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Abstract

   The ability to change protocols depends on exercising the extension
   and version negotiation mechanisms that support change.  Protocols
   that don't use these mechanisms can find that deploying changes can
   be difficult and costly.
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1.  Introduction

   A successful protocol [SUCCESS] will change in ways that allow it to
   continue to fulfill the needs of its users.  New use cases,
   conditions and constraints on the deployment of a protocol can render
   a protocol that does not change obsolete.

   Usage patterns and requirements for a protocol shift over time.  In
   response, implementations might adjust usage patterns within the
   constraints of the protocol, the protocol could be extended, or a
   replacement protocol might be developed.  Experience with Internet-
   scale protocol deployment shows that each option comes with different
   costs.  [TRANSITIONS] examines the problem of protocol evolution more
   broadly.

   This document examines the specific conditions that determine whether
   protocol maintainers have the ability to design and deploy new or
   modified protocols.  Section 2 highlights some historical issues with
   difficulties in transitions to new protocol features.  Section 3
   argues that ossified protocols are more difficult to update and
   successful protocols make frequent use of new extensions and code-
   points.  Section 4 outlines several strategies that might aid in
   ensuring that protocol changes remain possible over time.

   The experience that informs this document is predominantly at
   "higher" layers of the network stack, in protocols that operate at
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   very large scale and Internet-scale applications.  It is possible
   that these conclusions are less applicable to protocol deployments
   that have less scale and diversity, or operate under different
   constraints.

2.  Implementations of Protocols are Imperfect

   A change to a protocol can be made extremely difficult to deploy if
   there are bugs in implementations with which the new deployment needs
   to interoperate.  Bugs in the handling of new codepoints or
   extensions can mean that instead of handling the mechanism as
   designed, endpoints react poorly.  This can manifest as abrupt
   termination of sessions, errors, crashes, or disappearances of
   endpoints and timeouts.

   Interoperability with other implementations is usually highly valued,
   so deploying mechanisms that trigger adverse reactions can be
   untenable.  Where interoperability is a competitive advantage, this
   is true even if the negative reactions happen infrequently or only
   under relatively rare conditions.

   Deploying a change to a protocol could require implementations fix a
   substantial proportion of the bugs that the change exposes.  This can
   involve a difficult process that includes identifying the cause of
   these errors, finding the responsible implementation(s), coordinating
   a bug fix and release plan, contacting users and/or the operator of
   affected services, and waiting for the fix to be deployed.

   Given the effort involved in fixing problems, the existence of these
   sorts of bugs can outright prevent the deployment of some types of
   protocol changes, especially for protocols involving multiple parties
   or that are considered critical infrastructure (e.g., IP, BGP, DNS,
   or TLS).  It could even be necessary to come up with a new protocol
   design that uses a different method to achieve the same result.

   The set of interoperable features in a protocol is often the subset
   of its features that have some value to those implementing and
   deploying the protocol.  It is not always the case that future
   extensibility is in that set.

2.1.  Good Protocol Design is Not Itself Sufficient

   It is often argued that the design of a protocol extension point or
   version negotiation capability is critical to the freedom that it
   ultimately offers.

RFC 6709 [EXTENSIBILITY] contains a great deal of well-considered
   advice on designing for extension.  It includes the following advice:

https://datatracker.ietf.org/doc/html/rfc6709
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      This means that, to be useful, a protocol version- negotiation
      mechanism should be simple enough that it can reasonably be
      assumed that all the implementers of the first protocol version at
      least managed to implement the version-negotiation mechanism
      correctly.

   This has proven to be insufficient in practice.  Many protocols have
   evidence of imperfect implementation of critical mechanisms of this
   sort.  Mechanisms that aren't used are the ones that fail most often.
   The same paragraph from RFC 6709 acknowledges the existence of this
   problem, but does not offer any remedy:

      The nature of protocol version-negotiation mechanisms is that, by
      definition, they don't get widespread real-world testing until
      _after_ the base protocol has been deployed for a while, and its
      deficiencies have become evident.

