
ROLL P. Thubert, Ed.
Internet-Draft cisco
Intended status: Standards Track J. Hui
Expires: May 29, 2015 Cisco
 November 25, 2014

LLN Fragment Forwarding and Recovery
draft-thubert-6lo-forwarding-fragments-02

Abstract

 In order to be routed, a fragmented packet must be reassembled at
 every hop of a multihop link where lower layer fragmentation occurs.
 Considering that the IPv6 minimum MTU is 1280 bytes and that an an
 802.15.4 frame can have a payload limited to 74 bytes in the worst
 case, a packet might end up fragmented into as many as 18 fragments
 at the 6LoWPAN shim layer. If a single one of those fragments is
 lost in transmission, all fragments must be resent, further
 contributing to the congestion that might have caused the initial
 packet loss. This draft introduces a simple protocol to forward and
 recover individual fragments that might be lost over multiple hops
 between 6LoWPAN endpoints.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 29, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Thubert & Hui Expires May 29, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Rationale . 4
4. Requirements . 5
5. Overview . 6
6. New Dispatch types and headers 8
6.1. Recoverable Fragment Dispatch type and Header 8
6.2. Fragment acknowledgment Dispatch type and Header 8

7. Fragments Recovery . 10
8. Forwarding Fragments . 11
8.1. Upon the first fragment 12
8.2. Upon the next fragments 13
8.3. Upon the fragment acknowledgments 13

9. Security Considerations 14
10. IANA Considerations . 14
11. Acknowledgments . 14
12. References . 14
12.1. Normative References 14
12.2. Informative References 14

 Authors' Addresses . 16

1. Introduction

 In most Low Power and Lossy Network (LLN) applications, the bulk of
 the traffic consists of small chunks of data (in the order few bytes
 to a few tens of bytes) at a time. Given that an 802.15.4 frame can
 carry 74 bytes or more in all cases, fragmentation is usually not
 required. However, and though this happens only occasionally, a
 number of mission critical applications do require the capability to
 transfer larger chunks of data, for instance to support a firmware
 upgrades of the LLN nodes or an extraction of logs from LLN nodes.
 In the former case, the large chunk of data is transferred to the LLN
 node, whereas in the latter, the large chunk flows away from the LLN
 node. In both cases, the size can be on the order of 10K bytes or
 more and an end-to-end reliable transport is required.

 Mechanisms such as TCP or application-layer segmentation will be used
 to support end-to-end reliable transport. One option to support bulk

http://trustee.ietf.org/license-info

Thubert & Hui Expires May 29, 2015 [Page 2]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 data transfer over a frame-size-constrained LLN is to set the Maximum
 Segment Size to fit within the link maximum frame size. Doing so,
 however, can add significant header overhead to each 802.15.4 frame.
 This causes the end-to-end transport to be intimately aware of the
 delivery properties of the underlaying LLN, which is a layer
 violation.

 An alternative mechanism combines the use of 6LoWPAN fragmentation in
 addition to transport or application-layer segmentation. Increasing
 the Maximum Segment Size reduces header overhead by the end-to-end
 transport protocol. It also encourages the transport protocol to
 reduce the number of outstanding datagrams, ideally to a single
 datagram, thus reducing the need to support out-of-order delivery
 common to LLNs.

 [RFC4944] defines a datagram fragmentation mechanism for LLNs.
 However, because [RFC4944] does not define a mechanism for recovering
 fragments that are lost, datagram forwarding fails if even one
 fragment is not delivered properly to the next IP hop. End-to-end
 transport mechanisms will require retransmission of all fragments,
 wasting resources in an already resource-constrained network.

 Past experience with fragmentation has shown that missassociated or
 lost fragments can lead to poor network behavior and, eventually,
 trouble at application layer. The reader is encouraged to read
 [RFC4963] and follow the references for more information. That
 experience led to the definition of the Path MTU discovery [RFC1191]
 protocol that limits fragmentation over the Internet.

 For one-hop communications, a number of media propose a local
 acknowledgment mechanism that is enough to protect the fragments. In
 a multihop environment, an end-to-end fragment recovery mechanism
 might be a good complement to a hop-by-hop MAC level recovery. This
 draft introduces a simple protocol to recover individual fragments
 between 6LoWPAN endpoints. Specifically in the case of UDP, valuable
 additional information can be found in UDP Usage Guidelines for
 Application Designers [RFC5405].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Readers are expected to be familiar with all the terms and concepts
 that are discussed in "IPv6 over Low-Power Wireless Personal Area
 Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc2119

Thubert & Hui Expires May 29, 2015 [Page 3]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 Goals" [RFC4919] and "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks" [RFC4944].

