
Network Working Group M. Thomson
Internet-Draft Mozilla
Intended status: Informational July 08, 2019
Expires: January 9, 2020

Long-term Viability of Protocol Extension Mechanisms
draft-thomson-use-it-or-lose-it-04

Abstract

 The ability to change protocols depends on exercising the extension
 and version negotiation mechanisms that support change. Protocols
 that don't use these mechanisms can find that deploying changes can
 be difficult and costly.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Use It Or Lose It July 2019

Table of Contents

1. Introduction . 2
2. Implementations of Protocols are Imperfect 3
2.1. Good Protocol Design is Not Itself Sufficient 3
2.2. Multi-Party Interactions and Middleboxes 5

3. Retaining Viable Protocol Evolution Mechanisms 6
3.1. Examples of Active Use 7
3.2. Dependency is Better 7
3.3. Unused Extension Points Become Unusable 8

4. Defensive Design Principles for Protocols 9
4.1. Active Use . 9
4.2. Cryptography . 9
4.3. Grease . 10
4.4. Invariants . 11
4.5. Effective Feedback 11

5. Security Considerations 12
6. IANA Considerations . 12
7. Informative References 12

 Acknowledgments . 15
 Author's Address . 15

1. Introduction

 A successful protocol [SUCCESS] will change in ways that allow it to
 continue to fulfill the needs of its users. New use cases,
 conditions and constraints on the deployment of a protocol can render
 a protocol that does not change obsolete.

 Usage patterns and requirements for a protocol shift over time. In
 response, implementations might adjust usage patterns within the
 constraints of the protocol, the protocol could be extended, or a
 replacement protocol might be developed. Experience with Internet-
 scale protocol deployment shows that each option comes with different
 costs. [TRANSITIONS] examines the problem of protocol evolution more
 broadly.

 This document examines the specific conditions that determine whether
 protocol maintainers have the ability to design and deploy new or
 modified protocols. Section 2 highlights some historical issues with
 difficulties in transitions to new protocol features. Section 3
 argues that ossified protocols are more difficult to update and
 successful protocols make frequent use of new extensions and code-
 points. Section 4 outlines several strategies that might aid in
 ensuring that protocol changes remain possible over time.

 The experience that informs this document is predominantly at
 "higher" layers of the network stack, in protocols that operate at

Thomson Expires January 9, 2020 [Page 2]

Internet-Draft Use It Or Lose It July 2019

 very large scale and Internet-scale applications. It is possible
 that these conclusions are less applicable to protocol deployments
 that have less scale and diversity, or operate under different
 constraints.

2. Implementations of Protocols are Imperfect

 A change to a protocol can be made extremely difficult to deploy if
 there are bugs in implementations with which the new deployment needs
 to interoperate. Bugs in the handling of new codepoints or
 extensions can mean that instead of handling the mechanism as
 designed, endpoints react poorly. This can manifest as abrupt
 termination of sessions, errors, crashes, or disappearances of
 endpoints and timeouts.

 Interoperability with other implementations is usually highly valued,
 so deploying mechanisms that trigger adverse reactions can be
 untenable. Where interoperability is a competitive advantage, this
 is true even if the negative reactions happen infrequently or only
 under relatively rare conditions.

 Deploying a change to a protocol could require implementations fix a
 substantial proportion of the bugs that the change exposes. This can
 involve a difficult process that includes identifying the cause of
 these errors, finding the responsible implementation(s), coordinating
 a bug fix and release plan, contacting users and/or the operator of
 affected services, and waiting for the fix to be deployed.

 Given the effort involved in fixing problems, the existence of these
 sorts of bugs can outright prevent the deployment of some types of
 protocol changes, especially for protocols involving multiple parties
 or that are considered critical infrastructure (e.g., IP, BGP, DNS,
 or TLS). It could even be necessary to come up with a new protocol
 design that uses a different method to achieve the same result.

 The set of interoperable features in a protocol is often the subset
 of its features that have some value to those implementing and
 deploying the protocol. It is not always the case that future
 extensibility is in that set.