   Indeed, basic interoperability is considered critical early in the
   deployment of a protocol.  Race-to-market attitudes frequently result
   in an engineering practice that values simplicity will tend to make
   version negotiation and extension mechanisms optional for this basic
   interoperability.  This leads to these mechanisms being uniquely
   affected by this problem.

   Transport Layer Security (TLS) [TLS12] provides examples of where a
   design that is objectively sound fails when incorrectly implemented.
   TLS provides examples of failures in protocol version negotiation and
   extensibility.

   Version negotiation in TLS 1.2 and earlier uses the "Highest mutually
   supported version (HMSV)" scheme exactly as it is described in
   [EXTENSIBILITY].  However, clients are unable to advertise a new
   version without causing a non-trivial proportions of sessions to fail
   due to bugs in server and middlebox implementations.

   Intolerance to new TLS versions is so severe [INTOLERANCE] that TLS
   1.3 [TLS13] has abandoned HMSV version negotiation for a new
   mechanism.

   The server name indication (SNI) [TLS-EXT] in TLS is another
   excellent example of the failure of a well-designed extensibility
   point.  SNI uses the same technique for extension that is used with
   considerable success in other parts of the TLS protocol.  The
   original design of SNI includes the ability to include multiple names
   of different types.

   What is telling in this case is that SNI was defined with just one
   type of name: a domain name.  No other type has ever been

https://datatracker.ietf.org/doc/html/rfc6709
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   standardized, though several have been proposed.  Despite an
   otherwise exemplary design, SNI is so inconsistently implemented that
   any hope for using the extension point it defines has been abandoned
   [SNI].

   Requiring simplistic processing steps when encountering unknown
   conditions, such as unsupported version numbers, can potentially
   prevent these sorts of situations.  A counter example is the first
   version of the Simple Network Management Protocol (SNMP), where an
   unparseable and an authentication message are treated the same way by
   the server: no response is generated [SNMPv1]:

      It then verifies the version number of the SNMP message.  If there
      is a mismatch, it discards the datagram and performs no further
      actions.

   When SNMP versions 2, 2c and 3 came along, older agents did exactly
   what the protocol specifies should have done: dropped it from being
   processing without returning a response.  This was likely successful
   because there was no requirement to create and return an elaborate
   error response to the client.

2.2.  Multi-Party Interactions and Middleboxes

   Even the most superficially simple protocols can often involve more
   actors than is immediately apparent.  A two-party protocol has two
   ends, but even at the endpoints of an interaction, protocol elements
   can be passed on to other entities in ways that can affect protocol
   operation.

   One of the key challenges in deploying new features is ensuring
   compatibility with all actors that could be involved in the protocol.

   Protocols deployed without active measures against intermediation
   will tend to become intermediated over time, as network operators
   deploy middleboxes to perform some function on traffic
   [PATH-SIGNALS].  In particular, one of the consequences of an
   unencrypted protocol is that any element on path can interact with
   the protocol.  For example, HTTP was specifically designed with
   intermediation in mind, transparent proxies [HTTP] are not only
   possible but sometimes advantageous, despite some significant
   downsides.  Consequently, transparent proxies for cleartext HTTP are
   commonplace.  The DNS protocol was designed with intermediation in
   mind through its use of caching recursive resolvers [DNS].  What was
   less anticipated was the forced spoofing of DNS records by many
   middle-boxes such as those that inject authentication or pay-wall
   mechanisms as an authentication and authorization check, which are
   now prevalent in hotels, coffee shops and business networks.
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   Middleboxes are also protocol participants, to the degree that they
   are able to observe and act in ways that affect the protocol.  The
   degree to which a middlebox participates varies from the basic
   functions that a router performs to full participation.  For example,
   a SIP back-to-back user agent (B2BUA) [B2BUA] can be very deeply
   involved in the SIP protocol.

   This phenomenon appears at all layers of the protocol stack, even
   when protocols are not designed with middlebox participation in mind.
   TCP's [TCP] extension points have been rendered difficult to use,
   largely due to middlebox interactions, as experience with Multipath
   TCP [MPTCP] and Fast Open [TFO] has shown.  IP's version field was
   rendered useless when encapsulated over Ethernet, requring a new
   ethertype with IPv6 [RFC2462], due in part to layer 2 devices making
   version-independent assumptions about the structure of the IPv4
   header.

