
WEBPUSH M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track October 8, 2014
Expires: April 11, 2015

Generic Event Delivery Using HTTP Push
draft-thomson-webpush-http2-01

Abstract

 A simple protocol for the delivery of realtime events to clients is
 described. This scheme uses HTTP/2 push.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 11, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Expires April 11, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP Web Push October 2014

Table of Contents

1. Introduction . 2
1.1. Conventions and Terminology 3

2. Overview . 4
3. Delivering Push Messages 5
4. Registering . 5
5. Channels . 6
6. Monitoring and Receiving Push Messages 6
7. Store and Forward Operation 6
8. IANA Considerations . 7
9. Security Considerations 7
9.1. Confidentiality from Push Server Access 7
9.2. Privacy Considerations 8
9.3. Denial of Service Vectors 8
9.4. Logging Exposure . 9

10. References . 9
10.1. Normative References 9
10.2. Informative References 10

 Author's Address . 10

1. Introduction

 Mobile computing devices are increasingly relied upon for a great
 many applications. Mobile devices typically have limited power
 reserves, so finding more efficient ways to serve application
 requirements is an important part of any mobile platform.

 One significant contributor to power usage mobile devices is the
 radio. Radio communications consumes a significant portion of the
 energy budget on a wirelessly connected mobile device.

 Many applications require continuous access to network communications
 so that real-time events - such as incoming calls or messages - can
 be conveyed (or "pushed") to the user in a timely fashion.
 Uncoordinated use of persistent connections or sessions from multiple
 applications can contribute to unnecessary use of the device radio,
 since each independent session independently incurs overheads. In
 particular, keep alive traffic used to ensure that middleboxes do not
 prematurely time out sessions, can result in significant waste.
 Maintenance traffic tends to dominate over the long term, since
 events are relatively rare.

 Consolidating all real-time events into a single session ensures more
 efficient use of network and radio resources. A single service
 consolidates all events, distributing those events to applications as
 they arrive. This requires just one session, avoiding duplicated
 overhead costs.

Thomson Expires April 11, 2015 [Page 2]

Internet-Draft HTTP Web Push October 2014

 The Web Push API [API] describes an API that enables the use of a
 consolidated push service from web applications. This expands on
 that work by describing a protocol that can be used to:

 o request the delivery of an event to a device,

 o register a new device,

 o create new event delivery channels, and

 o monitor for new events.

 This is intentionally split into these two categories because
 requesting the delivery of events is required for immediate use by
 the Web Push API. The registration, management and monitoring
 functions are currently fulfilled by proprietary protocols; these are
 adequate, but do not offer any of the advantages that standardization
 affords.

 The monitoring function described in this document is intended to be
 replaceable, enabling the use of monitoring schemes that are better
 optimized for the network environment and the device. For instance,
 using notification systems like the GSM Short Message Service (SMS)
 can take advantage of the native paging capabilities of a cellular
 network, avoiding the ongoing maintainence cost of a persistent TCP
 connection.

 This document intentionally does not describe how a push server is
 discovered. Discovery of push servers is left for future efforts, if
 it turns out to be necessary at all. Devices are expected to be
 configured with a push server URL.

 Similarly, discovery of support for and negotiation of use of
 alternative monitoring schemes is left to documents that extend this
 basic protocol.

1.1. Conventions and Terminology

 In cases where normative language needs to be emphasized, this
 document falls back on established shorthands for expressing
 interoperability requirements on implementations: the capitalized
 words "MUST", "MUST NOT", "SHOULD" and "MAY". The meaning of these
 is described in [RFC2119].

 This document will use the terminology from [API], though
 "application" will be used in preference to "webapp", since the
 described protocols are not restricted to web use. This document

https://datatracker.ietf.org/doc/html/rfc2119

Thomson Expires April 11, 2015 [Page 3]

Internet-Draft HTTP Web Push October 2014

 introduces the term "device", which refers to the consumer of push
 messages.

2. Overview

 A general model for push services includes three basic actors: a
 device, a push server, and an application.

 +-----------+ +-------------+ +-------------+
 | Device | | Push Server | | Application |
 +-----------+ +-------------+ +-------------+
 | | |
 | Register | |
 |--------------------->| |
 | Monitor | |
 |<====================>| |
 | Get Channel | |
 |--------------------->| |
 | Provide Channel |
 |-->|
 | | Push Message |
 | Push Message |<---------------------|
 |<---------------------| |
 | | |

 At the very beginning of the process, the device registers with the
 push server. This establishes a shared session between the device
 and push server that will be used to aggregate push messages from all
 applications that the device interacts with.

 The registration response includes details on how the device is
 expected to monitor for incoming push messages. This document
 describes one such mechanism, though more efficient means of
 monitoring could be optionally defined (and this is expressly
 permitted).

 A registration after creation has no channels associated with it.
 New channels can be requested by the device and then distributed to
 applications. It is expected that devices will distribute a
 different channel to each application, with the potential for
 multiple channels being provided to the same application.