2.1. Good Protocol Design is Not Itself Sufficient

 It is often argued that the design of a protocol extension point or
 version negotiation capability is critical to the freedom that it
 ultimately offers.

RFC 6709 [EXTENSIBILITY] contains a great deal of well-considered
 advice on designing for extension. It includes the following advice:

https://datatracker.ietf.org/doc/html/rfc6709

Thomson Expires January 9, 2020 [Page 3]

Internet-Draft Use It Or Lose It July 2019

 This means that, to be useful, a protocol version- negotiation
 mechanism should be simple enough that it can reasonably be
 assumed that all the implementers of the first protocol version at
 least managed to implement the version-negotiation mechanism
 correctly.

 This has proven to be insufficient in practice. Many protocols have
 evidence of imperfect implementation of critical mechanisms of this
 sort. Mechanisms that aren't used are the ones that fail most often.
 The same paragraph from RFC 6709 acknowledges the existence of this
 problem, but does not offer any remedy:

 The nature of protocol version-negotiation mechanisms is that, by
 definition, they don't get widespread real-world testing until
 after the base protocol has been deployed for a while, and its
 deficiencies have become evident.

 Indeed, basic interoperability is considered critical early in the
 deployment of a protocol. Race-to-market attitudes frequently result
 in an engineering practice that values simplicity will tend to make
 version negotiation and extension mechanisms optional for this basic
 interoperability. This leads to these mechanisms being uniquely
 affected by this problem.

 Transport Layer Security (TLS) [TLS12] provides examples of where a
 design that is objectively sound fails when incorrectly implemented.
 TLS provides examples of failures in protocol version negotiation and
 extensibility.

 Version negotiation in TLS 1.2 and earlier uses the "Highest mutually
 supported version (HMSV)" scheme exactly as it is described in
 [EXTENSIBILITY]. However, clients are unable to advertise a new
 version without causing a non-trivial proportions of sessions to fail
 due to bugs in server and middlebox implementations.

 Intolerance to new TLS versions is so severe [INTOLERANCE] that TLS
 1.3 [TLS13] has abandoned HMSV version negotiation for a new
 mechanism.

 The server name indication (SNI) [TLS-EXT] in TLS is another
 excellent example of the failure of a well-designed extensibility
 point. SNI uses the same technique for extension that is used with
 considerable success in other parts of the TLS protocol. The
 original design of SNI includes the ability to include multiple names
 of different types.

 What is telling in this case is that SNI was defined with just one
 type of name: a domain name. No other type has ever been

https://datatracker.ietf.org/doc/html/rfc6709

Thomson Expires January 9, 2020 [Page 4]

Internet-Draft Use It Or Lose It July 2019

 standardized, though several have been proposed. Despite an
 otherwise exemplary design, SNI is so inconsistently implemented that
 any hope for using the extension point it defines has been abandoned
 [SNI].

 Requiring simplistic processing steps when encountering unknown
 conditions, such as unsupported version numbers, can potentially
 prevent these sorts of situations. A counter example is the first
 version of the Simple Network Management Protocol (SNMP), where an
 unparseable and an authentication message are treated the same way by
 the server: no response is generated [SNMPv1]:

 It then verifies the version number of the SNMP message. If there
 is a mismatch, it discards the datagram and performs no further
 actions.

 When SNMP versions 2, 2c and 3 came along, older agents did exactly
 what the protocol specifies should have done: dropped it from being
 processing without returning a response. This was likely successful
 because there was no requirement to create and return an elaborate
 error response to the client.

2.2. Multi-Party Interactions and Middleboxes

 Even the most superficially simple protocols can often involve more
 actors than is immediately apparent. A two-party protocol has two
 ends, but even at the endpoints of an interaction, protocol elements
 can be passed on to other entities in ways that can affect protocol
 operation.

 One of the key challenges in deploying new features is ensuring
 compatibility with all actors that could be involved in the protocol.

