
Workgroup: v6ops

U

p

d

a

t

e

s

:

1122, 4291 (if approved)

Published: 7 April 2022

Intended Status: Informational

Expires: 9 October 2022

A

u

t

h

o

r

s

:

P. Thubert, Ed. 

Cisco Systems

Yet Another Double Address and Translation Technique

Abstract

This document provides a stepwise migration between IPv4 and IPv6

with baby steps from an IPv4-only stack/gateway/ISP to an IPv6-only

version, that allows portions of the nodes and of the networks to

remain IPv4, and reduces the need for dual stack and CG NATs between

participating nodes. A first mechanism named YADA to augment the

capacity of the current IPv4 Internet by interconnecting IPv4 realms

via a common footprint called the shaft. YADA extends RFC 1122 with

the support of an IP-in-IP format used to forward the packet between

parallel IPv4 realms. This document also provides a stateless

address and IP header translation between YADA and IPv6 called YATT

and extends RFC 4291 for the YATT format. The YADA and YATT formats

are interchangeable, and the stateless translation can take place as

a bump in the stack at either end, or within the network at any

router. This enables an IPv6-only stack to dialog with an IPv4-only

stack across a network that can be IPv6, IPv4, or mixed. YATT

requires that the IPv6 stack owns a prefix that derives from a YADA

address and that the IPv4 stack in a different realm is capable of

YADA, so it does not replace a generic 4 to 6 translation mechanism

for any v6 to any v4.

Status of This Memo 

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc1122
https://www.rfc-editor.org/rfc/rfc4291
https://datatracker.ietf.org/drafts/current/


Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 October 2022.

Copyright Notice 

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents 

1.  Introduction and Motivation

2.  Terminology

2.1.  Glossary

2.2.  New Terms

3.  Operation

4.  Extending RFC 1122

5.  Extending RFC 4291

6.  YADA

7.  YATT

8.  The structure of the shaft

9.  Applicability

10. Backwards Compatibility

11. Security Considerations

12. IANA Considerations

13. Acknowledgments

14. References

14.1.  Normative References

14.2.  Informative References

Author's Address

1. Introduction and Motivation 

At the time of this writing, the transition to IPv6 started 20 years

ago and large amounts of networks, hosts, and programs, are still

IPv4-only. The IPv4 and IPv6 camps are quite entrenched, and there's

no indication that things will change any time soon.

During that endless transition, stacks must implements both

protocols (aka dual stack) and a mechanism to use either based on

the responsiveness (Happy Eyeballs). Service Providers must

implement heavy weaponry called Carrier-Grade Network Address

Translators (CG-NATs) to translate between protocols between legacy

IPv4-only and IPv6-only stacks, and tunneling techniques such as DS-

Lite and 464XLAT to traverse portions of the network that support

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info


only one of the IP versions. This means both CAPEX to install dual

stack infrastructures and NAT devices and OPEX to maintain them. The

current situation is often qualified as the worst of both worlds and

any indications is that it's here to stay, till each side suffered

enough and is ready for a compromise.

This document prepares for that time where the players will

effectively be ready for a compromise. An acceptable compromise must

provide both sides with way to remain as long as desired, while

eliminating the need for dual stack and CG-NATs between

participating nodes. Certainly, an effort must be asked on each side

to reduce the chasm, and that effort must come with enough benefits

to effectively encourage a majority of interested parties to make

the step.

Yet Another Double Address (YADA) refers to effort that is asked

from the IPv4 side to support a new IP-in-IP model. YADA extends 

[INT-ARCHI] with the support of an IP-in-IP format used to forward

the packet between parallel IPv4 realms. The proposed benefit is a

thousandfold increase of the IPv4-addressable domain by building

parallel realms each potentially the size of the current Internet.

Only the stacks that need to talk to a parallel realm need to

evolve. Routing and forwarding can remain IPv4-only with the same

operations as today, though new routers with YADA capabilities must

be deployed to route between realms.

Yet Another Translation Technique (YATT) refers to an effort to be

made by the IPv6 side to support a new IPv6 Prefix with special

properties, which impacts in particular source address selection

(SAS). YATT extends [IPv6-ADDRESSING] for the YATT format. The

proposed benefit is a prefix (say /32) per realm and a prefix (say /

64) per host in the realm. This address space may for instance

become handy for load balancing between physical servers / VMs /

pods that operate a service associated with the virtual server that

owns the host prefix.