   By increasing the number of different actors involved in any single
   protocol exchange, the number of potential implementation bugs that a
   deployment needs to contend with also increases.  In particular,
   incompatible changes to a protocol that might be negotiated between
   endpoints in ignorance of the presence of a middlebox can result in a
   middlebox interfering in negative and unexpected ways.

   Unfortunately, middleboxes can considerably increase the difficulty
   of deploying new versions or other changes to a protocol.

3.  Retaining Viable Protocol Evolution Mechanisms

   The design of a protocol for extensibility and eventual replacement
   [EXTENSIBILITY] does not guarantee the ability to exercise those
   options.  The set of features that enable future evolution need to be
   interoperable in the first implementations and deployments of the
   protocol.  Active use of mechanisms that support evolution is the
   only way to ensure that they remain available for new uses.

   The conditions for retaining the ability to evolve a design is most
   clearly evident in the protocols that are known to have viable
   version negotiation or extension points.  The definition of
   mechanisms alone is insufficient; it's the active use of those
   mechanisms that determines the existence of freedom.  Protocols that
   routinely add new extensions and code points rarely have trouble
   adding additional ones, especially when unknown code-points and
   extensions are to be safely ignored when not understood.

https://datatracker.ietf.org/doc/html/rfc2462
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3.1.  Examples of Active Use

   For example, header fields in email [SMTP], HTTP [HTTP] and SIP [SIP]
   all derive from the same basic design, which amounts to a list name/
   value pairs.  There is no evidence of significant barriers to
   deploying header fields with new names and semantics in email and
   HTTP as clients and servers can ignore headers they do not understand
   or need.  The widespread deployment of SIP B2BUAs means that new SIP
   header fields do not reliably reach peers, however, which doesn't
   necessarily cause interoperability issues but rather does cause
   feature deployment issues.

   In another example, the attribute-value pairs (AVPs) in Diameter
   [DIAMETER] are fundamental to the design of the protocol.  Any use of
   Diameter requires exercising the ability to add new AVPs.  This is
   routinely done without fear that the new feature might not be
   successfully deployed.

   Ossified DNS code bases and systems resulted in fears that new
   Resource Record Codes (RRCodes) would take years of software
   propagation before new RRCodes could be used.  The result for a long
   time was heavily overloaded use of the TXT record, such as in the
   Sender Policy Framework [SPF].  It wasn't until after the standard
   mechanism for dealing with new RRCodes [RRTYPE] was considered widely
   deployed that new RRCodes can be safely created and used immediately.

   These examples show extension points that are heavily used are also
   being relatively unaffected by deployment issues preventing addition
   of new values for new use cases.

   These examples also confirm the case that good design is not a
   prerequisite for success.  On the contrary, success is often despite
   shortcomings in the design.  For instance, the shortcomings of HTTP
   header fields are significant enough that there are ongoing efforts
   to improve the syntax [HTTP-HEADERS].

   Only by using a protocol's extension capabilities does it ensure the
   availability of that capability.  Protocols that fail to use a
   mechanism, or a protocol that only rarely uses a mechanism, may
   suffer an inability to rely on that mechanism.

3.2.  Dependency is Better

   The best way to guarantee that a protocol mechanism is used is to
   make it critical to an endpoint participating in that protocol.  This
   means that implementations rely on both the existence of the protocol
   mechanism and its use.



Thomson                  Expires January 9, 2020                [Page 7]



Internet-Draft              Use It Or Lose It                  July 2019

   For example, the message format in SMTP relies on header fields for
   most of its functions, including the most basic functions.  A
   deployment of SMTP cannot avoid including an implementation of header
   field handling.  In addition to this, the regularity with which new
   header fields are defined and used ensures that deployments
   frequently encounter header fields that it does not understand.  An
   SMTP implementation therefore needs to be able to both process header
   fields that it understands and ignore those that it does not.

   In this way, implementing the extensibility mechanism is not merely
   mandated by the specification, it is crucial to the functioning of a
   protocol deployment.  Should an implementation fail to correctly
   implement the mechanism, that failure would quickly become apparent.