 Protocols deployed without active measures against intermediation
 will tend to become intermediated over time, as network operators
 deploy middleboxes to perform some function on traffic
 [PATH-SIGNALS]. In particular, one of the consequences of an
 unencrypted protocol is that any element on path can interact with
 the protocol. For example, HTTP was specifically designed with
 intermediation in mind, transparent proxies [HTTP] are not only
 possible but sometimes advantageous, despite some significant
 downsides. Consequently, transparent proxies for cleartext HTTP are
 commonplace. The DNS protocol was designed with intermediation in
 mind through its use of caching recursive resolvers [DNS]. What was
 less anticipated was the forced spoofing of DNS records by many
 middle-boxes such as those that inject authentication or pay-wall
 mechanisms as an authentication and authorization check, which are
 now prevalent in hotels, coffee shops and business networks.

Thomson Expires January 9, 2020 [Page 5]

Internet-Draft Use It Or Lose It July 2019

 Middleboxes are also protocol participants, to the degree that they
 are able to observe and act in ways that affect the protocol. The
 degree to which a middlebox participates varies from the basic
 functions that a router performs to full participation. For example,
 a SIP back-to-back user agent (B2BUA) [B2BUA] can be very deeply
 involved in the SIP protocol.

 This phenomenon appears at all layers of the protocol stack, even
 when protocols are not designed with middlebox participation in mind.
 TCP's [TCP] extension points have been rendered difficult to use,
 largely due to middlebox interactions, as experience with Multipath
 TCP [MPTCP] and Fast Open [TFO] has shown. IP's version field was
 rendered useless when encapsulated over Ethernet, requring a new
 ethertype with IPv6 [RFC2462], due in part to layer 2 devices making
 version-independent assumptions about the structure of the IPv4
 header.

 By increasing the number of different actors involved in any single
 protocol exchange, the number of potential implementation bugs that a
 deployment needs to contend with also increases. In particular,
 incompatible changes to a protocol that might be negotiated between
 endpoints in ignorance of the presence of a middlebox can result in a
 middlebox interfering in negative and unexpected ways.

 Unfortunately, middleboxes can considerably increase the difficulty
 of deploying new versions or other changes to a protocol.

3. Retaining Viable Protocol Evolution Mechanisms

 The design of a protocol for extensibility and eventual replacement
 [EXTENSIBILITY] does not guarantee the ability to exercise those
 options. The set of features that enable future evolution need to be
 interoperable in the first implementations and deployments of the
 protocol. Active use of mechanisms that support evolution is the
 only way to ensure that they remain available for new uses.

 The conditions for retaining the ability to evolve a design is most
 clearly evident in the protocols that are known to have viable
 version negotiation or extension points. The definition of
 mechanisms alone is insufficient; it's the active use of those
 mechanisms that determines the existence of freedom. Protocols that
 routinely add new extensions and code points rarely have trouble
 adding additional ones, especially when unknown code-points and
 extensions are to be safely ignored when not understood.

https://datatracker.ietf.org/doc/html/rfc2462

Thomson Expires January 9, 2020 [Page 6]

Internet-Draft Use It Or Lose It July 2019

3.1. Examples of Active Use

 For example, header fields in email [SMTP], HTTP [HTTP] and SIP [SIP]
 all derive from the same basic design, which amounts to a list name/
 value pairs. There is no evidence of significant barriers to
 deploying header fields with new names and semantics in email and
 HTTP as clients and servers can ignore headers they do not understand
 or need. The widespread deployment of SIP B2BUAs means that new SIP
 header fields do not reliably reach peers, however, which doesn't
 necessarily cause interoperability issues but rather does cause
 feature deployment issues.

 In another example, the attribute-value pairs (AVPs) in Diameter
 [DIAMETER] are fundamental to the design of the protocol. Any use of
 Diameter requires exercising the ability to add new AVPs. This is
 routinely done without fear that the new feature might not be
 successfully deployed.

 Ossified DNS code bases and systems resulted in fears that new
 Resource Record Codes (RRCodes) would take years of software
 propagation before new RRCodes could be used. The result for a long
 time was heavily overloaded use of the TXT record, such as in the
 Sender Policy Framework [SPF]. It wasn't until after the standard
 mechanism for dealing with new RRCodes [RRTYPE] was considered widely
 deployed that new RRCodes can be safely created and used immediately.

 These examples show extension points that are heavily used are also
 being relatively unaffected by deployment issues preventing addition
 of new values for new use cases.

