
Workgroup: Independent Submission

Internet-Draft:

draft-thornburgh-fwk-dc-token-iss-00

Published: 19 May 2020

Intended Status: Experimental

Expires: 20 November 2020

Authors: M. Thornburgh

Adobe

A Framework For Decentralized Bearer Token Issuance in HTTP

Abstract

This memo describes a protocol framework for HTTP clients to obtain

bearer tokens for accessing restricted resources, where in some

applications the client may not have prior knowledge of, or a direct

relationship with, the resource server's authorization

infrastructure (such as in decentralized identity systems). Semi-

concrete applications of the framework using proof-of-possession and

TLS client certificate mechanisms are also described.

Author's Note

This work is an independent contribution and is not associated with,

or endorsed by, Adobe.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 November 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

1.1. Motivation

1.1.1. Use Cases

1.2. Terminology

2. General Framework

2.1. Nonce Considerations

2.2. Common Token Response

2.3. Common Mechanism Flow

3. Proof-of-Possession Mechanism

3.1. Proof Token

3.2. Proof-of-Possession API

3.3. Proof-of-Possession Example

4. TLS Client Certificate Mechanism

4.1. Client Certificate API

4.2. Client Certificate Example

5. IANA Considerations

6. Security Considerations

7. Normative References

8. Informative References

Author's Address

1. Introduction

This memo describes a general protocol framework for HTTP clients to

obtain bearer tokens (Section 1.2 of [RFC6750]) from a resource

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info
https://rfc-editor.org/rfc/rfc6750#section-1.2

server's authorization service in order to access protected

resources on the server. This framework is especially intended for

systems (such as decentralized identity systems like [WebID], and

decentralized social or mashup data systems like the Solid project)

where the client might not have prior knowledge of, or a preexisting

direct relationship with, the authorization service for the resource

server; however, it can be applied in other use cases as well.

The protocol includes a method for the client to discover the

nature(s) of principals (such as identities, capabilities, sender-

constrained access tokens, or verifiable credentials) that the

server expects to interact with, and methods for the client to

discover the API endpoint URIs for multiple potential mechanisms for

obtaining bearer tokens. The framework is constructed to mitigate

man-in-the-middle token-stealing attacks.

This memo defines two mechanisms within the framework for a client

to obtain a bearer token: one using a cryptographic proof-of-

possession, and one using TLS [RFC8446] client certificates. These

mechanisms retain generality, and must be further refined in other

specifications according to the application and the nature of the

principals expected by the servers. Other mechanisms within the

framework are also possible.

1.1. Motivation

This work was originally motivated by a desire to address security,

semantic, and operational shortcomings in an experimental,

decentralized, application-layer authentication scheme for the Solid

project that was based on [WebID], OpenID Connect [OpenID.Core],

and proof-of-possession key semantics [RFC7800].

An explicit goal of the solution is to leverage the benefits of

bearer tokens for accessing restricted resources:

The token can encapsulate (by direct encoding or by reference)

exactly and only the implementation-specific and deployment-

specific properties needed to make access control decisions in

the resource server;

The effort (including computational, cryptographic, and network)

required to establish a client's identity and authorizations can

be done once by the client and the authorization service,

compiled to a token, and this effort amortized over many requests

to the same resource server, with simple revalidation and

¶

¶

¶

¶

¶

*

¶

*

https://solidproject.org
https://solidproject.org
https://solidproject.org

lifetime semantics that can be influenced by both parties;

specifically:

The server's authorization system chooses an expiration period

for the token, and can also revoke it at any time, to cause a

reauthentication and revalidation;

The client can forget the token at any time and acquire a new

one to cause a reauthentication and revalidation; this can be

particularly advantageous if the client acquires new

privileges, authorizations, or endorsements that might

otherwise be subject to unknown caching policies in an access

controller;

The representation of the token can be optimized for network

transmission and for decoding, verification, and processing

according to the server's implementation;

HTTP header compression schemes such as HPACK [RFC7541] can

reduce network resource consumption when a token is reused for

multiple requests in the same origin.

