
TAPS Working Group P. Tiesel
Internet-Draft T. Enghardt
Intended status: Informational TU Berlin
Expires: January 3, 2019 July 02, 2018

A Socket Intents Prototype for the BSD Socket API - Experiences, Lessons
 Learned and Considerations

draft-tiesel-taps-socketintents-bsdsockets-02

Abstract

 This document describes a prototype implementation of Socket Intents
 [I-D.tiesel-taps-socketintents] for the BSD Socket API as an
 illustrative example how Socket Intents could be implemented. It
 described the experiences made with the prototype and lessons learned
 from trying to extend the BSD Socket API.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Tiesel & Enghardt Expires January 3, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/draft-tiesel-taps-socketintents-bsdsockets-02
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Socket Intents for BSD Sockets July 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Prototype Architecture 3
3. Multiple Access Manager 4
3.1. Policy . 5
3.2. Path characteristics data collectors 6

4. Socket Intents Representation 7
5. The Socket Intents API Variants 7
5.1. Classic API / muacc_context 8
5.1.1. muacc_getaddrinfo() 8
5.1.2. muacc_socket() 9
5.1.3. muacc_setsockopt() 10
5.1.4. muacc_connect() 10
5.1.5. muacc_close() . 11

5.2. Classic API / getaddrinfo 11
5.3. Socketconnect API . 14

6. API Implementation Experiences & Lessons Learned 15
6.1. The Missing Link to Name Resolution 15
6.2. File Descriptors Considered Harmful 16
6.3. Asynchronous API Anarchy 17
6.4. Here Be Dragons hiding in Shadow Structures 17

7. Conclusion . 18
8. Acknowledgments . 18
9. References . 18
9.1. Informative References 19
9.2. URIs . 20

Appendix A. API Usage Examples 20
A.1. Usage Example of the Classic / muacc_context API 20
A.2. Usage Example of the Classic / getaddrinfo API 21
A.3. Usage Example of the Socketconnect API 22

Appendix B. Changes . 23
B.1. Since -01 . 23
B.2. Since -00 . 23

 Authors' Addresses . 24

1. Introduction

 With the proliferation of devices that have multiple paths to the
 internet and an increasing number of transport protocols available,
 the number of transport options to serve a communication unit
 explodes. Implementing a heuristic or strategy for choosing from
 this overwhelming set of transport options by each application puts a
 huge burden on the application developer. Thus, the decisions
 regarding all transport options mentioned so far should be supported

Tiesel & Enghardt Expires January 3, 2019 [Page 2]

Internet-Draft Socket Intents for BSD Sockets July 2018

 and, if requested by the application, automated within the transport
 layer.

 Socket Intents [I-D.tiesel-taps-socketintents] allow an application
 to express what it knows, assumes, expects or wants to prioritize
 regarding its own network communication. This information can than
 be used by the OS to perform destination selection, path selection
 and transport protocol stack instance selection.

 Our Socket Intents prototype for the BSD Socket API is a first
 attempt to automate transport option selection within the OS. It is
 primarily targeted at path and destination address selection and
 tries to be as close as possible to the semantics of the BSD Socket
 API. The prototype mostly excludes the problem of transport protocol
 stack instance selection, which is more closely discussed in
 [I-D.tiesel-taps-communitgrany].

 We implemented the prototype as a wrapper for the BSD Socket API that
 communicates to a central Multiple Access Manager that makes the
 actual decisions and can optimize across applications. The whole
 implementation was done in about 15k lines of C code. The code is
 available at Github [1] under BSD License.

 This document describes our Socket Intents prototype for the BSD
 Socket API. It details important aspects of the implementation and
 the API variants we developed over time based on lessons learned.
 Finally, it summarizes these lessons and points out why the BSD
 Socket API is not particularly well suited to integrate automated
 transport protocol stack instance selection. Furthermore, it
 describes the limitations for destination address and path selection
 within the BSD Socket API.

2. Prototype Architecture

 The Socket Intents prototype consists of the following components,
 also shown in Figure 1:

 o The Socket Intents API, a BSD Socket API wrapper for applications
 to use, including a representation of the actual Socket Intents.

 o The Socket Intents Library which implements the Socket Intents
 API. It sends requests to the Multiple Access Manager, e.g.
 before establishing a connection, and gets back a response
 regarding what interface to use.

 o The Multiple Access Manager (MAM), a daemon which gets informed
 about all application requests and has knowledge of the available
 network interfaces.

Tiesel & Enghardt Expires January 3, 2019 [Page 3]

Internet-Draft Socket Intents for BSD Sockets July 2018

 o The Policy, a dynamically loaded library hosted by the MAM. It
 chooses which of the available interfaces to use based on the
 available knowledge about them and the Socket Intents.

 o Data collectors that that reside inside the MAM and that provide
 information like bandwidth usage, smoothed RTT estimate and RSSI
 for wireless links to the policy.

