
Workgroup: v6ops

Updates: 1122, 4291 (if approved)

Published: 28 March 2022

Intended Status: Informational

Expires: 29 September 2022

Authors: P. Thubert, Ed.

Cisco Systems

Yet Another Double address and Translation Technique

Abstract

This document provides a mechanism named YADA to extend the current

IPv4 Internet by interconnecting IPv4 realms via a common footprint

called the shaft. YADA extends [INT-ARCHI] with the support of an

IP-in-IP format used to tunnel packets across the shaft. This

document also provides a bump-in-the-stack method to enable YADA on

a legacy stack, e.g., to enable virtual machines without changing

them. This document also provides a stateless address and IP header

translation between YADA and IPv6 [IPv6] called YATT and extends 

[IPv6-addressING] for the YATT format. YATT can take place as a bump

in the stack at either end, or within the network and enables an

IPv6-only stack to dialog with an IPv4-only stack across a network

that can be IPv6, IPv4, or mixed. YATT requires that the IPv6 stack

owns a prefix that derives from a YADA address and the IPv4 stack is

capable of YADA, so it does not replace a generic 4 to 6 translation

mechanism for any v6 to any v4.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc1122
https://www.rfc-editor.org/rfc/rfc4291
https://datatracker.ietf.org/drafts/current/


This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction

2.  Terminology

2.1.  Glossary

2.2.  New Terms

3.  Extending RFC 1122

4.  Extending RFC 4291

5.  YADA

6.  YATT

7.  Applicability

8.  Backwards Compatibility

9.  Security Considerations

10. IANA Considerations

11. Acknowledgments

12. References

12.1.  Normative References

12.2.  Informative References

Author's Address

1. Introduction

This document provides a mechanism called Yet Another Double address

(YADA) to grow the Internet beyond the current IPv4 [IPv4] realm

that limits its capacity to form public addresses. This is achieved

by interconnecting IPv4 realms via a common footprint called the

shaft.

In the analogy of a building, the ground floor would be the

Internet, and each additional floor would be another IPv4 realm. The

same surface of floor is available in each level, analog to the full

IPv4 addressing that is available in each realm. The same footprint

is dedicated across the building levels for the elevator shaft. The

elevator shaft enables a third dimension that spans across the

levels and allows to traverse from any level to any other level. The

elevator shaft cannot be used for living or office space.

¶

¶

¶

https://trustee.ietf.org/license-info


Figure 1: The shaft

By analogy, YADA assigns IPv4 prefixes to a multinternet shaft;

those prefixes are common across the realms that are interconnected

by the shaft. A single /24 IPv4 prefix assigned allows for > 250

times the capacity of the Internet as we know it at the time of this

writing. Multiple prefixes can be assigned to the shaft for unicast

and multicast communications, and each realm needs at least one

unicast address in the shaft called its realm address. A YADA

address is formed by the tuple (realm address, IPv4 address) and is

advertised in DNS as a new double-A record.

         /------------------------------------------------------

        /                                                     /

       /          |------------|                    realm 1  /

      /          /.           /.                            /

     /          / . shaft    / .  (current IPv4 Internet)  /

    /          |------------|  .                          /

   /           .  .         .  .                         /

  ------------------------------------------------------/

               |  .         |  |

         /-----|------------|--|--------------------------------

        /      |  .         |  |                              /

       /       |  |---------|--|                    realm 2  /

      /        | /.         | /.                            /

     /         |/ . shaft   |/ .                           /

    /          |------------|  .                          /

   /           .  .         .  .                         /

  ------------------------------------------------------/

               |  .         |  |

               |  .         |  |

               |            |  .

               |            |  .

               .            .  |

               .            .  |

               |  .         |  |

         /-----|------------|--|--------------------------------

        /      |  .         |  |                              /

       /       |  |---------|--|                    realm N  /

      /        | /          | /                             /

     /         |/   shaft   |/                             /

    /          |------------|                             /

   /                                                     /

  ------------------------------------------------------/

¶



YADA:

YATT:

NAT:

IID:

CG-NAT:

IPv4 realm

The shaft

YADA leverages IP-in-IP encapsulation to tunnel packets across the

shaft while normal IPv4 operations happen within a realm. YADA

requires a change in the stack in the YADA endpoints that

communicate with other realms to support the IP-in-IP YADA

encapsulation. YADA also provides a bump in the stack method for

legacy applications. More in Section 5.