   Caution is advised to avoid assuming that building a dependency on an
   extension mechanism is sufficient to ensure availability of that
   mechanism in the long term.  If the set of possible uses is narrowly
   constrained and deployments do not change over time, implementations
   might not see new variations or assume a narrower interpretation of
   what is possible.  Those implementations might still exhibit errors
   when presented with a new variation.

3.3.  Unused Extension Points Become Unusable

   In contrast, there are many examples of extension points in protocols
   that have been either completely unused, or their use was so
   infrequent that they could no longer be relied upon to function
   correctly.

   HTTP has a number of very effective extension points in addition to
   the aforementioned header fields.  It also has some examples of
   extension point that are so rarely used that it is possible that they
   are not at all usable.  Extension points in HTTP that might be unwise
   to use include the extension point on each chunk in the chunked
   transfer coding [HTTP], the ability to use transfer codings other
   than the chunked coding, and the range unit in a range request
   [HTTP-RANGE].

   Even where extension points have multiple valid values, if the set of
   permitted values does not change over time, there is still a risk
   that new values are not tolerated by existing implementations.  If
   the set of values for a particular field remains fixed over a long
   period, some implementations might not correctly handle a new value
   when it is introduced.  For example, implementations of TLS broke
   when new values of the signature_algorithms extension were
   introduced.
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   Codepoints that are reserved for future use can be especially
   problematic.  Reserving codepoints without attributing semantics to
   their use can result in diverse or conflicting semantics being
   attributed without any hope of interoperability.  An example of this
   is the "class E" address space in IPv4 [RFC0988], which was reserved
   without assigning any semantics.  For protocols that can use
   negotiation to attribute semantics to codepoints, it is possible that
   unused codepoints can be reclaimed for active use, though this
   requires that the negotiation include all protocol participants.

4.  Defensive Design Principles for Protocols

   There are several potential approaches that can provide some measure
   of protection against a protocol deployment becoming resistant to
   change.

4.1.  Active Use

   As discussed in Section 3, the most effective defense against misuse
   of protocol extension points is active use.

   Implementations are most likely to be tolerant of new values if they
   depend on being able to use new values.  Failing that,
   implementations that routinely see new values are more likely to
   correctly handle new values.  More frequent changes will improve the
   likelihood that incorrect handling or intolerance is discovered and
   rectified.  The longer an intolerant implementation is deployed, the
   more difficult it is to correct.

   What active use means could depend greatly on the environment in
   which a protocol is deployed.  The frequency of changes necessary to
   safeguard some mechanisms might be slow enough to attract
   ossification in another protocol deployment, while being excessive in
   others.  There are currently no firm guidelines for new protocol
   development, as much is being learned about what techniques are most
   effective.

4.2.  Cryptography

   Cryptography can be used to reduce the number of entities that can
   participate in a protocol.  Using tools like TLS ensures that only
   authorized participants are able to influence whether a new protocol
   feature is used.

   Permitting fewer protocol participants reduces the number of
   implementations that can prevent a new mechanism from being deployed.
   As recommended in [PATH-SIGNALS], use of encryption and integrity
   protection can be used to limit participation.

https://datatracker.ietf.org/doc/html/rfc0988
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   For example, the QUIC protocol [QUIC] adopts both encryption and
   integrity protection.  Encryption is used to carefully control what
   information is exposed to middleboxes.  For those fields that are not
   encrypted, QUIC uses integrity protection to prevent modification.

4.3.  Grease

   "Grease" [GREASE] identifies lack of use as an issue (protocol
   mechanisms "rusting" shut) and proposes reserving values for
   extensions that have no semantic value attached.

   The design in [GREASE] is aimed at the style of negotiation most used
   in TLS, where the client offers a set of options and the server
   chooses the one that it most prefers from those that it supports.  A
   client that uses grease randomly offers options - usually just one -
   from a set of reserved values.  These values are guaranteed to never
   be assigned real meaning, so the server will never have cause to
   genuinely select one of these values.

   More generally, greasing is used to refer to any attempt to exercise
   extension points without changing endpoint behavior, other than to
   encourage participants to tolerate new or varying values of protocol
   elements.

