
Workgroup: Network Working Group

Internet-Draft: draft-tigress-requirements-01

Published: 9 September 2022

Intended Status: Informational

Expires: 13 March 2023

Authors: D. Vinokurov

Apple Inc

C. Astiz

Apple Inc

A. Pelletier

Apple Inc

J. L. Giraud

Apple Inc

A. Bulgakov

Apple Inc

M. Byington

Apple Inc

N. Sha

Alphabet Inc

Transfer Digital Credentials Securely - Requirements

Abstract

This document describes the use cases necessitating the secure

transfer of digital credentials. The document also comprises a

proposal, and defines requirements and scope.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

dimmyvi.github.io/tigress-requirements/draft-tigress-

requirements.html. Status information for this document may be found

at https://datatracker.ietf.org/doc/draft-tigress-requirements/.

Source for this draft and an issue tracker can be found at https://

github.com/dimmyvi/tigress-requirements.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 March 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://dimmyvi.github.io/tigress-requirements/draft-tigress-requirements.html
https://dimmyvi.github.io/tigress-requirements/draft-tigress-requirements.html
https://dimmyvi.github.io/tigress-requirements/draft-tigress-requirements.html
https://datatracker.ietf.org/doc/draft-tigress-requirements/
https://github.com/dimmyvi/tigress-requirements
https://github.com/dimmyvi/tigress-requirements
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Use Cases

4. Assumptions

5. Requirements

6. Review of existing solutions

6.1. Arbitrary Messaging Channel (Email / WhatsApp / SMS / Signal

/ etc.)

6.2. GSS-API, Kerberos

6.3. Signal Protocol

7. Out of Scope:

8. Security Considerations

9. IANA Considerations

10. Normative References

Acknowledgments

Authors' Addresses

1. Introduction

TODO Introduction

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

General terms:

Credential information - data used to authenticate the user with

an access point.

¶

¶

¶

¶

¶

*

¶

https://trustee.ietf.org/license-info

Provisioning information - data transferred from Sender to

Receiver device that is both necessary and sufficient for the

Receiver to request a new credential from Provisioning Partner to

provision it to the Receiver device.

Provisioning - A process of adding a new credential to the

device.

Provisioning Partner - an entity which facilitates Credential

Information lifecycle on a device. Lifecycle may include

provisioning of credential, credential termination, credential

update.

Sender (device) - a device initiating a transfer of Provisioning

Information to a Receiver that can provision this credential.

Receiver (device) - a device that receives Provisioning

Information and uses it to provision a new credential.

Intermediary (server) - an intermediary server that facilitates

transfer of provisioning information between Sender and Receiver.

3. Use Cases

Let's say Ben owns a vehicle that supports digital keys which

comply with the CCC [CCC-Digital-Key-30] open standard. Ben would

like to let Ryan borrow the car for the weekend. Ryan and Ben are

using two different mobile phones with different operating

systems. In order for Ben to share his car key to Ryan for a

weekend, he must transfer some data to the receiver device. The

data structure shared between the two participants is defined in

the CCC. In addition, the CCC requires the receiver to generate

required key material and return it to the sender to sign and

return back to the receiver. At this point, the receiver now has

a token that will allow them to provision their new key with the

car.

Bob booked a room at a hotel for the weekend, but will be

arriving late at night . Alice, his partner, comes to the hotel

first, so Bob wants to share his key to the room with Alice. Bob

and Alice are using two different mobile phones with different

operating systems. In order for Bob to share his key to the hotel

to Alice for a weekend, he must transfer some data to her device.

The data structure shared between the two participants is

proprietary to the given hotel chain (or Provisioning Partner).

This data transfer is a one-time, unidirectional from Bob's

device to Alice's. Once Alice receives this data, she can

provision a new pass to her device, making a call to Provisioning

Partner to receive a new credential.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

4. Assumptions

Original credential (with cryptographic key material) MUST NOT be

sent or shared. Instead, sender SHALL be transferring its

approval token for Receiver to acquire a new credential.

Provisioning Partner SHALL NOT allow for two users to use the

same credential / cryptographic keys.

Security: Communication between Sender / Receiver and

Provisioning Partner SHOULD be trusted.

The choice of intermediary SHALL be defined by the application

initiating the credential transfer.

Sender and Receiver SHALL both be able to manage the shared

credential at any point by communicating with the Provisioning

Partner. Credential lifecycle management is out of scope for this

proposal.

Any device OEM with a digital credential implementation adherent

to Tigress SHALL be able to receive shares, whether or not they

can originate shares or host their own intermediary.