The YADA and YATT formats are interchangeable, which means that the

translation is stateless and can take place as a bump in the stack

at either end or can be operated at line rate anywhere in the

network by an upgraded hardware. The routers that connect the shaft

also perform a stateless operation that can be achieved at line rate

by upgraded hardware. This is how the chasm between IPv4 and IPv6

can be reduced, removing the need to deploy dual stack and CG-NATs

between participating nodes.

This document provides a stepwise migration between IPv4 and IPv6

with baby steps from an IPv4-only stack/gateway/ISP to YADA to YATT

to an IPv6-only version. The migration strategy allows portions of

the nodes and of the networks to remain IPv4. This enables an IPv6-

only stack to dialog with an IPv4-only stack across a network that

can be IPv6, IPv4, or mixed.

YATT requires that the IPv6 stack owns a prefix that derives from a

YADA address associated to a realm, even if there's absolutely no

¶

¶

¶

¶

¶

¶



YADA:

YATT:

NAT:

IID:

CG-NAT:

IPv4 realm:

The shaft:

Realm address:

Uni-realm address:

Multi-realm address:

YADA realm prefix:

IPv4 operation taking place in that realm. The resulting

connectivity without dual stack and CG-NAT is as follows:

A legacy IPv4-only node can only talk within its realm. It can

talk to a IPv4 legacy node, and YADA IPv4-only node and a YATT

IPv6-only node, e.g., leveraging a bump-in-the-stack in the YATT

node if the network is IPv4-only. 

In addition, a YADA IPv4-only node can talk across realms to a

YADA IPv4-only node and to any YATT IPv6-only node. 

In addition, a YATT IPv6-only node can talk to all the IPv6

addressable space to any IPv6-only node. 

Connectivity between an IPv4-only node and an IPv6-only node, or

between an IPv4-only node and a YADA node in different realm, still

requires a CG-NATs as of today, e.g., using the YATT format for the

IPv6 side in an unmodified CG-NAT.

2. Terminology 

2.1. Glossary 

This document often uses the following acronyms:

Yet Another Double Address 

Yet Another Translation Technique 

Network address Translation 

Interface ID 

Carrier Grade NAT 

2.2. New Terms 

This document often uses the following new terms:

A full IPv4 network like the current Internet. YADA

does not affect the traditional IPv4 operations within a realm. 

The shaft refers to a collection of IPv4 unicast and

multicast prefixes that are assigned to Inter-realm communications

and cannot be assigned to hosts or multicast groups within a

realm. 

An IPv4 address that derives from a shaft prefix. 

A realm address that is unicast or anycast. A

realm may have more than one Uni-realm add ress. 

A realm address that is multicast and denotes

a collection of realms. 

A prefix assigned to the shaft and from which

realm addresses can be derived. 

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



YADA NAT prefix:

Double-A or YADA address:

YATT Space:

YATT prefix:

YATT-IID:

Multinternet:

A prefix assigned to the YADA bump-in-the-stack NAT operation. 

A YADA address is a tuple (realm address,

IPv4 address) where the IPv4 address is only significant within

the realm denoted by the realm address. 

An IPv6 range that is assigned for YATT operation. 

An IPv6 prefix that is derived from a YADA address by

appending the YATT space prefix, the (truncated) realm address and

the IPv4 address. 

A 64-bit assigned constant that is used in YATT to

statelessly form an IPv6 address from a YATT prefix. 

A collection of IPv4 realms interconnected using a

common shaft. 

3. Operation 

This document provides a stepwise migration between IPv4 and IPv6

with baby steps from an IPv4-only stack/gateway/ISP to an IPv6-only

version. The baby steps reduce the gap between the only versions and

teh associated need for dual stack and CG-NATs.

The first step called YADA uses IPv4-only signaling. The second step

called Yet Another Translation Technique (YATT) offers an IPv6-only

signaling that is interchangeable with YADA, so any router or stack

may turn one into the other, allowing the stack or the link to be

one version only. A YADA-enabled IPv4 stack can thus talk to a YATT-

enabled IPv6 stack with neither CG-NATs nor dual stack network in

between, but a stack that is not aware of this specification will

still need a traditional NAT approach to communicate.