   The principle that grease operates on is that an implementation that
   is regularly exposed to unknown values is less likely to be
   intolerant of new values when they appear.  This depends largely on
   the assumption that the difficulty of implementing the extension
   mechanism correctly is not significantly more effort than
   implementing code to identify and filter out reserved values.
   Reserving random or unevenly distributed values for this purpose is
   thought to further discourage special treatment.

   Without reserved greasing codepoints, an implementation can use code
   points from spaces used for private or experimental use if such a
   range exists.  In addition to the risk of triggering participation in
   an unwanted experiment, this can be less effective.  Incorrect
   implementations might still be able to correctly identify these code
   points and ignore them.

   In addition to advertising bogus capabilities, an endpoint might also
   selectively disable non-critical protocol elements to test the
   ability of peers to handle the absence of certain capabilities.

   This style of defensive design is limited because it is only
   superficial.  It only exercises a small part of the mechanisms that
   support extensibility.  More critically, it does not easily translate
   to all forms of extension point.  For instance, HMSV negotiation
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   cannot be greased in this fashion.  Other techniques might be
   necessary for protocols that don't rely on the particular style of
   exchange that is predominant in TLS.

   Grease is deployed with the intent of quickly revealing errors in
   implementing the mechanisms it safeguards.  Though it has been
   effective at revealing problems in some cases with TLS, the efficacy
   of greasing isn't proven more generally.  Where implementations are
   able to tolerate a non-zero error rate in their operation, greasing
   offers a potential option for safeguarding future extensibility.

4.4.  Invariants

   Documenting aspects of the protocol that cannot or will not change as
   extensions or new versions are added can be a useful exercise.
   Understanding what aspects of a protocol are invariant can help guide
   the process of identifying those parts of the protocol that might
   change.

   As a means of protecting extensibility, a declaration of protocol
   invariants is useful only to the extent that protocol participants
   are willing to allow new uses for the protocol.  Like greasing,
   protocol participants could still purposefully block the deployment
   of new features.  A protocol that declares protocol invariants relies
   on implementations understanding and respecting those invariants.

   Protocol invariants need to be clearly and concisely documented.
   Including examples of aspects of the protocol that are not invariant,
   such as the appendix of [QUIC-INVARIANTS], can be used to clarify
   intent.

4.5.  Effective Feedback

   While not a direct means of protecting extensibility mechanisms,
   feedback systems can be important to discovering problems.

   Visibility of errors is critical to the success of the grease
   technique (see Section 4.3).  The grease design is most effective if
   a deployment has a means of detecting and reporting errors.  Ignoring
   errors could allow problems to become entrenched.

   Feedback on errors is more important during the development and early
   deployment of a change.  It might also be helpful to disable
   automatic error recovery methods during development.

   Automated feedback systems are important for automated systems, or
   where error recovery is also automated.  For instance, connection
   failures with HTTP alternative services [ALT-SVC] are not permitted
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   to affect the outcome of transactions.  An automated feedback system
   for capturing failures in alternative services is therefore necessary
   for failures to be detected.

   How errors are gathered and reported will depend greatly on the
   nature of the protocol deployment and the entity that receives the
   report.  For instance, end users, developers, and network operations
   each have different requirements for how error reports are created,
   managed, and acted upon.

5.  Security Considerations

   The ability to design, implement, and deploy new protocol mechanisms
   can be critical to security.  In particular, it is important to be
   able to replace cryptographic algorithms over time [AGILITY].  For
   example, preparing for replacement of weak hash algorithms was made
   more difficult through misuse [HASH].

6.  IANA Considerations

   This document makes no request of IANA.

7.  Informative References

   [AGILITY]  Housley, R., "Guidelines for Cryptographic Algorithm
              Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
              <https://www.rfc-editor.org/info/rfc7696>.

   [ALT-SVC]  Nottingham, M., McManus, P., and J. Reschke, "HTTP
              Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
              April 2016, <https://www.rfc-editor.org/info/rfc7838>.

   [B2BUA]    Kaplan, H. and V. Pascual, "A Taxonomy of Session
              Initiation Protocol (SIP) Back-to-Back User Agents",

RFC 7092, DOI 10.17487/RFC7092, December 2013,
              <https://www.rfc-editor.org/info/rfc7092>.