As work progressed, a general form emerged that could address

multiple use cases beyond the original motivator.

1.1.1. Use Cases

It is envisioned that the framework described in this memo can be

used in at least the following cases, with appropriate further

specification, to realize the benefits listed above:

Decentralized identity systems such as WebID and Decentralized

Identifiers [DID];

Centralized or decentralized authorization systems based on

Verifiable Credentials [VC];

Authenticated access to a multitude of decentralized,

uncoordinated resource servers, such as for social or mashup data

applications;

Identity systems based on aspects of a TLS client certificate,

without requiring use of that certificate for all accesses to a

resource server (particularly in browser-based applications, to

allow selective unauthenticated access to non-protected resources

within the limitations of negotiating client certificates in

TLS);

¶

-

¶

-

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

scope

Obtaining an audience-constrained bearer token given a sender-

constrained access credential or capability issued by a central

authority;

Obtaining an audience-constrained bearer token in a centralized,

federated, or confederated identity system given an identity

bound with a pre-shared public key.

This list of use cases should not be construed as exhaustive or

limiting. Other effective applications of this framework are

possible.

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The term "bearer token" in this document has the meaning described

in [RFC6750].

The term "protection space" in this document has the meaning

described in Section 2.2 of [RFC7235].

2. General Framework

The server challenges an unauthenticated client (Section 2.1 of

[RFC7235]) with an HTTP 401 response, including a WWW-Authenticate

response header with the Bearer auth-scheme (Section 3 of

[RFC6750]), and comprising parameters including how to use one or

more token acquisition mechanisms. The client examines the challenge

and determines which mechanisms, if any, it is able to use to

acquire a bearer token. If possible, the client uses a compatible

mechanism, including attributes of the original request and the

challenge, to request a bearer token. The token will have a stated

lifetime and will be valid for accesses within the same protection

space as the original request, until the token expires or is

revoked.

A WWW-Authenticate challenge for any mechanism includes at least

these auth-params:

REQUIRED: A space-delimited list of case-sensitive strings,

each a well-known or server-defined value indicating the

nature(s) of the principal expected to be used when requesting a

bearer token. To avoid ambiguity, server-defined scopes SHOULD be

URIs.

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7235#section-2.2
https://rfc-editor.org/rfc/rfc7235#section-2.1
https://rfc-editor.org/rfc/rfc6750#section-3

nonce

error

invalid_token

proof_required

token_pop_endpoint

client_cert_endpoint

REQUIRED: An opaque (to the client) string to be included

unmodified when requesting a bearer token. See Section 2.1 for

considerations on constructing the challenge nonce.

If present, a reason code indicating that the request had a

problem other than not presenting an access token. The following

reason codes are initially defined:

A bearer token was presented, but it was expired,

revoked, or otherwise not recognized as valid.

An access token requiring proof-of-possession of

a key (but potentially otherwise valid) was presented.

Additionally, one or more mechanism-specific auth-params are

included in the challenge to indicate the availability of that

mechanism and its unique parameters (usually the URI at which to use

the mechanism). This memo defines two mechanism-specific auth-

params:

If present, the Proof-of-Possession mechanism

(Section 3) is available. The parameter value is the URI at which

to exchange a proof-of-possession for a bearer token.

If present, the TLS Client Certificate

mechanism (Section 4) is available. The parameter value is the

URI at which to request a bearer token.

The challenge can include other auth-params (such as realm),

including ones for other mechanisms. Unrecognized auth-params SHOULD

be ignored.

If a request is made for a resource within a protection space and

that request includes an Authorization header with an invalid Bearer

token, the resource server SHOULD reply with an HTTP 401 response

and WWW-Authenticate header as above, even if processing the request

doesn't otherwise require authorization. This is to allow a client

to obtain a fresh bearer token proactively (for example, before the

current token expires, to avoid delaying a real request by the

user).