The effort in this specification is to provide enough value /

incentive for an IPv4-only stack/gateway/ISP to make the step

towards YADA, as a push towards IPv6, and for an IPv6-only stack to

support YATT on top to pull IPv4 space in IPv6, with a low barrier

for making the baby step. For IPv4, going YADA expands the size/

reach of the Internet, and allows multiple parties to build their

own IPv4 realm, with control of interconnection with other realms.

For an IPv6 node, supporting YATT provides connectivity to the YADA

world, and automatically assigns a prefix in the node.

This first mechanism called YADA allows to grow the Internet beyond

the current IPv4 [IPv4] realm that limits its capacity to form

public addresses. Depending on the assignments to be made, the model

allows to reuse all IP addresses and all Autonomous System Number

(ASN) currently available in the internet hundreds to millions of

times. This is achieved by interconnecting IPv4 realms via a common

footprint called the shaft.

In the analogy of a building, the ground floor would be the

Internet, and each additional floor would be another IPv4 realm. The

same surface of floor is available in each level, analog to the full

IPv4 addressing that is available in each realm. The same footprint

is dedicated across the building levels for the elevator shaft. The

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



elevator shaft enables a third dimension that spans across the

levels and allows to traverse from any level to any other level. The

elevator shaft cannot be used for living or office space.

Figure 1: The shaft 

By analogy, YADA assigns IPv4 prefixes to a multinternet shaft;

those prefixes are common across the realms that are interconnected

by the shaft. A single /24 IPv4 prefix assigned allows for > 250

times the capacity of the Internet as we know it at the time of this

writing. Multiple prefixes can be assigned to the shaft for unicast

and multicast communications, and each realm needs at least one

unicast address in the shaft called its realm address. A YADA

address is formed by the tuple (realm address, IPv4 address) and is

advertised in DNS as a new double-A record.

YADA leverages IP-in-IP encapsulation to tunnel packets across the

shaft while normal IPv4 operations happen within a realm. YADA

requires a change in the stack in the YADA endpoints that

communicate with other realms to support the IP-in-IP YADA

¶

         /------------------------------------------------------

        /                                                     /

       /          |------------|                    realm 1  /

      /          /.           /.                            /

     /          / . shaft    / .  (current IPv4 Internet)  /

    /          |------------|  .                          /

   /           .  .         .  .                         /

  ------------------------------------------------------/

               |  .         |  |

         /-----|------------|--|--------------------------------

        /      |  .         |  |                              /

       /       |  |---------|--|                    realm 2  /

      /        | /.         | /.                            /

     /         |/ . shaft   |/ .                           /

    /          |------------|  .                          /

   /           .  .         .  .                         /

  ------------------------------------------------------/

               |  .         |  |

               |  .         |  |

               |            |  .

               |            |  .

               .            .  |

               .            .  |

               |  .         |  |

         /-----|------------|--|--------------------------------

        /      |  .         |  |                              /

       /       |  |---------|--|                    realm N  /

      /        | /          | /                             /

     /         |/   shaft   |/                             /

    /          |------------|                             /

   /                                                     /

  ------------------------------------------------------/

¶



encapsulation. YADA also provides a bump in the stack method for

legacy applications. More in Section 6.

A second mechanism called YATT translates the YADA format into flat

IPv6 [IPv6]. While a YADA address pair can be seen as some foot

print in one level, the YATT prefix encompasses that same foot print

plus all the air above it. For unicast addresses, YATT forms an IPv6

prefix by collating an well-known assigned short prefix, the realm

address (in the shaft), and the host IPv4 address (locally

significant within the realm). The resulting IPv6 prefix is

automatically owned by the host that owns the IPv4 address in the

realm. YATT then forms an IPv6 address for that host by collating a

well-known Interface ID, so there's a one-to-one relationship

between the YADA and the IPv6 address derived from it. More in 

Section 7.

A key concept for this specification is that YADA (the IPv4

formulation) and YATT (the IPv6 formulation) represent the same

thing. YADA uses IPv4 formats as plain IP-in-IP with no new

extension. YATT uses IPv6 format with the IPv4 addresses encoded on

the prefix. The formats are interchangeable, and a router can

convert one to another as the packet flows over a next-hop link that

can only carry the other address family.