A second mechanism called Yet Another Translation Technique (YATT)

translates the YADA format into flat IPv6 [IPv6]. For unicast

addresses, YATT forms an IPv6 prefix by collating an well-known

assigned short prefix, the realm address (in the shaft), and the

host IPv4 address (locally significant within the realm). The

resulting IPv6 prefix is automatically owned by the host that owns

the IPv4 address in the realm. YATT then forms an IPv6 address for

that host by collating a well-known Interface ID, so there's a one-

to-one relationship between the YADA and the IPv6 address derived

from it. More in Section 6.

2. Terminology

2.1. Glossary

This document often uses the following acronyms:

Yet Another Double address

Yet Another Translation Technique

Network address Translation

Interface ID

Carrier Grade NAT

2.2. New Terms

This document often uses the following nex terms:

A full IPv4 network like the current Internet. YADA does

not affect the traditional IPv4 operations within a realm.

The shaft refers to a collection of IPv4 unicast and

multicast prefixes that are assigned to Inter-realm

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



realm address

Uni-realm address

Multi-realm address

YADA realm Prefix

YADA NAT Prefix

Double-A or YADA address

YATT Space

YATT Prefix

YATT-IID:

Multinternet

communications and cannot be assigned to hosts or multicast

groups within a realm.

An IPv4 address that derives from a shaft prefix.

A realm address that is unicast or anycast. A

realm may have more than one Uni-realm address.

A realm address that is multicast and denotes a

collection of realms.

A Prefix assigned to the shaft and from which

realm addresses can be derived.

A Prefix assigned to the YADA bump-in-the-stack NAT

operation.

A YADA address is a tuple (realm address,

IPv4 address) where the IPv4 address is only significant within

the realm denoted by the realm address.

An IPv6 range that is assigned for YATT operation.

An IPv6 prefix that is derived from a YADA address by

appending the YATT space prefix, the (truncated) realm address

and the IPv4 address.

A 64-bit assigned constant that is used in YATT to

statelessly form an IPv6 address from a YATT prefix.

A collection of IPv4 realms interconnected using a

common shaft.

3. Extending RFC 1122

YADA extends [INT-ARCHI] to add the capability for an IPv4 host to

recognize an special IP-in-IP format as an inter-realm IPv4 packet

and process it accordingly. It also adds a new DNS double-A record

format that denotes a YADA address.

4. Extending RFC 4291

YATT extends [IPv6-addressING] to add the capability for an IPv4

host to recognize an special IPv6 format as an YATT address

embedding a YADA address and process it accordingly. It also

automatically derives the ownership of the YATT prefix associated to

a owned YADA address.

5. YADA

YADA assigns IPv4 prefixes to a multinternet shaft; those prefixes

must be the same across all the realms that are interconnected by

the shaft. Multiple prefixes can be assigned to the shaft for

unicast and multicast communications, and each realm needs at least

one unicast address in the shaft called its realm address. A YADA

address is formed by the tuple (realm address, IPv4 address) and is

advertised in DNS as a new double-A record. Because the YADA

prefixes are assigned for YADA, a packet that has either source or

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



destination IPV4 address derived from a shaft prefix is a YADA

packet.

YADA leverages IP-in-IP encapsulation to tunnel packets across the

shaft for inter-realm communications, while the IPv4 operations

within a realm are unaffected. The YADA address is found by using

both inner and outer header and combining that information. The pair

of IP headers is seen by a YADA stack as a single larger header

though a non-YADA forwarder only needs the outer header and plain

IPv4 operations to forward.

YADA requires a change in the stack in the YADA endpoints that

communicate with other realms to support the YADA encapsulation.

YADA also provides a bump in the stack method for legacy

applications. YADA also requires a change for the routers that serve

the shaft. Those routers play a special role for packets that are

delivered from the shaft to the destination realm, and for ICMP

errors across realms. All other IPv4 nodes in the realm continue to

operate as before.