 ERP

 Error Recovery Procedure.

 6LoWPAN endpoints

 The LLN nodes in charge of generating or expanding a 6LoWPAN
 header from/to a full IPv6 packet. The 6LoWPAN endpoints are the
 points where fragmentation and reassembly take place.

3. Rationale

 There are a number of uses for large packets in Wireless Sensor
 Networks. Such usages may not be the most typical or represent the
 largest amount of traffic over the LLN; however, the associated
 functionality can be critical enough to justify extra care for
 ensuring effective transport of large packets across the LLN.

 The list of those usages includes:

 Towards the LLN node:

 Packages of Commands: A number of commands or a full
 configuration can by packaged as a single message to ensure
 consistency and enable atomic execution or complete roll back.
 Until such commands are fully received and interpreted, the
 intended operation will not take effect.

 Firmware update: For example, a new version of the LLN node
 software is downloaded from a system manager over unicast or
 multicast services. Such a reflashing operation typically
 involves updating a large number of similar LLN nodes over a
 relatively short period of time.

 From the LLN node:

 Waveform captures: A number of consecutive samples are measured
 at a high rate for a short time and then transferred from a
 sensor to a gateway or an edge server as a single large report.

 Data logs: LLN nodes may generate large logs of sampled data for
 later extraction. LLN nodes may also generate system logs to
 assist in diagnosing problems on the node or network.

https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc4944

Thubert & Hui Expires May 29, 2015 [Page 4]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 Large data packets: Rich data types might require more than one
 fragment.

 Uncontrolled firmware download or waveform upload can easily result
 in a massive increase of the traffic and saturate the network.

 When a fragment is lost in transmission, all fragments are resent,
 further contributing to the congestion that caused the initial loss,
 and potentially leading to congestion collapse.

 This saturation may lead to excessive radio interference, or random
 early discard (leaky bucket) in relaying nodes. Additional queuing
 and memory congestion may result while waiting for a low power next
 hop to emerge from its sleeping state.

 To demonstrate the severity of the problem, consider a fairly
 reliable 802.15.4 frame delivery rate of 99.9% over a single 802.15.4
 hop. The expected delivery rate of a 5-fragment datagram would be
 about 99.5% over a single 802.15.4 hop. However, the expected
 delivery rate would drop to 95.1% over 10 hops, a reasonable network
 diameter for LLN applications. The expected delivery rate for a
 1280-byte datagram is 98.4% over a single hop and 85.2% over 10 hops.

 Considering that [RFC4944] defines an MTU is 1280 bytes and that in
 most incarnations (but 802.15.4G) a 802.15.4 frame can limit the MAC
 payload to as few as 74 bytes, a packet might be fragmented into at
 least 18 fragments at the 6LoWPAN shim layer. Taking into account
 the worst-case header overhead for 6LoWPAN Fragmentation and Mesh
 Addressing headers will increase the number of required fragments to
 around 32. This level of fragmentation is much higher than that
 traditionally experienced over the Internet with IPv4 fragments. At
 the same time, the use of radios increases the probability of
 transmission loss and Mesh-Under techniques compound that risk over
 multiple hops.

4. Requirements

 This paper proposes a method to recover individual fragments between
 LLN endpoints. The method is designed to fit the following
 requirements of a LLN (with or without a Mesh-Under routing
 protocol):

 Number of fragments

 The recovery mechanism must support highly fragmented packets,
 with a maximum of 32 fragments per packet.

 Minimum acknowledgment overhead

https://datatracker.ietf.org/doc/html/rfc4944

Thubert & Hui Expires May 29, 2015 [Page 5]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 Because the radio is half duplex, and because of silent time spent
 in the various medium access mechanisms, an acknowledgment
 consumes roughly as many resources as data fragment.

 The recovery mechanism should be able to acknowledge multiple
 fragments in a single message and not require an acknowledgment at
 all if fragments are already protected at a lower layer.

 Controlled latency

 The recovery mechanism must succeed or give up within the time
 boundary imposed by the recovery process of the Upper Layer
 Protocols.

 Support for out-of-order fragment delivery

 A Mesh-Under load balancing mechanism such as the ISA100 Data Link
 Layer can introduce out-of-sequence packets.