4. Extending RFC 1122 

YADA extends [INT-ARCHI] to add the capability for an IPv4 host to

recognize an special IP-in-IP format as an inter-realm IPv4 packet

and process it accordingly. It also adds a new DNS double-A record

format that denotes a YADA address.

5. Extending RFC 4291 

YATT extends [IPv6-ADDRESSING] to add the capability for an IPv4

host to recognize an special IPv6 format as an YATT address

embedding a YADA address and process it accordingly. It also

automatically derives the ownership of the YATT prefix associated to

a owned YADA address.

6. YADA 

YADA assigns IPv4 prefixes to a multinternet shaft; those prefixes

must be the same across all the realms that are interconnected by

the shaft. Multiple prefixes can be assigned to the shaft for

unicast and multicast communications, and each realm needs at least

one unicast address in the shaft called its realm address. A YADA

address is formed by the tuple (realm address, IPv4 address) and is

advertised in DNS as a new double-A record. Because the YADA

prefixes are assigned for YADA, a packet that has either source or

destination IPV4 address derived from a shaft prefix is a YADA

packet.

YADA leverages IP-in-IP encapsulation to tunnel packets across the

shaft for inter-realm communications, while the IPv4 operations

within a realm are unaffected. The YADA address is found by using

both inner and outer header and combining that information. The pair

of IP headers is seen by a YADA stack as a single larger header

¶

¶

¶

¶

¶

¶



though a non-YADA forwarder only needs the outer header and plain

IPv4 operations on the outer IPv4 header to forward.

YADA requires a change in the stack in the YADA endpoints that

communicate with other realms to support the YADA encapsulation.

YADA also provides a bump in the stack method for legacy

applications. A stack that resolve a DNS name with a double-A record

indicating a different realm generates an IP-in-IP packet to signal

both the source and destination realms and the source and

destination IPv4 addresses within the respective realms.

Inside the source realm, the outer IPv4 header indicates the node's

IPv4 address as source, to remain topologically correct, and the

local realm address as source in the inner header, as shown in 

Figure 2

Figure 2: YADA format in the source realm 

YADA also requires a change for the routers that serve the shaft.

Those routers play a special role for packets that are delivered

from the shaft to the destination realm, and for ICMP errors across

realms. All other IPv4 nodes in the realm continue to operate

routing and forwarding as before.

Routers serving the shaft advertise the shaft prefix(es) in their

respective realms, and their realm addresses within the shaft, as

host routes for unicast and anycast addresses.

Inside the source realm, the IPv4 destination in the outer header is

an address is the shaft and it is attracted by a router that serves

the shaft in the source realm. The packet source in the outer header

is the address of the source node in the local realm, so the packet

does not defeat BCP 38 rules in the ISP network, as shown in Figure

3.

¶

¶

¶

<----------------------------- 20 bytes ---------------------------->

+------------ ... ------------+-----------------+-------------------+

|    IPv4 header fields       |  Source node    | destination realm |

|     (outer)                 |  IPv4 Address   |   IPv4 Address    |

+------------ ... ------------+-----------------+-------------------+

|    IPv4 header fields       |  Source realm   | destination node  |

|      (inner)                |  IPv4 Address   |   IPv4 Address    |

+------------ ... ------------+-----------------+-------------------+

.                          Options                                  .

+------------ ... --------------------------------------------------+

|                                                                   |

.                           Data                                    .

|                                                                   |

+-------------------------------------------------------------------+

¶

¶

¶



Figure 3: Packets Entering the shaft 

When the packet reaches the shaft, the router that serves the shaft

swaps the inner and outer source IPv4 address, so the packet remains

topologically correct inside the shaft, as shown in Figure 4.

Figure 4: YADA format inside the shaft 

Based on longest match, the router forwards the packet inside the

shaft following the host route to a router that serves the

destination realm, as shown in Figure 5.

                   |            |

            /------|------------|---------------------------------

           /       |            |                               /

          /    |   |        |   |                              /

         /     |   |--------|---|        Source Node          /

        /      |  /         |  /                             /

       /       | /.      <--|----  outer(src=src-addr       /

      /        |/ .         |/ .         dst=dst-realm)    /

     /         |------------|  .   inner(src=src-realm    /

    /          .  .         .  .         dst=dst-addr)   /

   /           .  .         .  .                        /

  /            .  .         .  .                       /

 -----------------------------------------------------/

               |            |  |

               |            |

               |            |

¶

<----------------------------- 20 bytes ---------------------------->

+------------ ... ------------+-----------------+-------------------+

|    IPv4 header fields       |  Source realm   | destination realm |

|     (outer)                 |  IPv4 Address   |   IPv4 Address    |

+------------ ... ------------+-----------------+-------------------+

|    IPv4 header fields       |  Source node    | destination node  |

|      (inner)                |  IPv4 Address   |   IPv4 Address    |

+------------ ... ------------+-----------------+-------------------+

.                          Options                                  .