Routers serving the shaft advertise the shaft prefix(es) in their

respective realms, and their realm addresses within the shaft, as

host routes for unicast and anycast addresses. A stack that resolve

a DNS name with a double-A record indicating a different realm

generates an IP-in-IP packet, with the outer header indicating the

source and destination realms, and the inner header indicating the

source and destination IPv4 addresses within the respective realms,

as shown in Figure 2. The packet is forwarded down the shaft as is,

using the normal longest match or multicast operation.

¶

¶

¶

¶

                   |            |

            /------|------------|---------------------------------

           /       |            |                               /

          /    |   |        |   |                              /

         /     |   |--------|---|        Source Node          /

        /      |  /         |  /                             /

       /       | /.     +---|----  outer(src=src-realm      /

      /        |/ .     |   |/ .         dst=dst-realm)    /

     /         |------------|  .   inner(src=src-addr     /

    /          .  .     |   .  .         dst=dst-addr)   /

   /           .  .     |   .  .                        /

  /            .  .     |   .  .                       /

 -----------------------------------------------------/

               |        |   |  |

               |        |   |

               |        |   |

                        v



Figure 2: Packets Entering the shaft

The packet destination is an address is the shaft and it is

attracted by a router that serves the shaft and advertises its

prefixes in the source realm. Based ion longest match, the router

forwards the packet inside the shaft following the host route to a

router that serves the destination realm. That router swaps the

destination address in the inner and outer headers and forwards

within its realm to the final destination, as shown in Figure 3. In

normal conditions, the stack of the destination node recognizes the

YADA format and replies accordingly.

Figure 3: Packets Outgoing the shaft

In case of an error down the path or at the destination, if an ICMP

message is generated by a node that is not YADA-aware, the message

reaches the router that serves the shaft in the source realm. If the

inner header is present in the ICMP payload, then the Router

extracts it and forwards to the packet source. If the destination

stack does not support YADA and decapsulates, the message reaches

the router that serves the destination realm which logs and drops.

based on the log, the node may be updated, or the DNS records may be

fixed to avoid pointing on a node that does not support YADA.

YADA requires the assignment of a second IPv4 prefix, this time for

a internal NATing operation. A bump-in-the-stack intercepts the DNS

lookups, and when the response yields a double-A record with a

foreign realm, the record is augmented with an IPv4 address taken

from a local NAT pool. When the stack sends a packet to that

particular address, the bump-in-the-stack translates to the YADA

format, using the information in the double-A record for the

¶

                        |

                   |    |       |

                   |    |       |

            /------|----|-------|---------------------------------

           /   |   |    |   |   |                               /

          /    |   |    |   |   |                              /

         /     |   |----|---|---|     Destination Node        /

        /      |  /     |   |  /                             /

       /       | /.     +---|----> outer(src=src-realm      /

      /        |/ .         |/ .         dst=dst-addr)     /

     /         |------------|  .   inner(src=src-addr     /

    /          .  .         .  .         dst=realm-addr) /

   /           .  .         .  .                        /

  /            .  .         .  .                       /

 -----------------------------------------------------/

¶



destination, and the local realm as source realm. The other way

around, id a packet arrives with a YADA format but the stack does

not support it, the bump-in-the-stack allocates an address from the

pool, and NATs to IPv4 using that address as source.

YADA was initially published as USPTO 7,356,031, filed in February

2002.

6. YATT

A second mechanism called YATT translates the YADA format into flat

IPv6.

Figure 4: YATT format

For unicast addresses, YATT forms an IPv6 prefix by collating an

well-known assigned short prefix called the YATT space, the realm

address, and the host IPv4 address (locally significant within the

realm). The resulting IPv6 prefix is automatically owned by the host

that owns the IPv4 address in the realm.

Depending on assignment, the leftmost piece realm prefix may be

truncated if it is well-known, to allow the YATT space and the realm

address to fit in a 32-bit DWORD. This way, the YATT prefix can be a

full /64 prefix that is entirely owned by the host that owns the

associated YADA address.

YATT then forms an IPv6 address for that host by collating a well-

known Interface ID, so there's a one-to-one relationship.