 +------------------------+
 | Application |
 | | +-------------------+
 +-{ Socket Intents API }-+ (MAM Request) | Multiple Access |
 | | ----------------> | Manager | | |
 | Socket Intents | (MAM Response) | +---------------+ |
 | Library | <---------------- | | Policy | |
 +------------------------+ | +---------------+ |
 | BSD Sockets | | |Data Collectors| |
 +------------------------+ +-+---------------+-+

 Figure 1: Components of the Socket Intents Prototype

3. Multiple Access Manager

 The Multiple Access Manager (MAM) is the central transport option
 selection instance on a host. It is realized as a daemon that runs
 in userspace and receives requests from each application that uses
 the Socket Intents Library.

 The MAM hosts the Policy, which is the actual decision making
 component, e.g., deciding which source address and therefore which
 source interface to use. Upon events, such as an application
 requesting to resolve a name or to connect a socket (see Section 5
 for details), the Socket Intents Library issues a MAM request and the
 MAM invokes a callback to the policy - see Section 3.1 for details -
 which can either communicate its decision right away or defer its
 decision, e.g., when it has to wait for the results of name
 resolution. The results and decisions are communicated back to the
 Socket Intents Library through the MAM response, where they are
 applied to the actual socket, see also Figure 1.

 To support the policy, the MAM maintains a list of IP prefixes that
 are configured on the local interfaces and available for outgoing
 communications. As destination address selection and path selection
 are highly dependent on each other, the MAM integrates DNS resolution
 and maintains separate resolver configurations per prefix (see
 [ANRW17-MH] for further discussion on multiple PvDs and DNS
 resolution). Furthermore, the MAM includes data collectors which

Tiesel & Enghardt Expires January 3, 2019 [Page 4]

Internet-Draft Socket Intents for BSD Sockets July 2018

 periodically gather statistics on the available paths, see
Section 3.2 for details.

3.1. Policy

 In the Socket Intents prototype, the Policy implements the decision
 logic for selecting among available transport options. In our
 current implementation, only one policy can be active at a given
 time. We implement different interchangeable policies as dynamically
 loaded libraries, which are hosted by the Multi Access Manager (MAM),
 see Figure 1. When launching the MAM, the user has to choose a
 policy and supply a policy configuration, which can contain
 additional information to configure the policy.

 Examples of policy configuration include:

 o A list of IP prefixes configured on local interfaces to consider
 as source for the communication

 o Name server(s) to use for each of the IP prefixes

 o Preferences to instrument the policy, e.g., default prefix to use

 The policy is initialized with this configuration and then waits for
 the callback of an incoming MAM request.

 Upon a callback, the policy can use information from the MAM request,
 such as Socket Intents, and information available within the MAM,
 such as recently measured path characteristics (see Section 3.2), to
 make decisions.

 Policy decisions can include:

 o The source address(es) used for name resolution

 o How to order the results of name resolution (i.e., preferring
 certain IP addresses over others)

 o Picking an IP protocol version

 o Picking a transport protocol (Note that in our current
 implementation, we are constrained by the Socket API, so our
 policy cannot override the transport protocol chosen by an
 application.)

 o Setting socket options (e.g., disable TCP Nagle)

 o Choosing a source address for the outgoing communication

Tiesel & Enghardt Expires January 3, 2019 [Page 5]

Internet-Draft Socket Intents for BSD Sockets July 2018

 o Reusing a socket from a given socket set (only for the API variant
 described in Section 5.3)

 Note that in our current implementation, the policy is a piece of
 code which can in principle execute arbitrary instructions. We
 assume this is acceptable for an experimental platform but would
 prefer an abstract description like a domain-specific language for a
 production system.

3.2. Path characteristics data collectors

 The data collectors are implemented as a component of the MAM, within
 a callback that is executed periodically, e.g., every 100 ms. When
 this callback is invoked, the MAM passively gathers statistics about
 the current usage and properties of the available local interfaces
 and stores them in per-interface or per-network prefix data
 structures.