+------------ ... --------------------------------------------------+

|                                                                   |

.                           Data                                    .

|                                                                   |

+-------------------------------------------------------------------+

¶



Figure 5: Packets Entering the shaft 

That router swaps the destination address in the inner and outer

headers and forwards within its realm to the final destination, as

shown in Figure 6.

Figure 6: YADA format in the destination realm 

In normal conditions, the stack of the destination node recognizes

the YADA format and replies accordingly.

                   |            |

            /------|------------|---------------------------------

           /       |            |                               /

          /    |   |        |   |                              /

         /     |   |--------|---|        Source Node          /

        /      |  /         |  /                             /

       /       | /.     +   | /  outer(src=src-realm      /

      /        |/ .     |   |/ .         dst=dst-realm)    /

     /         |------------|  .   inner(src=src-addr     /

    /          .  .     |   .  .         dst=dst-addr)   /

   /           .  .     |   .  .                        /

  /            .  .     |   .  .                       /

 -----------------------------------------------------/

               |        |   |  |

               |        |   |     forwarded unchanged

               |        |   |      down the shaft

                        v

¶

<----------------------------- 20 bytes ---------------------------->

+------------ ... ------------+-----------------+-------------------+

|    IPv4 header fields       |  Source realm   | destination node  |

|     (outer)                 |  IPv4 Address   |   IPv4 Address    |

+------------ ... ------------+-----------------+-------------------+

|    IPv4 header fields       |  Source node    | destination realm |

|      (inner)                |  IPv4 Address   |   IPv4 Address    |

+------------ ... ------------+-----------------+-------------------+

.                          Options                                  .

+------------ ... --------------------------------------------------+

|                                                                   |

.                           Data                                    .

|                                                                   |

+-------------------------------------------------------------------+

¶



Figure 7: Packets Outgoing the shaft 

In case of an error down the shaft or in the destination realm, if

an ICMP message is generated by a node that is not YADA-aware, the

message reaches the router that serves the shaft in the source

realm. If the inner header is present in the ICMP payload, then the

Router extracts it and forwards to the packet source. If the

destination stack does not support YADA and decapsulates, the

message reaches the router that serves the destination realm which

logs and drops. based on the log, the node may be updated, or the

DNS records may be fixed to avoid pointing on a node that does not

support YADA.

YADA requires the assignment of a second IPv4 prefix, this time for

a internal NATing operation. A bump-in-the-stack intercepts the DNS

lookups, and when the response yields a double-A record with a

foreign realm, the record is augmented with an IPv4 address taken

from a local NAT pool. When the stack sends a packet to that

particular address, the bump-in-the-stack translates to the YADA

format, using the information in the double-A record for the

destination, and the local realm as source realm. The other way

around, if a packet arrives with a YADA format but the stack does

not support it, the bump-in-the-stack allocates an address from the

pool, and NATs to IPv4 using that address as source.

YADA was initially published as USPTO 7,356,031, filed in February

2002.

7. YATT 

A second mechanism called YATT translates the YADA format into flat

IPv6.

                        |

                   |    |       |

                   |    |       |

            /------|----|-------|---------------------------------

           /   |   |    |   |   |                               /

          /    |   |    |   |   |                              /

         /     |   |----|---|---|     Destination Node        /

        /      |  /     |   |  /                             /

       /       | /.     +---|----> outer(src=src-realm      /

      /        |/ .         |/ .         dst=dst-addr)     /

     /         |------------|  .   inner(src=src-addr     /

    /          .  .         .  .         dst=realm-addr) /

   /           .  .         .  .                        /

  /            .  .         .  .                       /

 -----------------------------------------------------/

                      destinations swapped at shaft egress

¶

¶

¶

¶



Figure 8: YATT format 

For unicast addresses, YATT forms an IPv6 prefix by collating an

well-known assigned short prefix called the YATT space, the realm

address, and the host IPv4 address (locally significant within the

realm). The resulting IPv6 prefix is automatically owned by the host

that owns the IPv4 address in the realm.