 Applications use channels to deliver push messages to devices, via
 the push server.

 Both registrations and channels have a limited lifetime. These will
 need to be refreshed or replaced over time.

Thomson Expires April 11, 2015 [Page 4]

Internet-Draft HTTP Web Push October 2014

3. Delivering Push Messages

 A push channel is identified with an HTTP URI [RFC7230]. An
 application can request the delivery of a push message by sending an
 HTTP PUT request to this URI, including the push message in the body
 of the request.

 A push server can acknowledge the end-to-end delivery of a push
 message by responding with a 200 (OK) status code. A push server
 that stores the message for later delivery (see Section 7) could
 respond with a 202 (Accepted) status code to indicate that the
 message was stored, but not delivered.

4. Registering

 A device that wishes to establish a new or replacement registration
 sends an HTTP POST request to its configured push server URL. The
 request contains no entity body.

 The push server creates a new registration in response to this
 request, creating two new resources and allocating an HTTP URI for
 each. These URIs are included in link relations [RFC5988] that are
 included in Link header fields in the response.

 monitor: A link relation of type "...:push:monitor" includes the URL
 of a resource that the device can monitor for events. Monitoring
 is described in Section 6.

 channel: A link relation of type "...:push:channel" includes a URL
 of a resource where the device can create new channels. Creating
 channels is described in Section 5.

 The push server includes the "monitor" link relation in a Location
 header field.

 The push server MUST include expiration information in the response
 to this request in either the Expires header field, or by setting a
 "max-age" parameter on a Cache-Control header field. The Cache-
 Control header field MUST include the "private" directive [RFC7235].

 The push server SHOULD also provide the "channel" link and expiration
 information in response to requests to the "monitor" resource.

 A device MUST support the 307 (Temporary Redirect) status code
 [RFC7231], which can be used by a push server to redistribute load at
 the time a registration is created.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7231

Thomson Expires April 11, 2015 [Page 5]

Internet-Draft HTTP Web Push October 2014

5. Channels

 A client sends a POST request to the "channel" resource to create a
 new channel.

 A response with a 201 status code includes the channel URI in the
 Location header field.

 A channel can expire. Servers indicate this using the Expires header
 field, or by setting a "max-age" parameter on a Cache-Control header
 field.

 A client can explicitly delete a channel by sending a DELETE request
 to channel URI.

6. Monitoring and Receiving Push Messages

 A device monitors for new events by making a GET request to the
 monitor resource. The server does not respond to these request, it
 instead uses server push [I-D.ietf-httpbis-http2] to send the
 contents of push messages as applications send them.

 Each push message consists of a synthesized GET request to the
 channel URI that was the target of the push. The response body is
 the entity body from the PUT request.

 A device can request the monitor resource immediately by including a
 Prefer header field [RFC7240] with a "wait" parameter set to "0".
 This allows clients to rapidly check for any missed messages.
 Clients can check the status of individual channels by sending GET
 requests to the channel URI.

 A server that wishes to redistribute load can do so using the
 alternative services mechanisms that are part of HTTP/2
 [I-D.ietf-httpbis-alt-svc]. The ALTSVC frame type allows for
 redistribution of load whilst retaining the same monitor resource.
 Once a device has established a replacement connection, it can notify
 the server of imminent shutdown using a GOAWAY frame, which allows
 the server to respond to the long-standing GET request and gracefully
 shut down the connection. This allows for seamless migration between
 servers.

7. Store and Forward Operation

 Push servers are not obligated to store messages for any time. If a
 client is not actively monitoring for push messages, messages can be
 lost.

https://datatracker.ietf.org/doc/html/rfc7240

Thomson Expires April 11, 2015 [Page 6]

Internet-Draft HTTP Web Push October 2014

 Push servers can store messages for some time to allow for limited
 recovery from transient faults. If a message is stored, but not
 delivered, the push server can indicate the probable duration of
 storage by including expiration information in the response to the
 push request.

 Messages that were stored and not delivered to a client MAY be
 delivered when a client commences monitoring. These messages should
 include a Last-Modified header field. If a server stores push
 messages, a GET request to a channel URI returns the last message
 sent by an application to that channel.

 Push servers that store push messages might need to limit the size of
 push messages to avoid being subject to overloading. Push servers
 that don't store can stream the payload of push messages to devices.
 This can use HTTP/2 flow control to limit the state commitment this
 requires. However, push servers MAY place an upper limit on the size
 of push messages that they permit.

8. IANA Considerations

 TODO: register link relation types, as necessary.

9. Security Considerations

 This protocol MUST use HTTP over TLS [RFC2818]; this includes any
 communications between device and push server, plus communications
 between the application and the push server. This provides
 confidentiality and integrity protection for registrations and push
 message.

9.1. Confidentiality from Push Server Access

 The protection afforded by TLS does not protect content from the push
 server. A push server is able to see and modify the content of the
 messages.