2.1. Nonce Considerations

The nonce in the WWW-Authenticate challenge SHOULD have the

following properties:

Be cryptographically strong and unguessable;

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

access_token

expires_in

token_type

Be recognizable when returned in a token request as having been

issued for this protection space (for example, by recording the

nonce in a database, or including a cryptographic signature);

Be valid for a limited (short) time;

Be redeemable at most once;

Be coupled to the original request URI in a recognizable way.

2.2. Common Token Response

It is anticipated that most mechanisms (especially ones that use an

HTTP API) will respond to a token request using a common response

format. Both of the mechanisms described in this memo use the common

format described in this section, which is substantially the same as

the format described in Section 5 of [RFC6749].

A successful common response is an HTTP 200 response with Content-

Type application/json, and having a response body in JSON [RFC8259]

format encoding a JSON object with at least the following members:

An opaque (to the client) string; a bearer access

token (Section 1.1 of [RFC6750]) which can be used for requests

in the same protection space as the original request;

The number of seconds from the Date of this response

after which the access_token will no longer be valid;

A case-insensitive string identifying the kind of token

returned in this response. This value MUST be Bearer.

If there is a problem with the request, the response SHALL be an

HTTP 400 response with Content-Type application/json, and having a

response body in JSON format encoding a JSON object with at least an

error member, and others as appropriate, whose keys and values are

defined in Section 5.2 of [RFC6749].

Additional members MAY be included in a successful or unsuccessful

response object depending on the scope(s) from the challenge, the

mechanism used, and the implementation. Unrecognized response object

members SHOULD be ignored.

2.3. Common Mechanism Flow

It is anticipated that most mechanisms will comprise a simple

mechanism-specific API endpoint and respond with a Common Response

(Section 2.2). The abstract flow for a client to acquire a bearer

token in the common way is illustrated in Figure 1.

*

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6749#section-5
https://rfc-editor.org/rfc/rfc6750#section-1.1
https://rfc-editor.org/rfc/rfc6749#section-5.2

Figure 1: Common Protocol Flow Sequence Diagram

Note that the "validate request" step can involve complex operations

and include fetching supplemental information from external sources,

depending on the semantics of the mechanism, scopes, and principal.

3. Proof-of-Possession Mechanism

The client recognizes the availability of, and its compatibility

with, this mechanism, by recognizing combinations of challenge

scopes with which it is compatible, the presence of the

token_pop_endpoint, and control of an appropriate principal having

proof-of-possession semantics (for example, an access token bound to

a proof-of-possession key, or a JSON Web Token (JWT) [RFC7519] with

a cnf claim [RFC7800]) and compatibility with the same combination

of challenge scopes.

The client constructs and signs a proof-token (Section 3.1).

The client sends the proof-token to the token_pop_endpoint API URI

with HTTP POST (Section 3.2). The API endpoint validates the request

including the proof-token, and if appropriate, it responds with a

bearer token.

3.1. Proof Token

The proof-token is a JWT [RFC7519], with a signature proving

possesion of the key bound to the client's principal, and having the

following claims:

Client Mechanism Endpoint Resource Server

| | |

|-- request URI --->|

|<------------------------------ 401 Bearer nonce, scope, --|

| | endpoints |

|determine compatibility, | |

|prepare token request | |

|-- POST token request------->| |

| |validate request, |

| |issue token |

|<--------- Common Response --| |

| | |

| |

|-- request URI with access_token ------------------------->|

| validate & translate token,|

| apply access controls|

| |

|<--------------------------------------- answer resource --|

¶

¶

¶

¶

¶

sub

aud

nonce

jti

exp

proof_token

REQUIRED: The client's principal (having proof-of-possession

semantics and compatible with a combination of the challenge

scopes);

REQUIRED: The absolute URI (Section 4.3 of [RFC3986]),

including scheme, authority (host and optional port), path, and

query, but not including fragment identifier, corresponding to

the original request that resulted in the HTTP 401 challenge; if

this claim is an array, it MUST have exactly one element;