 Measured properties include:

 o Minimum Smoothed Round Trip Time (SRTT) of current TCP connections
 using a network prefix, as an estimate for last-mile latency

 o Median SRTT of current TCP connections using a network prefix, as
 an alternate estimate for last-mile latency

 o Median of Round Trip Time variations within connections

 o Median variation of Smoothed Round Trip Times across connections

 o Median of percentage of segments deemed lost of all transmitted
 segments of current TCP connections, as an estimate of upstream
 packet loss

 o Maximum transmitted and received bytes per second over an
 interface within the last 5 minutes, as an estimate for maximum
 available bandwidth

 o On 802.11 interfaces, the Received Signal Strength Indicator
 (RSSI) of the last received frame on that interface, as an
 estimate for reception strength

 o On 802.11 interfaces, the modulation rate of the last received and
 the last transmitted unicast data frame on that interface, as an
 estimate for the available data transmission rate on the first hop

Tiesel & Enghardt Expires January 3, 2019 [Page 6]

Internet-Draft Socket Intents for BSD Sockets July 2018

 o On 802.11 interfaces, the latest Channel Utilization as parsed
 from a Beacon frame, as an estimate of congestion on the wireless
 medium

 See [ANRW18-Metrics] for more discussion of the gathered metrics.

 When a policy callback is invoked, the policy can use the latest
 measured properties to guide its decisions, see Section 3.1.

 Note that we do not perform active measurements from within the MAM
 to avoid overhead.

4. Socket Intents Representation

 As described in [I-D.tiesel-taps-socketintents], Socket Intents are
 pieces of information about upcoming traffic. An application can
 share the information that it has available through the Socket
 Intents API.

 In our implementation, Socket Intents are represented as socket
 options for get/setsockopt on its own socket option level
 (SOL_INTENTS).

 For some of the API variants, we had to introduce socket option
 lists, i.e., data structures that can hold multiple socket options
 and therefore multiple Socket Intents.

 Which of these variants is actually used depends on the API variant,
 see Section 5.

5. The Socket Intents API Variants

 The Socket Intents API is a wrapper around the BSD Socket API. It
 sends requests to the Multiple Access Manager (MAM) at certain
 events, e.g., before a connection is established, and applies the
 suggestions that it gets from the MAM, e.g., to bind to a certain
 local interface or to set a certain socket option.

 There exist different variants of this API, see Section 5, that try
 to fit different concepts:

 o The Classic API with muacc_context, see Section 5.1, was
 attempting to stick as close as possible to the call sequence of
 BSD Sockets.

 o The second variant of the classic API does all transport option
 selection in "getaddrinfo", see Section 5.2. This variant tries
 to simplify the implementation without deriving too much from the

Tiesel & Enghardt Expires January 3, 2019 [Page 7]

Internet-Draft Socket Intents for BSD Sockets July 2018

 usage of BSD Sockets. It minimizes the changes to the BSD Socket
 API, but adds additional overhead to the application.

 o The "socketconnect" API, see Section 5.3, tries to automate as
 much functionality as possible and adds support for automating
 connection caching. It replaces the usual sequence of BSD Socket
 API calls with a single call.

5.1. Classic API / muacc_context

 In the first variant, we add a parameter called "muacc_context" to
 the BSD Socket API calls and to getaddrinfo. This parameter holds
 properties provided by the socket calls and retains them across
 function calls to enable automation of the connection properties by
 our Socket Intents Prototype. The shadow data structures behind the
 "muacc_context" parameter are initialized by API wrapper at the time
 of the first call (which we assume to be muacc_getaddrinfo most of
 the time) with most of its fields empty. Then within each call to
 our modified Socket API, it is filled with data.

 Properties include:

 o Socket file descriptor

 o API calls that were already performed on this context

 o domain, type, and protocol of the socket

 o remote hostname

 o remote address

 o hints for resolving the remote address

 o local address to bind to that the application requested

 o local address to bind to that the MAM suggested

 o current socket options that were set

 o socket options suggested by MAM

5.1.1. muacc_getaddrinfo()

 This function resolves a host name or service to an addrinfo data
 structure, usually containing an IP address or port. Internally, the
 Socket Intents prototype sends a "getaddrinfo" request to the MAM,
 which should do the name resolution. It can, e.g., resolve the name

Tiesel & Enghardt Expires January 3, 2019 [Page 8]

Internet-Draft Socket Intents for BSD Sockets July 2018

 over multiple available interfaces at the same time, and then order
 the results according to a policy decision, or only return results
 obtained over a specific interface.

 SIGNATURE:

 int muacc_getaddrinfo(muacc_context_t *ctx, const char *hostname,
 const char *servname, const struct addrinfo *hints, struct addrinfo
 **res)

 ARGUMENTS:

 ctx: Context that can contain properties of this socket/connection
 and retains them across function calls. This function is mostly
 called with an empty context, which is then filled within the
 function.

 hostname: Remote host name to be resolved

 servname: Remote service to be resolved

 hints: Hints for resolving the name

 res: Data structure for result of name resolution

 RETURN VALUE:

 Returns 0 on success, or an error code as provided by getaddrinfo().

5.1.2. muacc_socket()

 This function creates a socket file descriptor just like the regular
 socket call.