Depending on assignment, the leftmost piece realm prefix may be

truncated if it is well-known, to allow the YATT space and the realm

address to fit in a 32-bit DWORD. This way, the YATT prefix can be a

full /64 prefix that is entirely owned by the host that owns the

associated YADA address.

YATT then forms an IPv6 address for that host by collating a well-

known Interface ID, so there's a one-to-one relationship.

The formats can not be strictly provided till the YATT space and

YADA prefix are assigned. But say that the YATT Space is F000::/6

and the YADA prefix is 240.0.0.0/6. In that case the values

perfectly overlap and the YATT format becomes as follows:

Figure 9: YATT format using 240.0.0.0/6 

In that case, the NAT operation is a plain insertion. Depending on

the assignment, it might be that the Realm address must be placed in

full after YATT space. In that case, the length of the YATT prefix

will be more than 64 bits.

Also, since 240.0.0.0/6 is currently unassigned, using it for the

shaft would allow literally to reuse every ASN and every IPv4

address currently available in the Internet in each and every other

realm and reallocate them in any fashion desirable in that realm.

If the network supports IPv6 to the shaft, it makes sense for the

YADA host or the bump-in-the-stack to generate the packets in the

YATT form natively. The shaft router must then attract the shaft

YADA realm prefix in both IPv4 and YATT forms.

If the network is IPv4 only, the packets are still generated using

IP-in-IP, and the YATT NAT operation may happen at the router that

 +-----+---------------+--------------+-----------------------------+

 |YATT |     Realm     |     IPv4     |         Well-Known          |

 |Space|    Address    |    Address   |              IID            |

 +-----+- -------------+--------------+-----------------------------+

       <- YADA

        prefix ->

 <--------   YATT prefix ---------->

¶

¶

¶

¶

+-----+----------+----------------+---------------------------------+

| Realm Address  |    IPv4 Host   |            Well-Known           |

| in 240.0.0.0/6 | Public Address |               IID               |

+-----+- --------+----+-----------+---------------------------------+

<--- 32 bits ---><--- 32 bits ---><------------ 64 bits ------------>

<------   YATT IPv6 prefix ------->

¶

¶

¶



delivers the packet in the destination realm, if it is v6-only, or

in the destination host, if its stack is v6-only.

YATT was initially published as USPTO 7,764,686, filed in December

2002.

8. The structure of the shaft 

A 10 miles view of the shaft could be as follows: it is implemented

in one IXP, spans all realms, and each realm has one address in the

shaft, with one router serving that realm. The address of the realm

is encoded in a loopback in the router, and advertised through an

IGP inside the shaft, while BGP is used inside the realms but not

inside the shaft. The shaft has a single large prefix that is

advertised in each realm by the router that serves the shaft, and

that is disaggregated into host routes inside the shaft.

None of the above is expected to remain true for long. As YADA and

YATT get deployed, the shaft will be implemented in different sites

over the world. A realm may be multihomed to be reached from a

different physical instance of the shaft, meaning that the shaft is

composed of either more prefixes or the shaft prefix is

disaggregated. Multiple routers will serve the same realm with high

availability and load balancing taking place inside the shaft to

maintain connectivity. Some shafts may be deployed to interconnect

only a subset of the realms, in which case those shafts would share

a specific prefix that would not be advertised outside the concerned

realms.

9. Applicability 

YADA And YATT enable communication between YADA-enabled IPv4 nodes

across realms, and with IPv6 nodes that own a YADA address from

which a YATT address can be derived. Communication from a legacy

IPv4 application/stack that is not YADA-enabled, or to an IPv6

address that is not a YATT address, is not provided.

Since the YATT translation is stateless, the header translation can

happen anywhere in the network, e.g., as a bump in the stack at

either end, or within the network, e.g., at the routers that serve

the realms on the shaft. The shaft itself is expected to be dual

stack to forward packets in their native form, either v4 or v6.

For a legacy IPv4 node to communicate with YADA-enabled IPv4 node in

another realm, a NAT operation similar to NAT46 [NAT-DEPLOY], but

between IPv4 and YADA addresses, is required. The same would be

required to allow an IPv4-only YADA node to communicate with an IPv6

node a a non-YATT address.