 The recovery mechanism must account for packets that appear lost
 but are actually only delayed over a different path.

 Optional congestion control

 The aggregation of multiple concurrent flows may lead to the
 saturation of the radio network and congestion collapse.

 The recovery mechanism should provide means for controlling the
 number of fragments in transit over the LLN.

5. Overview

 Considering that a multi-hop LLN can be a very sensitive environment
 due to the limited queuing capabilities of a large population of its
 nodes, this draft recommends a simple and conservative approach to
 congestion control, based on TCP congestion avoidance.

 Congestion on the forward path is assumed in case of packet loss, and
 packet loss is assumed upon time out. The draft allows to control
 the number of outstanding fragments, that have been transmitted but
 for which an acknowledgment was not received yet. It must be noted
 that the number of outstanding fragments should not exceed the number
 of hops in the network, but the way to figure the number of hops is
 out of scope for this document.

 Congestion on the forward path can also be indicated by an Explicit
 Congestion Notification (ECN) mechanism. Though whether and how ECN
 [RFC3168] is carried out over the LoWPAN is out of scope, this draft

https://datatracker.ietf.org/doc/html/rfc3168

Thubert & Hui Expires May 29, 2015 [Page 6]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 provides a way for the destination endpoint to echo an ECN indication
 back to the source endpoint in an acknowledgment message as
 represented in Figure 5 in Section 6.2.

 It must be noted that congestion and collision are different topics.
 In particular, when a mesh operates on a same channel over multiple
 hops, then the forwarding of a fragment over a certain hop may
 collide with the forwarding of a next fragment that is following over
 a previous hop but in a same interference domain. This draft enables
 an end-to-end flow control, but leaves it to the sender stack to pace
 individual fragments within a transmit window, so that a given
 fragment is sent only when the previous fragment has had a chance to
 progress beyond the interference domain of this hop. In the case of
 6TiSCH [I-D.ietf-6tisch-architecture], which operates over the
 TimeSlotted Channel Hopping [I-D.ietf-6tisch-tsch] (TSCH) mode of
 operation of IEEE802.14.5, a fragment is forwarded over a different
 channel at a different time and it make full sense to fire a next
 fragment as soon as the previous fragment has had its chance to be
 forwarded at the next hop, retry (ARQ) operations included.

 From the standpoint of a source 6LoWPAN endpoint, an outstanding
 fragment is a fragment that was sent but for which no explicit
 acknowledgment was received yet. This means that the fragment might
 be on the way, received but not yet acknowledged, or the
 acknowledgment might be on the way back. It is also possible that
 either the fragment or the acknowledgment was lost on the way.

 Because a meshed LLN might deliver frames out of order, it is
 virtually impossible to differentiate these situations. In other
 words, from the sender standpoint, all outstanding fragments might
 still be in the network and contribute to its congestion. There is
 an assumption, though, that after a certain amount of time, a frame
 is either received or lost, so it is not causing congestion anymore.
 This amount of time can be estimated based on the round trip delay
 between the 6LoWPAN endpoints. The method detailed in [RFC6298] is
 recommended for that computation.

 The reader is encouraged to read through "Congestion Control
 Principles" [RFC2914]. Additionally [RFC2309] and [RFC5681] provide
 deeper information on why this mechanism is needed and how TCP
 handles Congestion Control. Basically, the goal here is to manage
 the amount of fragments present in the network; this is achieved by
 to reducing the number of outstanding fragments over a congested path
 by throttling the sources.

Section 7 describes how the sender decides how many fragments are
 (re)sent before an acknowledgment is required, and how the sender
 adapts that number to the network conditions.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc2309
https://datatracker.ietf.org/doc/html/rfc5681

Thubert & Hui Expires May 29, 2015 [Page 7]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

6. New Dispatch types and headers

 This specification extends "Transmission of IPv6 Packets over IEEE
 802.15.4 Networks" [RFC4944] with 4 new dispatch types, for
 Recoverable Fragments (RFRAG) headers with or without Acknowledgment
 Request, and for the Acknowledgment back, with or without ECN Echo.