REQUIRED: The nonce from the WWW-Authenticate challenge;

RECOMMENDED: Use of this claim is recommended so that the

client can salt the proof-token's signature; the verifier can

ignore this claim, if present;

OPTIONAL: If present, this claim MUST NOT be after the

expiration time of the sub (if it has one), and MUST NOT be

before the current time on the verifier; ordinarily the validity

of the nonce is sufficient to establish not-before and not-after

constraints on the proof, so this claim isn't usually necessary

(and clocks on end-user devices, where proof-tokens are likely to

be generated, are notoriously inaccurate). The issuer MAY take

the expiration periods of the proof-token and the sub into

account when determining the expiration period of the bearer

token it issues, but it is not required to do so and is free to

issue bearer tokens with any expiration period.

Additional claims can appear in the proof-token according to, and

conditioned on, the semantics of the scope(s). Unrecognized or

incompatible claims SHOULD be ignored.

3.2. Proof-of-Possession API

This API endpoint is implemented by the authorization server

(Section 1.1 of [RFC6749]) for the protection space of the original

request.

The client uses this API by making an HTTP POST request to the

token_pop_endpoint URI. The request body has Content-Type

application/x-www-form-urlencoded and includes at least the

following parameter:

REQUIRED: A proof-token (Section 3.1) as described

above.

Additional parameters can be sent according to, and conditioned on,

the semantics of the scope(s). Unrecognized or incompatible

parameters SHOULD be ignored.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-4.3
https://rfc-editor.org/rfc/rfc6749#section-1.1

The authorization server verifies the request:

Parse the proof_token parameter and find its claims;

Verify that the proof_token's signature matches the proof-of-

possession key associated with the sub claim, and that it

hasn't expired;

Verify that the aud claim is an absolute URI for a resource in

a protection space for which this endpoint is responsible;

Verify the nonce claim (for example, by confirming that it was

really issued by this system and not too far in the past, that

it hasn't been redeemed yet, and that it was issued for a

request for the aud claim);

Verify the validity and authenticity of the sub claim according

to its kind and the semantics of the relevant scope(s);

Perform any other processing, verification, and validation

appropriate to the relevant scope(s), additional claims, or

additional parameters.

If the request is verified, the authorization server issues a bearer

access_token valid for the protection space of the original request

and for a limited time. The authorization server responds using the

common response format (Section 2.2).

3.3. Proof-of-Possession Example

Note: This section is not normative.

A client (for example, an in-browser application working on behalf

of a user) attempts an HTTP request to a resource server for an

access-restricted URI initially without presenting any special

credentials:

GET /some/restricted/resource HTTP/1.1

Host: www.example

Origin: https://app.example

The resource server does not allow this request without

authorization. It generates an unguessable, opaque nonce that the

server will be able to later recognize as having generated. The

server responds with an HTTP 401 Unauthorized message, and includes

the protection space identifier (realm), the nonce, the appropriate

scopes, and at least the token_pop_endpoint in the WWW-Authenticate

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

¶

¶

¶

¶

response header with the Bearer method. The server also includes an

HTML response body to allow the user to perform a first-party login

using another method, for cases where the resource was navigated to

directly in the browser:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer realm="/auth/",

 scope="webid openid",

 nonce="j16C4SOLQWFor3VYUtZWnrUr5AG5uwDF7q9RFsDk",

 token_pop_endpoint="/auth/webid-pop",

 client_cert_endpoint="https://webid-tls.example/auth/webid-tls"

Access-Control-Allow-Origin: https://app.example

Access-Control-Expose-Headers: WWW-Authenticate

Date: Mon, 6 May 2019 01:48:48 GMT

Content-type: text/html

<html>Human first-party login page...</html>

The client recognizes the response as compatible with this mechanism

by recognizing the scheme as Bearer, compatible scopes (in this

example, openid and webid), and the presence of the nonce and the

token_pop_endpoint.