 These examples also confirm the case that good design is not a
 prerequisite for success. On the contrary, success is often despite
 shortcomings in the design. For instance, the shortcomings of HTTP
 header fields are significant enough that there are ongoing efforts
 to improve the syntax [HTTP-HEADERS].

 Only by using a protocol's extension capabilities does it ensure the
 availability of that capability. Protocols that fail to use a
 mechanism, or a protocol that only rarely uses a mechanism, may
 suffer an inability to rely on that mechanism.

3.2. Dependency is Better

 The best way to guarantee that a protocol mechanism is used is to
 make it critical to an endpoint participating in that protocol. This
 means that implementations rely on both the existence of the protocol
 mechanism and its use.

Thomson Expires January 9, 2020 [Page 7]

Internet-Draft Use It Or Lose It July 2019

 For example, the message format in SMTP relies on header fields for
 most of its functions, including the most basic functions. A
 deployment of SMTP cannot avoid including an implementation of header
 field handling. In addition to this, the regularity with which new
 header fields are defined and used ensures that deployments
 frequently encounter header fields that it does not understand. An
 SMTP implementation therefore needs to be able to both process header
 fields that it understands and ignore those that it does not.

 In this way, implementing the extensibility mechanism is not merely
 mandated by the specification, it is crucial to the functioning of a
 protocol deployment. Should an implementation fail to correctly
 implement the mechanism, that failure would quickly become apparent.

 Caution is advised to avoid assuming that building a dependency on an
 extension mechanism is sufficient to ensure availability of that
 mechanism in the long term. If the set of possible uses is narrowly
 constrained and deployments do not change over time, implementations
 might not see new variations or assume a narrower interpretation of
 what is possible. Those implementations might still exhibit errors
 when presented with a new variation.

3.3. Unused Extension Points Become Unusable

 In contrast, there are many examples of extension points in protocols
 that have been either completely unused, or their use was so
 infrequent that they could no longer be relied upon to function
 correctly.

 HTTP has a number of very effective extension points in addition to
 the aforementioned header fields. It also has some examples of
 extension point that are so rarely used that it is possible that they
 are not at all usable. Extension points in HTTP that might be unwise
 to use include the extension point on each chunk in the chunked
 transfer coding [HTTP], the ability to use transfer codings other
 than the chunked coding, and the range unit in a range request
 [HTTP-RANGE].

 Even where extension points have multiple valid values, if the set of
 permitted values does not change over time, there is still a risk
 that new values are not tolerated by existing implementations. If
 the set of values for a particular field remains fixed over a long
 period, some implementations might not correctly handle a new value
 when it is introduced. For example, implementations of TLS broke
 when new values of the signature_algorithms extension were
 introduced.

Thomson Expires January 9, 2020 [Page 8]

Internet-Draft Use It Or Lose It July 2019

 Codepoints that are reserved for future use can be especially
 problematic. Reserving codepoints without attributing semantics to
 their use can result in diverse or conflicting semantics being
 attributed without any hope of interoperability. An example of this
 is the "class E" address space in IPv4 [RFC0988], which was reserved
 without assigning any semantics. For protocols that can use
 negotiation to attribute semantics to codepoints, it is possible that
 unused codepoints can be reclaimed for active use, though this
 requires that the negotiation include all protocol participants.

4. Defensive Design Principles for Protocols

 There are several potential approaches that can provide some measure
 of protection against a protocol deployment becoming resistant to
 change.

4.1. Active Use

 As discussed in Section 3, the most effective defense against misuse
 of protocol extension points is active use.

 Implementations are most likely to be tolerant of new values if they
 depend on being able to use new values. Failing that,
 implementations that routinely see new values are more likely to
 correctly handle new values. More frequent changes will improve the
 likelihood that incorrect handling or intolerance is discovered and
 rectified. The longer an intolerant implementation is deployed, the
 more difficult it is to correct.

 What active use means could depend greatly on the environment in
 which a protocol is deployed. The frequency of changes necessary to
 safeguard some mechanisms might be slow enough to attract
 ossification in another protocol deployment, while being excessive in
 others. There are currently no firm guidelines for new protocol
 development, as much is being learned about what techniques are most
 effective.