 Pattern Header Type
 +------------+---+
 | 11 101000 | RFRAG - Recoverable Fragment |
 | 11 101001 | RFRAG-AR - RFRAG with Ack Request |
 | 11 101010 | RFRAG-ACK - RFRAG Acknowledgment |
 | 11 101011 | RFRAG-AEC - RFRAG Ack with ECN Echo |
 +------------+---+

 Figure 1: Additional Dispatch Value Bit Patterns

 In the following sections, the semantics of "datagram_tag,"
 "datagram_offset" and "datagram_size" and the reassembly process are
 changed from [RFC4944] Section 5.3. "Fragmentation Type and Header."
 The size and offset are expressed on the compressed packet per
 [RFC6282] as opposed to the uncompressed - native packet - form.

6.1. Recoverable Fragment Dispatch type and Header

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1 1 1 0 1 0 0 X|datagram_offset| datagram_tag |
 +-+
 |Sequence | datagram_size |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 X set == Ack Requested

 Figure 2: Recoverable Fragment Dispatch type and Header

 X: 1 bit; When set, the sender requires an Acknowledgment from the
 receiver

 Sequence: 5 bits; The sequence number of the fragment. Fragments
 are numbered [0..N] where N is in [0..31].

6.2. Fragment acknowledgment Dispatch type and Header

 The specification also defines a 4-octet acknowledgment bitmap that
 is used to carry selective acknowledgments for the received
 fragments. A given offset in the bitmap maps one to one with a given
 sequence number.

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc4944#section-5.3
https://datatracker.ietf.org/doc/html/rfc6282

Thubert & Hui Expires May 29, 2015 [Page 8]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 The offset of the bit in the bitmap indicates which fragment is
 acknowledged as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Acknowledgment Bitmap |
 +-+
 ^ ^
 | | bitmap indicating whether:
 | +--- Fragment with sequence 10 was received
 +----------------------- Fragment with sequence 00 was received

 Figure 3: Acknowledgment bitmap encoding

 So in the example below Figure 4 it appears that all fragments from
 sequence 0 to 20 were received but for sequence 1, 2 and 16 that were
 either lost or are still in the network over a slower path.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1|0|0|1|1|1|1|1|1|1|1|1|1|1|1|1|0|1|1|1|1|0|0|0|0|0|0|0|0|0|0|0|
 +-+

 Figure 4: Expanding 3 octets encoding

 The acknowledgment bitmap is carried in a Fragment Acknowledgment as
 follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1 1 1 0 1 0 1 Y| datagram_tag |
 +-+
 | Acknowledgment Bitmap (32 bits) |
 +-+

 Figure 5: Fragment Acknowledgment Dispatch type and Header

 Y: 1 bit; Explicit Congestion Notification (ECN) signalling

 When set, the sender indicates that at least one of the
 acknowledged fragments was received with an Explicit Congestion
 Notification, indicating that the path followed by the fragments
 is subject to congestion.

 acknowledgment Bitmap

Thubert & Hui Expires May 29, 2015 [Page 9]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 An acknowledgment bitmap, whereby but at offset x indicates that
 fragment x was received.

7. Fragments Recovery

 The Recoverable Fragments header RFRAG and RFRAG-AR deprecate the
 original fragment headers from [RFC4944] and replace them in the
 fragmented packets. The Fragment Acknowledgment RFRAG-ACK is
 introduced as a standalone header in message that is sent back to the
 fragment source endpoint as known by its MAC address. This assumes
 that the source MAC address in the fragment (is any) and datagram_tag
 are enough information to send the Fragment Acknowledgment back to
 the source fragmentation endpoint.

 The 6LoWPAN endpoint that fragments the packets at 6LoWPAN level (the
 sender) controls the Fragment Acknowledgments. If may do that at any
 fragment to implement its own policy or perform congestion control
 which is out of scope for this document. When the sender of the
 fragment knows that an underlying mechanism protects the Fragments
 already it MAY refrain from using the Acknowledgment mechanism, and
 never set the Ack Requested bit. The 6LoWPAN endpoint that
 recomposes the packets at 6LoWPAN level (the receiver) MUST
 acknowledge the fragments it has received when asked to, and MAY
 slightly defer that acknowledgment.

 The sender transfers a controlled number of fragments and MAY flag
 the last fragment of a series with an acknowledgment request. The
 received MUST acknowledge a fragment with the acknowledgment request
 bit set. If any fragment immediately preceding an acknowledgment
 request is still missing, the receiver MAY intentionally delay its
 acknowledgment to allow in-transit fragments to arrive. delaying the
 acknowledgment might defeat the round trip delay computation so it
 should be configurable and not enabled by default.

