

connection without exposure to downgrade. The Alternative Services

[ALTSVC] bootstrapping in HTTP/3 [HTTP3] does just that. Assuming

that HTTP/2 or HTTP/1.1 are not vulnerable to attacks that would

compromise integrity, a server can advertise the presence of an

endpoint that supports HTTP/3.

Under these assumptions Alternative Services is secure, but it has

performance trade-offs. A client could attempt the protocol it

prefers most, but that comes at a risk that this protocol is not

supported by a server. A client could implement a fallback, which

might even be performed concurrently (see [HAPPY-EYEBALLS]), but

this costs time and resources. A client avoids these costs by

attempting the protocol it believes to be most widely supported,

though this comes with a performance penalty in cases where the

most-preferred protocol is supported.

A server that is discovered using Alternative Services uses the

default protocol authentication scope. As use of Alternative

Services is discretionary for both client and server, a client

cannot expect to receive information about incompatible protocols.

To avoid downgrade, a client only has to limit its use of

Alternative Services to those that it prefers more than the active

protocol.

8. Operational Considerations

By listing incompatible protocols, a server does not indicate how to

find endpoints that support those protocols, only that they exist.

This ensures that server configuration is minimized, as servers do

not require tight coordination. Providing even this much information

could present operational difficulties as it requires that

incompatible protocols are only listed when those protocols are

deployed.

Server deployments can choose not to provide information about

incompatible protocols, which denies clients information about

downgrade attacks but might avoid the operational complexity of

providing accurate information.

During rollout of a new, incompatible protocol, until the deployment

is stable and not at risk of being disabled, servers SHOULD NOT

advertise the existence of the new protocol. Protocol deployments

that are disabled, first need to be removed from the

incompatible_protocols extension or there could be some loss of

¶

¶

¶

¶

¶

¶

[ALPN]

[RFC2119]

[RFC8174]

service. Though the incompatible_protocols extension only applies at

the time of the TLS handshake, clients might take some time to act

on the information. If an incompatible protocol is removed from

deployment between when the client completes a handshake and when it

acts, this could be treated as an error by the client.

If a server does not list available, incompatible protocols, clients

cannot learn about other services and so cannot detect downgrade

attacks against those protocols.

9. Security Considerations

This design depends on the integrity of the TLS handshake across all

forms, including TLS [RFC8446], DTLS [DTLS], and QUIC [QUIC-TLS]. An

attacker that can modify a TLS handshake in any one of these

protocols can cause a client to believe that other options do not

exist.

A server deployment that uses AliasForm SVCB records and does not

uniformly support a client-preferred protocol is vulnerable to

downgrade attacks that steer clients toward instances that lack

support for that protocol. This attack is ineffective for protocols

that are consistently supported by all server instances.

10. IANA Considerations

TODO: register the extension

TODO: create a registry of scopes

11. References

11.1. Normative References

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174

[ALTSVC]

[DTLS]

[HAPPY-EYEBALLS]

[HTTP11]

[HTTP2]

[HTTP3]

[QUIC-TLS]

[RFC8446]

[SVCB]

[TLS]

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/info/rfc7838>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", Work in Progress, Internet-Draft, draft-ietf-tls-

dtls13-39, 2 November 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-tls-dtls13-39.txt>.

Wing, D. and A. Yourtchenko, "Happy Eyeballs:

Success with Dual-Stack Hosts", RFC 6555, DOI 10.17487/

RFC6555, April 2012, <https://www.rfc-editor.org/info/

rfc6555>.

Fielding, R., Nottingham, M., and J. Reschke, "HTTP/1.1",

Work in Progress, Internet-Draft, draft-ietf-httpbis-

messaging-13, 14 December 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-httpbis-messaging-13.txt>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/

3)", Work in Progress, Internet-Draft, draft-ietf-quic-

http-33, 15 December 2020, <http://www.ietf.org/internet-

drafts/draft-ietf-quic-http-33.txt>.

Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

Work in Progress, Internet-Draft, draft-ietf-quic-tls-33,

13 December 2020, <http://www.ietf.org/internet-drafts/

draft-ietf-quic-tls-33.txt>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Schwartz, B., Bishop, M., and E. Nygren, "Service binding

and parameter specification via the DNS (DNS SVCB and

HTTPSSVC)", Work in Progress, Internet-Draft, draft-ietf-

dnsop-svcb-httpssvc-03, 11 June 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-dnsop-svcb-

httpssvc-03.txt>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

https://www.rfc-editor.org/info/rfc7838
http://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-39.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-39.txt
https://www.rfc-editor.org/info/rfc6555
https://www.rfc-editor.org/info/rfc6555
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-messaging-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-messaging-13.txt
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-33.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-33.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-tls-33.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-tls-33.txt
https://www.rfc-editor.org/info/rfc8446
http://www.ietf.org/internet-drafts/draft-ietf-dnsop-svcb-httpssvc-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-dnsop-svcb-httpssvc-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-dnsop-svcb-httpssvc-03.txt
https://www.rfc-editor.org/info/rfc8446

Appendix A. Acknowledgments

Benjamin Schwartz provided significant input into the design of the

mechanism and helped clarify many points.

Author's Address

Martin Thomson

Mozilla

Email: mt@lowentropy.net

¶

mailto:mt@lowentropy.net

	Secure Negotiation of Incompatible Protocols in TLS
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Incompatible Protocols and SVCB
	4. Authenticating Incompatible Protocols
	5. Incompatible Protocol Selection
	6. Protocol Authentication Scope
	6.1. The Default Scope
	6.2. SVCB Scope
	6.3. QUIC Version Negotiation Scope

	7. Other Discovery Methods
	7.1. Alternative Services

	8. Operational Considerations
	9. Security Considerations
	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Acknowledgments
	Author's Address