4.2. Cryptography

 Cryptography can be used to reduce the number of entities that can
 participate in a protocol. Using tools like TLS ensures that only
 authorized participants are able to influence whether a new protocol
 feature is used.

 Permitting fewer protocol participants reduces the number of
 implementations that can prevent a new mechanism from being deployed.
 As recommended in [PATH-SIGNALS], use of encryption and integrity
 protection can be used to limit participation.

https://datatracker.ietf.org/doc/html/rfc0988

Thomson Expires January 9, 2020 [Page 9]

Internet-Draft Use It Or Lose It July 2019

 For example, the QUIC protocol [QUIC] adopts both encryption and
 integrity protection. Encryption is used to carefully control what
 information is exposed to middleboxes. For those fields that are not
 encrypted, QUIC uses integrity protection to prevent modification.

4.3. Grease

 "Grease" [GREASE] identifies lack of use as an issue (protocol
 mechanisms "rusting" shut) and proposes reserving values for
 extensions that have no semantic value attached.

 The design in [GREASE] is aimed at the style of negotiation most used
 in TLS, where the client offers a set of options and the server
 chooses the one that it most prefers from those that it supports. A
 client that uses grease randomly offers options - usually just one -
 from a set of reserved values. These values are guaranteed to never
 be assigned real meaning, so the server will never have cause to
 genuinely select one of these values.

 More generally, greasing is used to refer to any attempt to exercise
 extension points without changing endpoint behavior, other than to
 encourage participants to tolerate new or varying values of protocol
 elements.

 The principle that grease operates on is that an implementation that
 is regularly exposed to unknown values is less likely to be
 intolerant of new values when they appear. This depends largely on
 the assumption that the difficulty of implementing the extension
 mechanism correctly is not significantly more effort than
 implementing code to identify and filter out reserved values.
 Reserving random or unevenly distributed values for this purpose is
 thought to further discourage special treatment.

 Without reserved greasing codepoints, an implementation can use code
 points from spaces used for private or experimental use if such a
 range exists. In addition to the risk of triggering participation in
 an unwanted experiment, this can be less effective. Incorrect
 implementations might still be able to correctly identify these code
 points and ignore them.

 In addition to advertising bogus capabilities, an endpoint might also
 selectively disable non-critical protocol elements to test the
 ability of peers to handle the absence of certain capabilities.

 This style of defensive design is limited because it is only
 superficial. It only exercises a small part of the mechanisms that
 support extensibility. More critically, it does not easily translate
 to all forms of extension point. For instance, HMSV negotiation

Thomson Expires January 9, 2020 [Page 10]

Internet-Draft Use It Or Lose It July 2019

 cannot be greased in this fashion. Other techniques might be
 necessary for protocols that don't rely on the particular style of
 exchange that is predominant in TLS.

 Grease is deployed with the intent of quickly revealing errors in
 implementing the mechanisms it safeguards. Though it has been
 effective at revealing problems in some cases with TLS, the efficacy
 of greasing isn't proven more generally. Where implementations are
 able to tolerate a non-zero error rate in their operation, greasing
 offers a potential option for safeguarding future extensibility.

4.4. Invariants

 Documenting aspects of the protocol that cannot or will not change as
 extensions or new versions are added can be a useful exercise.
 Understanding what aspects of a protocol are invariant can help guide
 the process of identifying those parts of the protocol that might
 change.

 As a means of protecting extensibility, a declaration of protocol
 invariants is useful only to the extent that protocol participants
 are willing to allow new uses for the protocol. Like greasing,
 protocol participants could still purposefully block the deployment
 of new features. A protocol that declares protocol invariants relies
 on implementations understanding and respecting those invariants.

 Protocol invariants need to be clearly and concisely documented.
 Including examples of aspects of the protocol that are not invariant,
 such as the appendix of [QUIC-INVARIANTS], can be used to clarify
 intent.

4.5. Effective Feedback

 While not a direct means of protecting extensibility mechanisms,
 feedback systems can be important to discovering problems.