The formats can not be strictly provided till the YATT space and

YADA prefix are assigned. But say that the YATT Space is F00::/6 and

the YADA prefix is 240.0.0.0/6. In that case the values perfectly

overlap and the YATT format becomes as follows:

¶

¶

¶

 +-----+---------------+--------------+-----------------------------+

 |YATT |     Realm     |     IPv4     |         Well-Known          |

 |Space|    Address    |    Address   |              IID            |

 +-----+- -------------+--------------+-----------------------------+

       <- YADA

        Prefix ->

 <--------   YATT Prefix ---------->

¶

¶

¶

¶



Figure 5: YATT format using 240.0.0.0/6

In that case, the NAT operation is a plain insertion. Depending on

the assignment, it might be that the Realm address must be placed in

full after YATT space. In that case, the length of the YATT prefix

will be more than 64 bits.

If the network supports IPv6 to the shaft, it makes sense for the

YADA host or the bump-in-the-stack to generate the packets in the

YATT form natively. The shaft router must then attract the shaft

YADA realm Prefix in both IPv4 and YATT forms.

If the network is IPv4 only, the packets are still generated using

IP in IP, and the YATT NAT operation may happen at the router that

delivers the packet in the destination realm, if it is v6-only, or

in the destination host, if its stack is v6-only.

YATT was initially published as USPTO 7,764,686, filed in December

2002.

7. Applicability

YADA And YATT enable communication between YADA-enabled IPv4 nodes

across realms, and with IPv6 nodes that own a YADA address from

which a YATT address can be derived. Communication from a legacy

IPv4 application/stack that is not YADA-enabled, or to an IPv6

address that is not a YATT address, is not provided.

Since the YATT translation is stateless, the header translation can

happen anywhere in the network, e.g., as a bump in the stack at

either end, or within the network, e.g., at the routers that serve

the realms on the shaft. The shaft itself is expected to be dual

stack to forward packets in their native form, either v4 or v6.

For a legacy IPv4 node to communicate with YADA-enabled IPv4 node in

another realm, a NAT operation similar to DS-Lite [DS-LIGHT], but

between IPv4 and YADA addresses, is required.

+-----+----------+----------------+---------------------------------+

| Realm Address  |    IPv4 Host   |            Well-Known           |

| in 240.0.0.0/6 | Public Address |               IID               |

+-----+- --------+----+-----------+---------------------------------+

<--- 32 bits ---><--- 32 bits ---><------------ 64 bits ------------>

<------   YATT IPv6 Prefix ------->

¶

¶

¶

¶

¶

¶

¶



[IPv4]

[INT-ARCHI]

[IPv6-addressING]

[IPv6]

[DS-LIGHT]

8. Backwards Compatibility

YADA operation does not affect the intra-realm communication. The

only affected stacks are the endpoints that communicate between

realms leveraging YADA.

9. Security Considerations

10. IANA Considerations

This document requires the creation of a registry for IPv4 YADA

realm prefixes, and the assignment of at least one YADA realm

prefix.

This document requires the creation of a registry for IPv4 YADA NAT

prefixes, and the assignment of at least one YADA NAT prefix.

11. Acknowledgments

12. References

12.1. Normative References

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>. 

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>. 

Hinden, R. and S. Deering, "IP Version 6

Addressing Architecture", RFC 4291, DOI 10.17487/RFC4291,

February 2006, <https://www.rfc-editor.org/info/rfc4291>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>. 

12.2. Informative References

Chan, H., Ed., Liu, D., Seite, P., Yokota, H., and J.

Korhonen, "Requirements for Distributed Mobility

Management", RFC 7333, DOI 10.17487/RFC7333, August 2014,

<https://www.rfc-editor.org/info/rfc7333>. 

¶

¶

¶

https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc7333


Author's Address

Pascal Thubert (editor)

Cisco Systems, Inc

Building D

45 Allee des Ormes - BP1200

06254 Mougins - Sophia Antipolis

France

Phone: +33 497 23 26 34

Email: pthubert@cisco.com

tel:+33%20497%2023%2026%2034
mailto:pthubert@cisco.com

	Yet Another Double address and Translation Technique
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Glossary
	2.2. New Terms

	3. Extending RFC 1122
	4. Extending RFC 4291
	5. YADA
	6. YATT
	7. Applicability
	8. Backwards Compatibility
	9. Security Considerations
	10. IANA Considerations
	11. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References

	Author's Address