 SIGNATURE:

 int muacc_socket(muacc_context_t *ctx, int domain, int type, int
 protocol)

 ARGUMENTS:

 ctx: Context that can contain properties of this socket/connection
 and retains them across function calls. This function is mostly
 called after muacc_getaddrinfo(), since domain, type, and protocol
 can depend on the type of resolved address.

 domain: Domain of the socket

Tiesel & Enghardt Expires January 3, 2019 [Page 9]

Internet-Draft Socket Intents for BSD Sockets July 2018

 type: Type of the socket

 protocol: Protocol of the socket

 RETURN VALUE:

 Returns a file descriptor of the new socket on success, or -1 on
 failure.

5.1.3. muacc_setsockopt()

 This call allows to set socket options (including Socket Intents).
 For Socket Intents, this function can be called on a valid
 "muacc_context" and an invalided file descriptor (-1) to provide
 assertional hints to "muacc_getaddrinfo()".

 SIGNATURE:

 int muacc_setsockopt(muacc_context_t *ctx, int socket, int level, int
 option_name, const void *option_value, socklen_t option_len)

 ARGUMENTS:

 ctx: Context that can contain properties of this socket/connection
 and retains them across function calls. This function is mostly
 called to set Intents as socket options within the context.

 socket: Socket file descriptor

 level: Level of the socket option to set

 option_name: Name of the socket option to set

 option_value: Value of the socket option to set

 option_len: Length of the socket option to set

 RETURN VALUE:

 Returns 0 on success, or -1 on failure.

5.1.4. muacc_connect()

 Like the regular connect call, but also binds to the source address
 selected by the Socket Intents Policy and applies socket options
 suggested by the Socket Intents Policy.

 SIGNATURE:

Tiesel & Enghardt Expires January 3, 2019 [Page 10]

Internet-Draft Socket Intents for BSD Sockets July 2018

 int muacc_connect(muacc_context_t *ctx, int socket, const struct
 sockaddr *address, socklen_t address_len)

 ARGUMENTS:

 ctx: Context that can contain properties of this socket/connection
 and retains them across function calls. This function is mostly
 called after all Socket Intents for this connection have been set
 via muacc_setsockopt().

 socket: Socket file descriptor

 address: Remote address to connect to

 address_len: Length of the remote address

 RETURN VALUE:

 Returns 0 on success, or -1 on failure.

5.1.5. muacc_close()

 Like regular close, but also cleans up state held in shadow
 structures behind "muacc_context"

 SIGNATURE:

 int muacc_close(muacc_context_t *ctx, int socket)

 ARGUMENTS:

 ctx: Context that can contain properties of this socket/connection
 and retains them across function calls. This function
 deinitializes and releases the context.

 socket: Socket file descriptor

 RETURN VALUE:

 Returns 0 on success, or -1 on failure.

5.2. Classic API / getaddrinfo

 In this variant, Socket Intents are passed directly to
 "getaddrinfo()" as part of the "hints" parameter. The name
 resolution is done by the MAM, which makes all decisions and stores
 them in the "result" data structure as list of options ordered by
 preference. Subsequently, applications can use this information for

Tiesel & Enghardt Expires January 3, 2019 [Page 11]

Internet-Draft Socket Intents for BSD Sockets July 2018

 calls to the unmodified BSD Socket API or other APIs. We provide
 helpers to apply all socket options from the "result" data structure.

 All relevant infos are stored in our addrinfo struct (see Figure 2)

 SIGNATURE:

 int muacc_ai_getaddrinfo(const char * hostname, const char * service,
 const struct muacc_addrinfo * hints, struct muacc_addrinfo ** result)

 ARGUMENTS:

 hostname: Remote host name to be resolved

 service: Remote service to be resolved

 hints: Hints for resolving the name. Contents include family,
 socket type, protocol, socket options (including Socket Intents
 for this socket/connection), local address to bind to.

 result: Data structure for result of name resolution

 RETURN VALUE:

 Returns 0 on success, or an error code as provided by getaddrinfo().