 Visibility of errors is critical to the success of the grease
 technique (see Section 4.3). The grease design is most effective if
 a deployment has a means of detecting and reporting errors. Ignoring
 errors could allow problems to become entrenched.

 Feedback on errors is more important during the development and early
 deployment of a change. It might also be helpful to disable
 automatic error recovery methods during development.

 Automated feedback systems are important for automated systems, or
 where error recovery is also automated. For instance, connection
 failures with HTTP alternative services [ALT-SVC] are not permitted

Thomson Expires January 9, 2020 [Page 11]

Internet-Draft Use It Or Lose It July 2019

 to affect the outcome of transactions. An automated feedback system
 for capturing failures in alternative services is therefore necessary
 for failures to be detected.

 How errors are gathered and reported will depend greatly on the
 nature of the protocol deployment and the entity that receives the
 report. For instance, end users, developers, and network operations
 each have different requirements for how error reports are created,
 managed, and acted upon.

5. Security Considerations

 The ability to design, implement, and deploy new protocol mechanisms
 can be critical to security. In particular, it is important to be
 able to replace cryptographic algorithms over time [AGILITY]. For
 example, preparing for replacement of weak hash algorithms was made
 more difficult through misuse [HASH].

6. IANA Considerations

 This document makes no request of IANA.

7. Informative References

 [AGILITY] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/info/rfc7696>.

 [ALT-SVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [B2BUA] Kaplan, H. and V. Pascual, "A Taxonomy of Session
 Initiation Protocol (SIP) Back-to-Back User Agents",

RFC 7092, DOI 10.17487/RFC7092, December 2013,
 <https://www.rfc-editor.org/info/rfc7092>.

 [DIAMETER]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [DNS] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

https://datatracker.ietf.org/doc/html/bcp201
https://datatracker.ietf.org/doc/html/rfc7696
https://www.rfc-editor.org/info/rfc7696
https://datatracker.ietf.org/doc/html/rfc7838
https://www.rfc-editor.org/info/rfc7838
https://datatracker.ietf.org/doc/html/rfc7092
https://www.rfc-editor.org/info/rfc7092
https://datatracker.ietf.org/doc/html/rfc6733
https://www.rfc-editor.org/info/rfc6733
https://datatracker.ietf.org/doc/html/rfc1034
https://www.rfc-editor.org/info/rfc1034

Thomson Expires January 9, 2020 [Page 12]

Internet-Draft Use It Or Lose It July 2019

 [EXTENSIBILITY]
 Carpenter, B., Aboba, B., Ed., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 DOI 10.17487/RFC6709, September 2012,
 <https://www.rfc-editor.org/info/rfc6709>.

 [GREASE] Benjamin, D., "Applying GREASE to TLS Extensibility",
draft-ietf-tls-grease-02 (work in progress), January 2019.

 [HASH] Bellovin, S. and E. Rescorla, "Deploying a New Hash
 Algorithm", Proceedings of NDSS '06 , 2006,
 <https://www.cs.columbia.edu/~smb/papers/new-hash.pdf>.

 [HTTP] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [HTTP-HEADERS]
 Nottingham, M. and P. Kamp, "Structured Headers for HTTP",

draft-ietf-httpbis-header-structure-10 (work in progress),
 April 2019.

 [HTTP-RANGE]
 Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <https://www.rfc-editor.org/info/rfc7233>.

 [INTOLERANCE]
 Kario, H., "Re: [TLS] Thoughts on Version Intolerance",
 July 2016, <https://mailarchive.ietf.org/arch/msg/tls/

bOJ2JQc3HjAHFFWCiNTIb0JuMZc>.

 [MPTCP] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [PATH-SIGNALS]
 Hardie, T., "Transport Protocol Path Signals", draft-iab-

path-signals-03 (work in progress), January 2019.