 Applications are able to provide additional confidentiality,
 integrity or authentication mechanisms within the push message
 itself. The originating application server and the device are
 frequently just different instances of the same application, this
 does not require standardization. The process of registering a
 channel endpoints provides a convenient medium for key agreement.

 In particular, the W3C Web Push API requires that each push channel
 created by the browser be bound to a browser generated encryption
 key. Pushed messages are authenticated and decrypted by the browser

https://datatracker.ietf.org/doc/html/rfc2818

Thomson Expires April 11, 2015 [Page 7]

Internet-Draft HTTP Web Push October 2014

 before delivery. This ensures that the push server is unable to
 examine the contents of push messages.

 The public key for a channel ensures that applications using a
 channel can identify messages from unknown sources and discard them.
 This depends on the public key only being disclosed to entities that
 are authorized to send messages on the channel. The push server does
 not require access to this public key.

9.2. Privacy Considerations

 Push message confidentiality does not ensure that the identity of who
 is communicating and when they are communicating is protected.
 However, the amount of information that is exposed can be limited.

 The identifiers used by this protocol provide some ability to
 correlate communications for a given device, either across
 applications or over time. Most important is that communications for
 a given device not be able to be correlated between different
 application usages, or between different times.

 Channel URIs established by the same device MUST NOT include any
 information that allows them to be correlated with other channels or
 the device registration. The push server is the only entity that
 needs to be able to correlate channel URIs with device registrations.
 Note that this can't prevent the use of traffic analysis in
 performing correlation.

 A device MUST be able to create new registrations at any time.
 Identifiers for new registrations MUST NOT include any information
 that allows them to be correlated with other registrations from the
 same device or user.

9.3. Denial of Service Vectors

 This protocol does not specify a single authorization framework for
 managing access to push servers, either by devices or applications.
 Thus, there is a very real possibility that this could be exploited
 to mount denial of service attacks on the push server. Push servers
 MAY choose to authorize requests based on any HTTP-compatible means
 available, of which there are numerous options.

 Discarding unwanted messages at the device based on message
 authentication doesn't protect against a denial of service attack on
 the device. Even a relatively small number of message can cause
 devices to exhaust batteries. Limiting the number of entities with
 access to push channels limits the number of entities that can
 generate value push requests of the push server. An application can

Thomson Expires April 11, 2015 [Page 8]

Internet-Draft HTTP Web Push October 2014

 do this by controlling the distribution of channel URIs to authorized
 entities.

 Only the push server can make this denial of service protection
 possible. A push server MUST generate channel URI that are extremely
 difficult to guess. Encoding a large amount of random entropy (at
 least 128 bits) in the URI path is one technique for ensuring that
 channel URIs are able to act as bearer tokens.

 A malicious application can use the greater resources of a push
 server to mount a denial of service attack on devices. Push servers
 SHOULD limit the rate at which push messages are sent to devices.

 Conversely, a push server is also able to deny service to devices.
 Intentional failure to deliver messages is difficult to distinguish
 from faults, which might occur due to transient network errors,
 interruptions in device availability, or genuine service outages.
 Applications that rely on reliable message delivery need to provide
 means of recovering from occasional failures that do not rely on push
 notifications.

9.4. Logging Exposure

 Server request logs can reveal registration and channel URIs.
 Acquiring a registration URI permits the creation of new channels and
 the receipt of messages. Acquiring either URI permits the generation
 of push messages. Logging could also reveal relationships between
 different channel URIs for the same registration, or between
 different registrations for the same device.

 End-to-end confidentiality mechanisms, such as those in [API],
 prevent an entity with a registration URI from learning the contents
 of push messages. In both cases, push messages that are not
 successfully authenticated will not be delivered by the API, but this
 can present a denial of service risk. Limitations on log retention
 and strong access control mechanisms can ensure that these URIs are
 not learned.

10. References

10.1. Normative References

 [I-D.ietf-httpbis-alt-svc]
 Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", draft-ietf-httpbis-alt-svc-01 (work
 in progress), April 2014.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-alt-svc-01

Thomson Expires April 11, 2015 [Page 9]

Internet-Draft HTTP Web Push October 2014

 [I-D.ietf-httpbis-http2]
 Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol version 2", draft-ietf-httpbis-http2-12 (work in
 progress), April 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230, June
 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [RFC7235] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", RFC 7235, June 2014.

 [RFC7240] Snell, J., "Prefer Header for HTTP", RFC 7240, June 2014.

10.2. Informative References

 [API] Sullivan, B. and E. Fullea, "Web Push API", Editor's Draft
 push-api, May 2014, <https://w3c.github.io/push-api/

index.html>.

Author's Address

 Martin Thomson
 Mozilla
 331 E Evelyn Street
 Mountain View, CA 94041
 US

 Email: martin.thomson@gmail.com

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7240
https://w3c.github.io/push-api/index.html
https://w3c.github.io/push-api/index.html

Thomson Expires April 11, 2015 [Page 10]