Tiesel & Enghardt Expires January 3, 2019 [Page 12]

Internet-Draft Socket Intents for BSD Sockets July 2018

 /** Extended version of the standard library's struct addrinfo
 *
 * This is used both as hint and as result from the
 * muacc_ai_getaddrinfo * function. This structure
 * differs from struct addrinfo only in the three members
 * ai_bindaddrlen, ai_bindaddr and ai_socketopt.
 */
 struct muacc_addrinfo {
 int ai_flags;
 int ai_family;
 int ai_socktype;
 int ai_protocol;

 /** Not included in struct addrinfo. Purpose:
 * 1. If the structure is given to muacc_ai_getaddrinfo
 * as hints, you set socket intents that influence MAM's
 * source and destination as well as transport protocol
 * selection
 * 2. The recommended socket options MAM will be returned
 * through this attribute.
 */
 struct socketopt *ai_sockopts;

 int ai_addrlen;
 struct sockaddr *ai_addr;
 char *ai_canonname;

 /** Not included in struct addrinfo.
 * Length of ai_bindaddr.
 */
 int ai_bindaddrlen;
 /** Not included in struct addrinfo.
 * Contains the address, which the MAM recommends us to bind to.
 */
 struct sockaddr *ai_bindaddr;

 struct muacc_addrinfo *ai_next;
 };

 Figure 2: Definition of the muacc_addrinfo struct

Appendix A.2 shows an example usage of the classic API with most
 functionality in getaddrinfo.

Tiesel & Enghardt Expires January 3, 2019 [Page 13]

Internet-Draft Socket Intents for BSD Sockets July 2018

5.3. Socketconnect API

 In this API variant, we move the functionality of resolving a
 hostname and connecting to the resulting address into one function
 called "socketconnect()". This API makes it possible to call
 socketconnect not only for each connection, but also to multiplex
 messages across multiple existing sockets.

 This function returns a file descriptor of a connected socket for the
 application to use. This socket can either be a newly created one or
 a socket that existed previously and is now being reused.
 Furthermore, a socket can belong to a socket set of sockets with
 common destination and service. These sockets may, e.g., be bound to
 different local addresses, but are treated as interchangeable by the
 API implementation. So if the application passes a socket file
 descriptor to this function, it may get back a different file
 descriptor to a socket from the same set, e.g., to use the connection
 over a different local interface for its following communication.

 SIGNATURE:

 int socketconnect(int *socket, const char *host, size_t hostlen,
 const char *serv, size_t servlen, struct socketopt *sockopts, int
 domain, int type, int proto)

 ARGUMENTS:

 socket: Existing socket file descriptor as representant to a socket
 set, "-1" to create a new socket, or "0" to automatically try to
 find a suitable socket set

 host: Remote hostname to be resolved

 hostlen: Length of remote hostname

 serv: Remote service or port

 servlen: Length of remote service

 socketopts: List of socket options, including Socket Intents

 domain: Domain of the socket

 type: Type of the socket

 proto: Protocol of the socket

 RETURN VALUE:

Tiesel & Enghardt Expires January 3, 2019 [Page 14]

Internet-Draft Socket Intents for BSD Sockets July 2018

 Returns 0 on success if socket is from an existing socket set, 1 on
 success if socket was newly created, or -1 on fail.

Appendix A.3 shows an example usage of the Socketconnect API.

6. API Implementation Experiences & Lessons Learned

 While designing and implementing the different parts of the system as
 described in this document, we faced several challenges. In the
 Multiple Access Manager discovering the currently available paths and
 statistics about their performance turned out to be quite complex and
 had to be implemented in a partially platform-dependent way.
 However, the most challenging parts were the Socket Intents API and
 Library, on which we focus in the following sections.

6.1. The Missing Link to Name Resolution

 Transport option selection is most useful if crucial information,
 such as Socket Intents or other socket options, is available as early
 as possible, i.e., for name resolution. The primary problem here is
 the order of the function calls that are involved in name resolution,
 destination selection, protocol, and path selection, and how they are
 linked.

 In the classic BSD Socket API, most functions either take a socket
 file descriptor as argument or return it, and thus link different
 function calls to the same flow. However, "getaddrinfo()" is not
 linked to a socket file descriptor, and it is typically called before
 the socket is created. At this point, it is not yet possible to set
 a socket option, because the socket does not exist yet.

 Consequently, across BSD Socket API calls, several choices are being
 made before it is possible to set a Socket Intent: A call to
 "getaddrinfo()" returns a linked list of "addrinfo" structs, where
 each entry contains an "ai_family" (IP version), the pair of
 "ai_socktype" and "ai_protocol" (transport protocol), and a
 "sockaddr" struct containing an IP address and port to connect to.
 Then a socket of the given family, type, and protocol is created.
 Only after this has been done, socket options can be set on the
 socket, but at this point destination, IP version, and transport
 protocol are already fixed. Before calling "connect()", only the
 path to be used (i.e., the local address to bind to) can still be
 chosen, but the available paths and which one to prefer may be
 constrained by the choice of destination.