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-20 (work
 in progress), April 2019.

https://datatracker.ietf.org/doc/html/rfc6709
https://www.rfc-editor.org/info/rfc6709
https://datatracker.ietf.org/doc/html/draft-ietf-tls-grease-02
https://www.cs.columbia.edu/~smb/papers/new-hash.pdf
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-10
https://datatracker.ietf.org/doc/html/rfc7233
https://www.rfc-editor.org/info/rfc7233
https://mailarchive.ietf.org/arch/msg/tls/bOJ2JQc3HjAHFFWCiNTIb0JuMZc
https://mailarchive.ietf.org/arch/msg/tls/bOJ2JQc3HjAHFFWCiNTIb0JuMZc
https://datatracker.ietf.org/doc/html/rfc6824
https://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/draft-iab-path-signals-03
https://datatracker.ietf.org/doc/html/draft-iab-path-signals-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20

Thomson Expires January 9, 2020 [Page 13]

Internet-Draft Use It Or Lose It July 2019

 [QUIC-INVARIANTS]
 Thomson, M., "Version-Independent Properties of QUIC",

draft-ietf-quic-invariants-04 (work in progress), April
 2019.

 [RFC0988] Deering, S., "Host extensions for IP multicasting",
RFC 988, DOI 10.17487/RFC0988, July 1986,

 <https://www.rfc-editor.org/info/rfc988>.

 [RFC2462] Thomson, S. and T. Narten, "IPv6 Stateless Address
 Autoconfiguration", RFC 2462, DOI 10.17487/RFC2462,
 December 1998, <https://www.rfc-editor.org/info/rfc2462>.

 [RRTYPE] Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, DOI 10.17487/RFC3597, September
 2003, <https://www.rfc-editor.org/info/rfc3597>.

 [SIP] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

 [SMTP] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [SNI] Langley, A., "Accepting that other SNI name types will
 never work", March 2016,
 <https://mailarchive.ietf.org/arch/msg/

tls/1t79gzNItZd71DwwoaqcQQ_4Yxc>.

 [SNMPv1] Case, J., Fedor, M., Schoffstall, M., and J. Davin,
 "Simple Network Management Protocol (SNMP)", RFC 1157,
 DOI 10.17487/RFC1157, May 1990,
 <https://www.rfc-editor.org/info/rfc1157>.

 [SPF] Kitterman, S., "Sender Policy Framework (SPF) for
 Authorizing Use of Domains in Email, Version 1", RFC 7208,
 DOI 10.17487/RFC7208, April 2014,
 <https://www.rfc-editor.org/info/rfc7208>.

 [SUCCESS] Thaler, D. and B. Aboba, "What Makes for a Successful
 Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008,
 <https://www.rfc-editor.org/info/rfc5218>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-04
https://datatracker.ietf.org/doc/html/rfc988
https://www.rfc-editor.org/info/rfc988
https://datatracker.ietf.org/doc/html/rfc2462
https://www.rfc-editor.org/info/rfc2462
https://datatracker.ietf.org/doc/html/rfc3597
https://www.rfc-editor.org/info/rfc3597
https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://mailarchive.ietf.org/arch/msg/tls/1t79gzNItZd71DwwoaqcQQ_4Yxc
https://mailarchive.ietf.org/arch/msg/tls/1t79gzNItZd71DwwoaqcQQ_4Yxc
https://datatracker.ietf.org/doc/html/rfc1157
https://www.rfc-editor.org/info/rfc1157
https://datatracker.ietf.org/doc/html/rfc7208
https://www.rfc-editor.org/info/rfc7208
https://datatracker.ietf.org/doc/html/rfc5218
https://www.rfc-editor.org/info/rfc5218

Thomson Expires January 9, 2020 [Page 14]

Internet-Draft Use It Or Lose It July 2019

 [TCP] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [TFO] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [TLS-EXT] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [TLS12] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [TRANSITIONS]
 Thaler, D., Ed., "Planning for Protocol Adoption and
 Subsequent Transitions", RFC 8170, DOI 10.17487/RFC8170,
 May 2017, <https://www.rfc-editor.org/info/rfc8170>.

Acknowledgments

 Mirja Kuehlewind, Mark Nottingham, and Brian Trammell made
 significant contributions to this document.

Author's Address

 Martin Thomson
 Mozilla

 Email: mt@lowentropy.net

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8170
https://www.rfc-editor.org/info/rfc8170

Thomson Expires January 9, 2020 [Page 15]