The client controls a principal appropriate to the scopes (in this

example, a JWT substantially similar to an OpenID Connect ID Token

[OpenID.Core] and containing a confirmation key [RFC7800]) and

determines to use the proof-of-possession mechanism.

The client creates a new proof-token JWT as described above (Section

3.1), setting its aud claim to the absolute URI of the original

request, the nonce claim to the nonce parameter from the WWW-

Authenticate response header, the sub claim to its ID Token,

includes other claims as appropriate to the scopes (iss in this

example), and signs this proof-token with the proof-of-possession

key bound to its principal and with a signing algorithm compatible

with the signing key and the scopes:

¶

¶

¶

¶

¶

{

 "typ": "JWT",

 "alg": "RS256"

}

.

{

 "sub": "eyJhbGciOiJ...",

 "aud": "https://www.example/some/restricted/resource",

 "nonce": "j16C4SOLQWFor3VYUtZWnrUr5AG5uwDF7q9RFsDk",

 "jti": "1C49A92C-C260-4F76-9D7B-E81AE13037B8",

 "iss": "https://app.example/oauth/code"

}

.

RS256-signature-here

The client sends a request to the token_pop_endpoint URI and

includes the proof-token:

POST /auth/webid-pop

Host: www.example

Origin: https://app.example

Content-type: application/x-www-form-urlencoded

proof_token=eyJ0eXAiOiJKV1QiCg...

The token_pop_endpoint verifies the request as described in Section

3.2, determines that the request is good, and issues a bearer token:

HTTP/1.1 200

Content-type: application/json; charset=utf-8

Cache-control: no-cache, no-store

Pragma: no-cache

Access-Control-Allow-Origin: https://app.example

Date: Mon, 6 May 2019 01:48:50 GMT

{

 "access_token": "RPAOmgrWb5wD7DzloDjZ7Ain",

 "expires_in": 1800,

 "token_type": "Bearer"

}

The client can now use the access_token in an Authorization header

for requests to resources in the same protection space as the

original request until the access token expires or is revoked:

¶

¶

¶

¶

¶

¶

uri

nonce

GET /some/restricted/resource HTTP/1.1

Host: www.example

Origin: https://app.example

Authorization: Bearer RPAOmgrWb5wD7DzloDjZ7Ain

The server validates and translates the bearer token in its

implementation-specific way, and makes a determination whether to

grant the requested access.

4. TLS Client Certificate Mechanism

The client recognizes the availability of, and its compatibility

with, this mechanism, by recognizing combinations of challenge

scopes with which it is compatible, the presence of the

client_cert_endpoint, and either direct control of an appropriate

TLS [RFC8446] client certificate and its signing key, or in the case

of browser-based Javascript applications, an assumption that such a

certificate is configured into the browser and that it will be

selected by the user.

The client constructs and sends a token request to the

client_cert_endpoint API URI with HTTP POST (Section 4.1), using its

TLS client certificate.

The API endpoint validates the request, including aspects of the

client certificate, and if appropriate, it responds with a bearer

token.

4.1. Client Certificate API

This API endpoint is implemented by the authorization server for the

protection space of the original request.

The client uses this API by making an HTTP POST request to the

client_cert_endpoint URI. The request body has Content-Type

application/x-www-form-urlencoded and includes at least the

following parameters:

REQUIRED: The absolute URI, including scheme, authority (host

and optional port), path, and query, but not including fragment

identifier, corresponding to the original request that resulted

in the HTTP 401 response;

REQUIRED: The nonce from the WWW-Authenticate challenge.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Additional parameters can be sent according to, and conditioned on,

the semantics of the scope(s). Unrecognized or incompatible

parameters SHOULD be ignored.

A TLS client certificate is REQUIRED when communicating with this

API endpoint. That means the origin of this API endpoint will

probably be different from that of the original request URI so that

the server can request a client certificate in a distinct TLS

connection handshake (Section 4.3.2 of [RFC8446]).