 The three variants described in Section 5 work around this problem in
 different ways:

Tiesel & Enghardt Expires January 3, 2019 [Page 15]

Internet-Draft Socket Intents for BSD Sockets July 2018

 o The approach in Section 5.2 places the whole automation of
 transport option selection into the "getaddrinfo()" function. The
 results are returned in an extended "addrinfo" struct and have to
 be applied manually by the application, including binding to a
 source address representing the selected path and applying all
 socket options provided in a list, for each connection attempt.

 o The approach in Section 5.1 adds a context to all socket- and name
 resolution-related API calls.

 o The approach in Section 5.3 puts all functionality into one call.

 All of these approaches add the missing link between name resolution
 and the other parts of the API, but add a lot of state keeping either
 to the API, which the application developer has to manage, or to the
 Socket Intents library.

6.2. File Descriptors Considered Harmful

 When using BSD sockets, file descriptors are the abstraction for
 network flows. Depending on the transport protocol used, their
 semantics changes and these file handles represent streams
 (SOCK_STREAM), associations (SOCK_DRAM) or network interfaces
 (SOCK_RAW). This does not provide a unified API, but is merely an
 artifact of squeezing networking into the "Everything is a file" UNIX
 philosophy.

 File descriptors make no good abstraction for automated protocol
 stack instance selection as applications have to adopt to changed
 semantics, e.g., whether message boundaries are preserved, depending
 on the transport protocol chosen.

 File descriptors make no good abstraction for destination instance
 selection and path selection either. Once a socket has been created,
 its protocol stack instance is fixed, so selecting a path by binding
 to a local address and connecting to a destination instance is now
 only possible using this protocol stack instance. If such a
 connection attempt fails, it is possible to retry using another path
 and destination, but changing the protocol stack instance requires
 creating a new socket with a different file descriptor.

 For further discussion of other asynchronous I/O weirdness with file
 descriptors see end of Section 6.3.

Tiesel & Enghardt Expires January 3, 2019 [Page 16]

Internet-Draft Socket Intents for BSD Sockets July 2018

6.3. Asynchronous API Anarchy

 Network I/O is asynchronous, but asynchronous I/O within the POSIX
 filesystem API is hard to use. There are at least three different
 asynchronous I/O APIs for each operating system.

 To implement asynchronous I/O for our Socket Intents prototype, we
 wrapped one of the asynchronous I/O APIs that is available on most
 platforms: "select()". To make Socket Intents accessible to more
 applications and on more platforms, a production-grade system would
 need to wrap all asynchronous I/O APIs and implement most of the
 socket creation logic, path selection and connection logic within
 these wrappers. However, mixing asynchronous I/O and multithreading
 may lead to unintuitive behavior, e.g., calling our prototype's
 select() from different threads could lead to anything from deadlocks
 to busy waiting.

 Another issue is that we use Unix domain sockets to communicate
 between our Multiple Access Manager and the Socket Intents API
 library called by the application, so we need to make sure that the
 application does not block on communication with the Multiple Access
 Manager.

 Also the problems with using file descriptors get even worse. If a
 Socket API call should return immediately, it needs to provide the
 application with a reference to a flow that has not yet been fully
 set up, i.e., a reference to a "future" socket. An implementation of
 such an asynchronous API has to return an unconnected socket file
 descriptor, on which the application then calls, e.g., "select()",
 and starts using it once it becomes readable and writable. If the
 destination, path and transport protocol have not been chosen yet at
 this point, the file descriptor returned by the implementation might
 not yet have the final family and transport protocol. When the
 implementation later creates the final socket of the right type, it
 can re-bind it to the file-id of the originally returned file
 descriptor using "dup2". This procedure can easily lead to time-of-
 check to time-of-use confusion. To make things even worse, the
 application can copy the "future" file descriptor using "dup", which
 is rarely useful for sockets, but in combination with file
 descriptors used as "future" it leads to unexpected behavior.

6.4. Here Be Dragons hiding in Shadow Structures

 The API variants described in Section 5.3 and Section 5.1 need to
 keep a lot of state in shadow structures that cannot be passed
 between the Socket API calls otherwise. This state needs to be
 cleaned up when the last copy of the file descriptor is closed or the

Tiesel & Enghardt Expires January 3, 2019 [Page 17]

Internet-Draft Socket Intents for BSD Sockets July 2018

 last socket held for reuse has timed out. In addition, access to
 these shadow structures has to be thread-safe.

 Implementing both has turned out to be extremely error-prone and
 there is a high amount of unspecified behavior and platform-dependent
 extensions in the system library. These issues guarantee that an
 implementation of transport option selection that nicely integrates
 with BSD Sockets will come with lots of limitations and will not be
 portable across POSIX-compliant operating systems.

7. Conclusion

 Adding transport option selection to BSD Sockets is hard, as the API
 calls are not designed to defer making and applying choices to a
 moment where all information needed for transport option selection is
 available.