   [DIAMETER]
              Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
              Ed., "Diameter Base Protocol", RFC 6733,
              DOI 10.17487/RFC6733, October 2012,
              <https://www.rfc-editor.org/info/rfc6733>.

   [DNS]      Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
              <https://www.rfc-editor.org/info/rfc1034>.

https://datatracker.ietf.org/doc/html/bcp201
https://datatracker.ietf.org/doc/html/rfc7696
https://www.rfc-editor.org/info/rfc7696
https://datatracker.ietf.org/doc/html/rfc7838
https://www.rfc-editor.org/info/rfc7838
https://datatracker.ietf.org/doc/html/rfc7092
https://www.rfc-editor.org/info/rfc7092
https://datatracker.ietf.org/doc/html/rfc6733
https://www.rfc-editor.org/info/rfc6733
https://datatracker.ietf.org/doc/html/rfc1034
https://www.rfc-editor.org/info/rfc1034


Thomson                  Expires January 9, 2020               [Page 12]



Internet-Draft              Use It Or Lose It                  July 2019

   [EXTENSIBILITY]
              Carpenter, B., Aboba, B., Ed., and S. Cheshire, "Design
              Considerations for Protocol Extensions", RFC 6709,
              DOI 10.17487/RFC6709, September 2012,
              <https://www.rfc-editor.org/info/rfc6709>.

   [GREASE]   Benjamin, D., "Applying GREASE to TLS Extensibility",
draft-ietf-tls-grease-02 (work in progress), January 2019.

   [HASH]     Bellovin, S. and E. Rescorla, "Deploying a New Hash
              Algorithm", Proceedings of NDSS '06 , 2006,
              <https://www.cs.columbia.edu/~smb/papers/new-hash.pdf>.

   [HTTP]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
              <https://www.rfc-editor.org/info/rfc7230>.

   [HTTP-HEADERS]
              Nottingham, M. and P. Kamp, "Structured Headers for HTTP",

draft-ietf-httpbis-header-structure-10 (work in progress),
              April 2019.

   [HTTP-RANGE]
              Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
              "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014,
              <https://www.rfc-editor.org/info/rfc7233>.

   [INTOLERANCE]
              Kario, H., "Re: [TLS] Thoughts on Version Intolerance",
              July 2016, <https://mailarchive.ietf.org/arch/msg/tls/

bOJ2JQc3HjAHFFWCiNTIb0JuMZc>.

   [MPTCP]    Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
              "TCP Extensions for Multipath Operation with Multiple
              Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
              <https://www.rfc-editor.org/info/rfc6824>.

   [PATH-SIGNALS]
              Hardie, T., "Transport Protocol Path Signals", draft-iab-

path-signals-03 (work in progress), January 2019.

   [QUIC]     Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
              and Secure Transport", draft-ietf-quic-transport-20 (work
              in progress), April 2019.

https://datatracker.ietf.org/doc/html/rfc6709
https://www.rfc-editor.org/info/rfc6709
https://datatracker.ietf.org/doc/html/draft-ietf-tls-grease-02
https://www.cs.columbia.edu/~smb/papers/new-hash.pdf
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-10
https://datatracker.ietf.org/doc/html/rfc7233
https://www.rfc-editor.org/info/rfc7233
https://mailarchive.ietf.org/arch/msg/tls/bOJ2JQc3HjAHFFWCiNTIb0JuMZc
https://mailarchive.ietf.org/arch/msg/tls/bOJ2JQc3HjAHFFWCiNTIb0JuMZc
https://datatracker.ietf.org/doc/html/rfc6824
https://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/draft-iab-path-signals-03
https://datatracker.ietf.org/doc/html/draft-iab-path-signals-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20


Thomson                  Expires January 9, 2020               [Page 13]



Internet-Draft              Use It Or Lose It                  July 2019

   [QUIC-INVARIANTS]
              Thomson, M., "Version-Independent Properties of QUIC",

draft-ietf-quic-invariants-04 (work in progress), April
              2019.