 The receiver interacts with the sender using an Acknowledgment
 message with a bitmap that indicates which fragments were actually
 received. The bitmap is a 32bit SWORD, which accommodates up to 32
 fragments and is sufficient for the 6LoWPAN MTU. For all n in
 [0..31], bit n is set to 1 in the bitmap to indicate that fragment
 with sequence n was received, otherwise the bit is set to 0. All
 zeros is a NULL bitmap that indicates that the fragmentation process
 was canceled by the receiver for that datagram.

 The receiver MAY issue unsolicited acknowledgments. An unsolicited
 acknowledgment enables the sender endpoint to resume sending if it
 had reached its maximum number of outstanding fragments or indicate
 that the receiver has cancelled the process of an individual
 datagram. Note that acknowledgments might consume precious resources

https://datatracker.ietf.org/doc/html/rfc4944

Thubert & Hui Expires May 29, 2015 [Page 10]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 so the use of unsolicited acknowledgments should be configurable and
 not enabled by default.

 The sender arms a retry timer to cover the fragment that carries the
 Acknowledgment request. Upon time out, the sender assumes that all
 the fragments on the way are received or lost. The process must have
 completed within an acceptable time that is within the boundaries of
 upper layer retries. The method detailed in [RFC6298] is recommended
 for the computation of the retry timer. It is expected that the
 upper layer retries obey the same or friendly rules in which case a
 single round of fragment recovery should fit within the upper layer
 recovery timers.

 Fragments are sent in a round robin fashion: the sender sends all the
 fragments for a first time before it retries any lost fragment; lost
 fragments are retried in sequence, oldest first. This mechanism
 enables the receiver to acknowledge fragments that were delayed in
 the network before they are actually retried.

 When the sender decides that a packet should be dropped and the
 fragmentation process canceled, it sends a pseudo fragment with the
 datagram_offset, sequence and datagram_size all set to zero, and no
 data. Upon reception of this message, the receiver should clean up
 all resources for the packet associated to the datagram_tag. If an
 acknowledgment is requested, the receiver responds with a NULL
 bitmap.

 The receiver might need to cancel the process of a fragmented packet
 for internal reasons, for instance if it is out of recomposition
 buffers, or considers that this packet is already fully recomposed
 and passed to the upper layer. In that case, the receiver SHOULD
 indicate so to the sender with a NULL bitmap. Upon an acknowledgment
 with a NULL bitmap, the sender MUST drop the datagram.

8. Forwarding Fragments

 This specification enables intermediate routers to forward fragments
 with no intermediate reconstruction of the entire packet. Upon the
 first fragment, the routers lay an label along the path that is
 followed by that fragment (that is IP routed), and all further
 fragments are label switched along that path. As a consequence,
 alternate routes not possible for individual fragments. The datagram
 tag is used to carry the label, that is swapped at each hop.

https://datatracker.ietf.org/doc/html/rfc6298

Thubert & Hui Expires May 29, 2015 [Page 11]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

8.1. Upon the first fragment

 In route over the L2 source changes at each hop. The label that is
 formed adnd placed in the datagram tag is associated to the source
 MAC and only valid (and unique) for that source MAC. Say the first
 fragment has:

 Source IPv6 address = IP_A (maybe hops away)

 Destination IPv6 address = IP_B (maybe hops away)

 Source MAC = MAC_prv (prv as previous)

 Datagram_tag= DT_prv

 The intermediate router that forwards individual fragments does the
 following:

 a route lookup to get Next hop IPv6 towards IP_B, which resolves
 as IP_nxt (nxt as next)

 a ND resolution to get the MAC address associated to IP_nxt, which
 resolves as MAC_nxt

 Since it is a first fragment of a packet from that source MAC address
 MAC_prv for that tag DT_prv, the router:

 cleans up any leftover resource associated to the tupple (MAC_prv,
 DT_prv)

 allocates a new label for that flow, DT_nxt, from a Least Recently
 Used pool or some siumilar procedure.

 allocates a Label swap structure indexed by (MAC_prv, DT_prv) that
 contains (MAC_nxt, DT_nxt)

 allocates a Label swap structure indexed by (MAC_nxt, DT_nxt) that
 contains (MAC_prv, DT_prv)

 swaps the MAC info to from self to MAC_nxt

 Swaps the datagram_tag to DT_nxt

 At this point the router is all set and can forward the packet to
 nxt.