The authorization server verifies the request:

Verify that uri is an absolute URI and is in a protection space

for which this endpoint is responsible;

Verify the nonce (for example, confirming that it was really

generated by this system, not too far in the past, that it

hasn't been redeemed yet, and if possible that it corresponds

to a request for uri);

Verify the validity and authenticity of the client certificate

(beyond those validations required for the TLS connection)

according to the semantics of the relevant scope(s);

Perform any other processing, verification, and validation

appropriate to the relevant scope(s) or additional parameters.

If the request is acceptable, the authorization server issues a

bearer access_token valid for the protection space of the original

request and for a limited time. The authorization server responds

using the common response format (Section 2.2).

4.2. Client Certificate Example

Note: This section is not normative.

A client (for example, an in-browser application working on behalf

of a user) attempts an HTTP request to a resource server for an

access-restricted URI initially without presenting any special

credentials:

GET /some/restricted/resource HTTP/1.1

Host: www.example

Origin: https://app.example

The resource server does not allow this request without

authorization. It generates an unguessable, opaque nonce that the

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-4.3.2

authorization server will be able to later recognize as having

generated. The server responds with an HTTP 401 Unauthorized

message, and includes the protection space identifier (realm), the

nonce, the appropriate scopes, and at least the client_cert_endpoint

in the WWW-Authenticate response header with the Bearer method. The

server also includes an HTML response body to allow the user to

perform a first-party login using another method, for cases where

the resource was navigated to directly in the browser:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer realm="/auth/",

 scope="webid openid",

 nonce="j16C4SOLQWFor3VYUtZWnrUr5AG5uwDF7q9RFsDk",

 token_pop_endpoint="/auth/webid-pop",

 client_cert_endpoint="https://webid-tls.example/auth/webid-tls"

Access-Control-Allow-Origin: https://app.example

Access-Control-Expose-Headers: WWW-Authenticate

Date: Mon, 6 May 2019 01:48:48 GMT

Content-type: text/html

<html>Human first-party login page...</html>

The client recognizes the response as compatible with this mechanism

by recognizing the scheme as Bearer, compatible scopes (in this

example, webid), and the presence of the nonce and the

client_cert_endpoint.

The client determines to use the client certificate mechanism (for

example, by being configured by the user to do so when available,

with the assumption the user will choose an appropriate certificate

when prompted by the browser).

The client sends, using its TLS client certificate, a token request

to the client_cert_endpoint URI and includes the required

parameters:

POST /auth/webid-tls HTTP/1.1

Host: webid-tls.example

Origin: https://app.example

Content-type: application/x-www-form-urlencoded

uri=https://www.example/some/restricted/resource

&nonce=j16C4SOLQWFor3VYUtZWnrUr5AG5uwDF7q9RFsDk

The client_cert_endpoint verifies the request as described in

Section 4.1 (in this example, with scope webid, the validation and

¶

¶

¶

¶

¶

¶

processing steps further comprise establishing and validating the

user's WebID according to [WebID-TLS]). The endpoint determines that

the request is good, and issues a bearer token:

HTTP/1.1 200

Content-type: application/json; charset=utf-8

Cache-control: no-cache, no-store

Pragma: no-cache

Access-Control-Allow-Origin: https://app.example

Date: Mon, 6 May 2019 01:48:50 GMT

{

 "access_token": "RPAOmgrWb5wD7DzloDjZ7Ain",

 "expires_in": 1800,

 "token_type": "Bearer"

}

The client can now use the access_token in an Authorization header

for requests to resources in the same protection space as the

original request until the bearer token expires or is revoked:

GET /some/restricted/resource HTTP/1.1

Host: www.example

Origin: https://app.example

Authorization: Bearer RPAOmgrWb5wD7DzloDjZ7Ain

The server validates and translates the bearer token in its

implementation-specific way, and makes a determination whether to

grant the requested access.

5. IANA Considerations

TBD. Mechanism parameters "token_pop_endpoint" and

"client_cert_endpoint" for auth-scheme "Bearer".