   [RFC0988]  Deering, S., "Host extensions for IP multicasting",
RFC 988, DOI 10.17487/RFC0988, July 1986,

              <https://www.rfc-editor.org/info/rfc988>.

   [RFC2462]  Thomson, S. and T. Narten, "IPv6 Stateless Address
              Autoconfiguration", RFC 2462, DOI 10.17487/RFC2462,
              December 1998, <https://www.rfc-editor.org/info/rfc2462>.

   [RRTYPE]   Gustafsson, A., "Handling of Unknown DNS Resource Record
              (RR) Types", RFC 3597, DOI 10.17487/RFC3597, September
              2003, <https://www.rfc-editor.org/info/rfc3597>.

   [SIP]      Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              DOI 10.17487/RFC3261, June 2002,
              <https://www.rfc-editor.org/info/rfc3261>.

   [SMTP]     Resnick, P., Ed., "Internet Message Format", RFC 5322,
              DOI 10.17487/RFC5322, October 2008,
              <https://www.rfc-editor.org/info/rfc5322>.

   [SNI]      Langley, A., "Accepting that other SNI name types will
              never work", March 2016,
              <https://mailarchive.ietf.org/arch/msg/

tls/1t79gzNItZd71DwwoaqcQQ_4Yxc>.

   [SNMPv1]   Case, J., Fedor, M., Schoffstall, M., and J. Davin,
              "Simple Network Management Protocol (SNMP)", RFC 1157,
              DOI 10.17487/RFC1157, May 1990,
              <https://www.rfc-editor.org/info/rfc1157>.

   [SPF]      Kitterman, S., "Sender Policy Framework (SPF) for
              Authorizing Use of Domains in Email, Version 1", RFC 7208,
              DOI 10.17487/RFC7208, April 2014,
              <https://www.rfc-editor.org/info/rfc7208>.

   [SUCCESS]  Thaler, D. and B. Aboba, "What Makes for a Successful
              Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008,
              <https://www.rfc-editor.org/info/rfc5218>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-04
https://datatracker.ietf.org/doc/html/rfc988
https://www.rfc-editor.org/info/rfc988
https://datatracker.ietf.org/doc/html/rfc2462
https://www.rfc-editor.org/info/rfc2462
https://datatracker.ietf.org/doc/html/rfc3597
https://www.rfc-editor.org/info/rfc3597
https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://mailarchive.ietf.org/arch/msg/tls/1t79gzNItZd71DwwoaqcQQ_4Yxc
https://mailarchive.ietf.org/arch/msg/tls/1t79gzNItZd71DwwoaqcQQ_4Yxc
https://datatracker.ietf.org/doc/html/rfc1157
https://www.rfc-editor.org/info/rfc1157
https://datatracker.ietf.org/doc/html/rfc7208
https://www.rfc-editor.org/info/rfc7208
https://datatracker.ietf.org/doc/html/rfc5218
https://www.rfc-editor.org/info/rfc5218


Thomson                  Expires January 9, 2020               [Page 14]



Internet-Draft              Use It Or Lose It                  July 2019

   [TCP]      Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

              <https://www.rfc-editor.org/info/rfc793>.

   [TFO]      Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
              Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
              <https://www.rfc-editor.org/info/rfc7413>.

   [TLS-EXT]  Eastlake 3rd, D., "Transport Layer Security (TLS)
              Extensions: Extension Definitions", RFC 6066,
              DOI 10.17487/RFC6066, January 2011,
              <https://www.rfc-editor.org/info/rfc6066>.

   [TLS12]    Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC5246, August 2008,
              <https://www.rfc-editor.org/info/rfc5246>.

   [TLS13]    Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

   [TRANSITIONS]
              Thaler, D., Ed., "Planning for Protocol Adoption and
              Subsequent Transitions", RFC 8170, DOI 10.17487/RFC8170,
              May 2017, <https://www.rfc-editor.org/info/rfc8170>.

Acknowledgments

   Mirja Kuehlewind, Mark Nottingham, and Brian Trammell made
   significant contributions to this document.

Author's Address

   Martin Thomson
   Mozilla

   Email: mt@lowentropy.net

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8170
https://www.rfc-editor.org/info/rfc8170


Thomson                  Expires January 9, 2020               [Page 15]