In summary:

this specification does not allow any IPv4 legacy node to talk to

any pure IPv6 node, and recognizes that this Graal may actually

be a non-goal. 

With YADA the current IPv4 Internet operations are not affected 

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶



YADA extends the IPv4-reachable world by creating (millions of)

parallel realms and changing (only) the stack on the hosts that

require inter-realm communication and specific routers at the

ingress of the realms 

A YADA node can talk (using IPv4) to a YATT node (using IPv6)

with a stateless translation. The translation can happen anywhere

in the network or in the stack. 

a YATT node being an IPv6 can talk to any other IPv6 nodes. 

10. Backwards Compatibility 

YADA operation does not affect the intra-realm communication. The

only affected stacks are the endpoints that communicate between

realms leveraging YADA.

11. Security Considerations 

YADA introduces an IP-in-IP format that might be used to obfuscate

an IP address impersonation performed in the inner header. A proper

implemetation of BCP 38 should thus include the capability to

recognize a YADA format and look in the source IP field that

expresses the source realm in the inner header.

Upgrading the rules in his Broadband Network Gateways (BNGs)

represents additional work for an ISP, which should be done before

the shaft addresses are routable within the ISP network, and whether

the ISP intends to provide improved NAT functions in the home

gateways and CPEs.

12. IANA Considerations 

This document requires the creation of a registry for IPv4 YADA

realm prefixes, and the assignment of at least one YADA realm

prefix.

This document requires the creation of a registry for IPv4 YADA NAT

prefixes, and the assignment of at least one YADA NAT prefix.

This document requires the creation of a new record in the Resource

Record (RR) TYPEs subregistry of the Domain Name System (DNS)

Parameters. The new record would be of type AA meaning a YADA

address.

13. Acknowledgments 

The author wishes to recognize the pioneer work done by Brian

carpenter in the space of IPv4 augmentation with [I-D.carpenter-

aeiou]

The author wishes to thank Greg Skinner as the first reviewer/

contributor to this work. Also Dave Bell, to remind that even if

routing is not touched much inside an IPv4 realm vs. the current

art, there is still work for the ISP, e.g., update the BCP 38 rules

in the BNGs.

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶



[IPv4]

[INT-ARCHI]

[IPv6-ADDRESSING]

[IPv6]

[NAT-DEPLOY]

[I-D.carpenter-aeiou]

14. References 

14.1. Normative References 

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>. 

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>. 

Hinden, R. and S. Deering, "IP Version 6

Addressing Architecture", RFC 4291, DOI 10.17487/RFC4291,

February 2006, <https://www.rfc-editor.org/info/rfc4291>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>. 

14.2. Informative References 

Palet Martinez, J., "Additional Deployment Guidelines

for NAT64/464XLAT in Operator and Enterprise Networks", 

RFC 8683, DOI 10.17487/RFC8683, November 2019, <https://

www.rfc-editor.org/info/rfc8683>. 

Carpenter, B. E., "Address Extension by IP Option Usage

(AEIOU)", Work in Progress, Internet-Draft, draft-

carpenter-aeiou-00, 21 March 1994, <https://

datatracker.ietf.org/doc/html/draft-carpenter-aeiou-00>. 

Author's Address 

Pascal Thubert (editor)

Cisco Systems, Inc

Building D

45 Allee des Ormes - BP1200

06254 Mougins - Sophia Antipolis 

France

Phone: +33 497 23 26 34 

Email: pthubert@cisco.com 

https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8683
https://www.rfc-editor.org/info/rfc8683
https://datatracker.ietf.org/doc/html/draft-carpenter-aeiou-00
https://datatracker.ietf.org/doc/html/draft-carpenter-aeiou-00
tel:+33%20497%2023%2026%2034
mailto:pthubert@cisco.com

	Yet Another Double Address and Translation Technique
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction and Motivation
	2. Terminology
	2.1. Glossary
	2.2. New Terms

	3. Operation
	4. Extending RFC 1122
	5. Extending RFC 4291
	6. YADA
	7. YATT
	8. The structure of the shaft
	9. Applicability
	10. Backwards Compatibility
	11. Security Considerations
	12. IANA Considerations
	13. Acknowledgments
	14. References
	14.1. Normative References
	14.2. Informative References

	Author's Address