6. Security Considerations

When using the Proof-of-Possession mechanism (Section 3), the scope

designer should carefully consider whether additional information

should go in the proof-token (which would therefore be signed) or

can be POST parameters (which would not be signed). The safe choice

(which therefore SHOULD be the default) is to include any additional

information in the proof-token.

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3986]

[RFC6749]

[RFC6750]

[RFC7235]

[RFC7519]

[RFC8174]

Bearer tokens can be shared freely with other parties by an

application. Therefore, a bearer token obtained with the TLS Client

Certificate mechanism (Section 4) MUST NOT be construed to carry the

same weight when authenticating an HTTP request as if the client

used the corresponding client certificate for the request's

connection. However, particularly for browser-based applications

where the application and the resource server(s) are not associated

with each other, the user typically doesn't audit the data being

sent in HTTP requests (even when a client certificate is used), so

the portion of the application running in the browser could be

receiving data from anywhere else and sending it over HTTP using the

user's client certificate anyway.

Security considerations specific to challenge scopes are beyond the

purview of this memo.

7. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/info/rfc7235>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8174

[RFC8259]

[DID]

[RFC7541]

[RFC7800]

[RFC8446]

[OpenID.Core]

[WebID]

[WebID-TLS]

[VC]

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

8. Informative References

Reed, D., Sporny, M., Longley, D., Allen, C., Grant, R.,

and M. Sabadello, "Decentralized Identifiers (DIDs)

v1.0", April 2020, <https://www.w3.org/TR/did-core/>.

Peon, R. and H. Ruellan, "HPACK: Header Compression for

HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,

<https://www.rfc-editor.org/info/rfc7541>.

Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-

Possession Key Semantics for JSON Web Tokens (JWTs)", RFC

7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-

editor.org/info/rfc7800>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect Core 1.0", November

2014, <https://openid.net/specs/openid-connect-

core-1_0.html>.

Sambra, A., Story, H., Berners-Lee, T., and S.

Corlosquet, Ed., "WebID 1.0: Web Identity and Discovery",

March 2014, <https://www.w3.org/2005/Incubator/webid/

spec/identity/>.

Inkster, T., Story, H., Harbulot, B., Corlosquet, S.,

Ed., and A. Sambra, Ed., "WebID Authentication over TLS",

March 2014, <https://www.w3.org/2005/Incubator/webid/

spec/tls/>.

Sporny, M., Longley, D., Chadwick, D., Noble, G., Ed.,

Burnett, D., Ed., and B. Zundel, Ed., "Verifiable

Credentials Data Model 1.0", November 2019, <https://

www.w3.org/TR/vc-data-model/>.

Author's Address

Michael C. Thornburgh

Adobe

345 Park Avenue

https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.w3.org/TR/did-core/
https://www.rfc-editor.org/info/rfc7541
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc8446
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://www.w3.org/2005/Incubator/webid/spec/tls/
https://www.w3.org/2005/Incubator/webid/spec/tls/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

San Jose, CA 95110-2704

United States of America

Phone: +1 408 536 6000

Email: mthornbu@adobe.com

URI: https://zenomt.zenomt.com/card.ttl#me

tel:+1%20408%20536%206000
mailto:mthornbu@adobe.com
https://zenomt.zenomt.com/card.ttl#me

	A Framework For Decentralized Bearer Token Issuance in HTTP
	Abstract
	Author's Note
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Motivation
	1.1.1. Use Cases

	1.2. Terminology

	2. General Framework
	2.1. Nonce Considerations
	2.2. Common Token Response
	2.3. Common Mechanism Flow

	3. Proof-of-Possession Mechanism
	3.1. Proof Token
	3.2. Proof-of-Possession API
	3.3. Proof-of-Possession Example

	4. TLS Client Certificate Mechanism
	4.1. Client Certificate API
	4.2. Client Certificate Example

	5. IANA Considerations
	6. Security Considerations
	7. Normative References
	8. Informative References
	Author's Address