Thubert & Hui Expires May 29, 2015 [Page 12]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

8.2. Upon the next fragments

 Upon next fragments (that are not first fragment), the router expects
 to have already Label swap structure indexed by (MAC_prv, DT_prv).
 The router:

 lookups up the Label swap entry for (MAC_prv, DT_prv), which
 resolves as (MAC_nxt, DT_nxt)

 swaps the MAC info to from self to MAC_nxt;

 Swaps the datagram_tag to DT_nxt

 At this point the router is all set and can forward the packet to
 nxt.

 if the Label swap entry for (MAC_src, DT_src) is not found, the
 router builds an RFRAG-ACK to indicate the error. The acknowledgment
 message has the following information:

 MAC info set to from self to MAC_prv as found in the fragment

 Swaps the datagram_tag set to DT_prv

 Bitmap of all zeroes to indicate the error

 At this point the router is all set and can send the RFRAG-ACK back
 ot the previous router.

8.3. Upon the fragment acknowledgments

 Upon fragment acknowledgments next fragments (that are not first
 fragment), the router expects to have already Label swap structure
 indexed by (MAC_nxt, DT_nxt). The router:

 lookups up the Label swap entry for (MAC_nxt, DT_nxt), which
 resolves as (MAC_prv, DT_prv)

 swaps the MAC info to from self to MAC_prv;

 Swaps the datagram_tag to DT_prv

 At this point the router is all set and can forward the RFRAG-ACK to
 prv.

 if the Label swap entry for (MAC_nxt, DT_nxt) is not found, it simply
 drops the packet.

Thubert & Hui Expires May 29, 2015 [Page 13]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 if the RFRAG-ACK indicates either an error or that the fragment was
 fully receive, the router schedules the Label swap entries for
 recycling. If the RFRAG-ACK is lost on the way back, the source may
 retry the last fragments, which will result as an error RFRAG-ACK
 from the first router on the way that has already cleaned up.

9. Security Considerations

 The process of recovering fragments does not appear to create any
 opening for new threat compared to "Transmission of IPv6 Packets over
 IEEE 802.15.4 Networks" [RFC4944].

10. IANA Considerations

 Need extensions for formats defined in "Transmission of IPv6 Packets
 over IEEE 802.15.4 Networks" [RFC4944].

11. Acknowledgments

 The author wishes to thank Jay Werb, Christos Polyzois, Soumitri
 Kolavennu, Pat Kinney, Margaret Wasserman, Richard Kelsey, Carsten
 Bormann and Harry Courtice for their contributions and review.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC6282] Hui, J. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 September 2011.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298, June
 2011.

12.2. Informative References

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc6298

Thubert & Hui Expires May 29, 2015 [Page 14]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

 [I-D.ietf-6tisch-architecture]
 Thubert, P., Watteyne, T., and R. Assimiti, "An
 Architecture for IPv6 over the TSCH mode of IEEE
 802.15.4e", draft-ietf-6tisch-architecture-04 (work in
 progress), October 2014.

 [I-D.ietf-6tisch-tsch]
 Watteyne, T., Palattella, M., and L. Grieco, "Using
 IEEE802.15.4e TSCH in an IoT context: Overview, Problem
 Statement and Goals", draft-ietf-6tisch-tsch-03 (work in
 progress), October 2014.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
 Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
 S., Wroclawski, J., and L. Zhang, "Recommendations on
 Queue Management and Congestion Avoidance in the
 Internet", RFC 2309, April 1998.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC
2914, September 2000.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC

3168, September 2001.

 [RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs):
 Overview, Assumptions, Problem Statement, and Goals", RFC

4919, August 2007.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
 for Application Designers", BCP 145, RFC 5405, November
 2008.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-architecture-04
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-tsch-03
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2309
https://datatracker.ietf.org/doc/html/bcp41
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5681

Thubert & Hui Expires May 29, 2015 [Page 15]

Internet-Draft LLN Fragment Forwarding and Recovery November 2014

Authors' Addresses

 Pascal Thubert (editor)
 Cisco Systems, Inc
 Building D
 45 Allee des Ormes - BP1200
 MOUGINS - Sophia Antipolis 06254
 FRANCE

 Phone: +33 497 23 26 34
 Email: pthubert@cisco.com

 Jonathan W. Hui
 Cisco Systems
 560 McCarthy Blvd.
 MILPITAS, California 95035
 USA

 Email: johui@cisco.com

Thubert & Hui Expires May 29, 2015 [Page 16]