 After all, if limiting transport option selection to the granularity
 BSD Sockets typically provide today (TCP connections and UDP
 associations), the API variant described in Section 5.2 seems to be a
 good compromise, even if it forces the application to try all
 candidates itself (either in a sequential or partial parallel
 fashion). This option is easily deployable, but does not include
 automation of techniques like connection caching or HTTP pipelining.

 The most versatile API variant described in Section 5.3 implements
 connection caching on the transport layer. This comes at the cost of
 heavily modifying existing applications. If feasible, given the
 unnecessary complexity of the file I/O integration of BSD sockets, it
 seems easier to move to a totally different system like
 [I-D.trammell-taps-post-sockets].

8. Acknowledgments

 The API variant described in Section 5.2 was originally drafted and
 implemented by Tobias Kaiser mail@tb-kaiser.de [2] as part of his BA
 thesis.

 This work has been supported by Leibniz Prize project funds of DFG -
 German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011 (FKZ
 FE 570/4-1).

9. References

Tiesel & Enghardt Expires January 3, 2019 [Page 18]

Internet-Draft Socket Intents for BSD Sockets July 2018

9.1. Informative References

 [ANRW17-MH]
 Tiesel, P., May, B., and A. Feldmann, "Multi-Homed on a
 Single Link", Proceedings of the 2016 workshop on Applied
 Networking Research Workshop - ANRW 16,
 DOI 10.1145/2959424.2959434, 2016.

 [ANRW18-Metrics]
 "Metrics for access network selection (ANRW 2018)", n.d..

 [I-D.tiesel-taps-communitgrany]
 Tiesel, P. and T. Enghardt, "Communication Units
 Granularity Considerations for Multi-Path Aware Transport
 Selection", draft-tiesel-taps-communitgrany-02 (work in
 progress), May 2018.

 [I-D.tiesel-taps-socketintents]
 Tiesel, P., Enghardt, T., and A. Feldmann, "Socket
 Intents", draft-tiesel-taps-socketintents-01 (work in
 progress), October 2017.

 [I-D.trammell-taps-post-sockets]
 Trammell, B., Perkins, C., Pauly, T., Kuehlewind, M., and
 C. Wood, "Post Sockets, An Abstract Programming Interface
 for the Transport Layer", draft-trammell-taps-post-

sockets-03 (work in progress), October 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <https://www.rfc-editor.org/info/rfc7556>.

https://datatracker.ietf.org/doc/html/draft-tiesel-taps-communitgrany-02
https://datatracker.ietf.org/doc/html/draft-tiesel-taps-socketintents-01
https://datatracker.ietf.org/doc/html/draft-trammell-taps-post-sockets-03
https://datatracker.ietf.org/doc/html/draft-trammell-taps-post-sockets-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6824
https://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/rfc7556
https://www.rfc-editor.org/info/rfc7556

Tiesel & Enghardt Expires January 3, 2019 [Page 19]

Internet-Draft Socket Intents for BSD Sockets July 2018

9.2. URIs

 [1] https://github.com/fg-inet/socket-intents/

 [2] mailto:mail@tb-kaiser.de

Appendix A. API Usage Examples

A.1. Usage Example of the Classic / muacc_context API

 In this example, a client application sets up a connection to a
 remote host and sends data to it. It specifies two Socket Intents on
 this connection: The Category of Bulk Transfer and the File Size of 1
 MB.

#define LENGTH_OF_DATA 1048576

// Create and initialize a context to retain information across function
// calls
muacc_context_t ctx;
muacc_init_context(&ctx);

int socket = -1;

struct addrinfo *result = NULL;

// Initialize a buffer of data to send later.
char buf[LENGTH_OF_DATA];
memset(&buf, 0, LENGTH_OF_DATA);

// Set Socket Intents for this connection. Note that the "socket" is
// still invalid, but it does not yet need to exist at this time. The
// Socket Intents prototype just sets the Intent within the
// muacc_context data structure.

enum intent_category category = INTENT_BULKTRANSFER;
muacc_setsockopt(&ctx, socket, SOL_INTENTS,
 INTENT_CATEGORY, &category, sizeof(enum intent_category));

int filesize = LENGTH_OF_DATA;
muacc_setsockopt(&ctx, socket, SOL_INTENTS,
 INTENT_FILESIZE, &filesize, sizeof(int));

// Resolve a host name. This involves a request to the MAM, which can
// automatically choose a suitable local interface or other parameters
// for the DNS request and set other parameters, such as preferred
// address family or transport protocol.

https://github.com/fg-inet/socket-intents/

Tiesel & Enghardt Expires January 3, 2019 [Page 20]

Internet-Draft Socket Intents for BSD Sockets July 2018

muacc_getaddrinfo(&ctx, "example.org", NULL, NULL, &result);

// Create the socket with the address family, type, and protocol
// obtained by getaddrinfo.
socket = muacc_socket(&ctx, result->ai_family, result->ai_socktype,
 result->ai_protocol);

// Connect the socket to the remote endpoint as determined by
// getaddrinfo. This involves another request to MAM, which may at this
// point, e.g., choose to bind the socket to a local IP address before
// connecting it.
muacc_connect(&ctx, socket, result->ai_addr, result->ai_addrlen);

// Send data to the remote host over the socket.
write(socket, &buf, LENGTH_OF_DATA);

// Close the socket. This de-initializes any data that was stored within
// the muacc_context.
muacc_close(&ctx, socket);

A.2. Usage Example of the Classic / getaddrinfo API

 As in Appendix A.1, the application sets the Intents "Category" and
 "File Size".

Tiesel & Enghardt Expires January 3, 2019 [Page 21]

Internet-Draft Socket Intents for BSD Sockets July 2018

#define LENGTH_OF_DATA 1048576

// Define Intents to be set later
enum intent_category category = INTENT_BULKTRANSFER;
int filesize = LENGTH_OF_DATA;

struct socketopt intents = { .level = SOL_INTENTS,
 .optname = INTENT_CATEGORY, .optval = &category, .next = NULL};
struct socketopt filesize_intent = { .level = SOL_INTENTS,
 .optname = INTENT_FILESIZE, .optval = &filesize, .next = NULL};

intents.next = &filesize_intent;

// Initialize a buffer of data to send later.
char buf[LENGTH_OF_DATA];
memset(&buf, 0, LENGTH_OF_DATA);

struct muacc_addrinfo intent_hints = { .ai_flags = 0,
 .ai_family = AF_INET, .ai_socktype = SOCK_STREAM, .ai_protocol = 0,
 .ai_sockopts = &intents, .ai_addr = NULL, .ai_addrlen = 0,
 .ai_bindaddr = NULL, .ai_bindaddrlen = 0, .ai_next = NULL };

struct muacc_addrinfo *result = NULL;

muacc_ai_getaddrinfo("example.org", NULL, &intent_hints,
 &result);

// Create and connect the socket, using the information obtained through
// getaddrinfo
int fd;
fd = socket(result->ai_family, result->ai_socktype,
 result->ai_protocol);
muacc_ai_simple_connect(fd, result);

// Send data to the remote host over the socket, then close it.
write(fd, &buf, LENGTH_OF_DATA);
close(fd);

muacc_ai_freeaddrinfo(result);

A.3. Usage Example of the Socketconnect API

 As in Appendix A.1, the application sets the Intents "Category" and
 "File Size". As we provide "-1" as socket, no we do not reuse
 existing connections.

Tiesel & Enghardt Expires January 3, 2019 [Page 22]

Internet-Draft Socket Intents for BSD Sockets July 2018

 #define LENGTH_OF_DATA 1048576

 // Define Intents to be set later
 enum intent_category category = INTENT_BULKTRANSFER;
 int filesize = LENGTH_OF_DATA;

 struct socketopt intents = { .level = SOL_INTENTS,
 .optname = INTENT_CATEGORY, .optval = &category, .next = NULL};
 struct socketopt filesize_intent = { .level = SOL_INTENTS,
 .optname = INTENT_FILESIZE, .optval = &filesize, .next = NULL};

 intents.next = &filesize_intent;

 // Initialize a buffer of data to send later.
 char buf[LENGTH_OF_DATA];
 memset(&buf, 0, LENGTH_OF_DATA);

 int socket = -1;

 // Get a socket that is connected to the given host and service,
 // with the given Intents
 socketconnect(&socket, "example.org", 11, "80", 2, &intents, AF_INET,
 SOCK_STREAM, 0);

 // Send data to the remote host over the socket.
 write(socket, &buf, LENGTH_OF_DATA);

 // Close the socket and tear down the data structure kept for it
 // in the library
 socketclose(socket);

Appendix B. Changes

B.1. Since -01

 o Updated list of gathered path characteristics

 o Reordered start of Policy section to make it clearer

B.2. Since -00

 o Fixed Author's affiliations and funding

 o Fixed acknowledgments

Tiesel & Enghardt Expires January 3, 2019 [Page 23]

Internet-Draft Socket Intents for BSD Sockets July 2018

Authors' Addresses

 Philipp S. Tiesel
 TU Berlin
 Marchstr. 23
 Berlin
 Germany

 Email: philipp@inet.tu-berlin.de

 Theresa Enghardt
 TU Berlin
 Marchstr. 23
 Berlin
 Germany

 Email: theresa@inet.tu-berlin.de

Tiesel & Enghardt Expires January 3, 2019 [Page 24]