5. Requirements

(Req-AnyPlatorm) Solution SHOULD be able to communicate with any

mobile devices of any operating system and allow easy

implementation of server-side components without requiring a

specific Cloud stack.

(Req-NontechnicalUX) Solution SHALL enable secure credential

transfer for non technical users.

(Req-SmoothUX) Solution SHALL allow for user experience where

neither Sender nor Receiver is presented with raw data required

only by the secure transfer protocol. The data SHOULD only be

parsed programmatically and not required to be presented to the

end user. This data SHOULD never be visible to said user in

whichever messaging application the sender chose to initiate the

transfer on. This eliminates the possibility of merely sending

the requisite data inline, through an SMS or email for example,

rather than leveraging an Intermediary server.

(Req-Connectivity) Sender and Receiver SHALL be allowed to be

online at different times. Sender and Receiver SHALL never need

to be online at the same time.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

(Req-init) Solution SHOULD allow Sender to initiate credential

transfer to Receiver over any messaging channel, with various

degrees of security.

(Req-P2P) A credential transfer SHALL be strictly from one device

to another (group sharing is not a goal).

(Req-Privacy) If Intermediary server is required - it SHALL not

be able to correlate users between exchanges, or create a social

graph. Intermediary server shall not be an arbiter of Identity.

(Req-Security) Solution SHOULD provide security of the

provisioning data transferred (MITM, brute-force attacks on the

content, DDOS attacks etc).

(Req-Notify) Solution SHOULD support a notification mechanism to

inform devices on the content update on Intermediary server.

(Req-Revoke) Solution SHALL maintain access control, allowing

Sender to revoke before the share has been accepted, and for

Receiver to end transfer at any time.

(Req-IntermediaryProvision) If Intermediary server is required -

it MUST not be able to provision credential on their own.

(Req-Opaque) If Intermediary server is required - Message content

between Sender and Receiver MUST be opaque to the Intermediary.

(Req-ArbitraryFormat) The solution SHALL support arbitrary

message formats to support both keys that implement public

standards like CCC as well as proprietary implementations of

digital keys.

(Req-UnderstoodFormat) Both Sender application and Receiver

application MUST be able to recognize the format.

(Req-Simplicity) Where possible, the system SHOULD rely on simple

building blocks to facilitate adoption and implementation.

(Req-IntermediaryAttestation) If any Intermediary is required -

it SHALL implement mechanisms to prevent abuse by share

initiating device, verifying that the device is in good standing

and content generated by the sender device can be trusted by the

Intermediary. The trust mechanism could be proprietary or

publicly verifiable (e.g. WebAuthN).

(Req-RoundTrips) Solution SHALL allow for multiple round trips or

multiple reads/writes between one set of Sender and Receiver

devices.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

(Req-ReceiverTrust) If any Intermediary is required - the

Receiver device SHOULD evaluate the trustworthiness of the

Intermediary using a list of trusted/approved intermediaries.

(Req-Preview) Solution SHOULD allow for extensibility and

discoverable extensions (preview of share invitation).

(Req-RedemptionHandling) ShareURL SHOULD route Receiver to redeem

Provisioning Information using the designated Credential

Management Application (e.g. Wallet).

6. Review of existing solutions

A number of existing solutions / protocols have been reviewed in

order to be used for secure credential transfer based on the

requirements: GSS-API, Kerberos, AWS S3, email, Signal. None of the

existing protocols comply with the requirements; the effort of

modifying the existing protocols has been accessed to be

significantly higher than introducing a new solution to solve this

problem.

6.1. Arbitrary Messaging Channel (Email / WhatsApp / SMS / Signal /

etc.)

The Provisioning Information MAY be sent from Sender to Receiver

over an arbitrary messaging channel, but that would not provide a

good user experience. Users MAY need to copy and paste the

Provisioning Information, or need a special application to handle

some new file type. This violates (Req-SmoothUX). If multiple round

trips were required the user would need to manually managing

multiple payloads of Provisioning Information. This would be very

hard for anyone non technical and greatly limit adoption. This

violates (Req-NontechnicalUX).

6.2. GSS-API, Kerberos

GSS-API [RFC2078] and Kerberos [RFC4120] are authentication

technologies which could be used to authenticate Sender, Receiver

and intermediary. However, as they provide strong authentication,

they would allow the Intermediary server to build a social graph in

violation of (Req-Privacy). Their setup also require strong

coordination between the actors of the system which seems overly

costly for the intended system. AWS S3 could be used as an

Intermediary server but it would force all participants to use a

specific cloud service which is in violation of (Req-AnyPlatorm).

6.3. Signal Protocol

As a messaging protocol, Signal could be used between Sender,

Receiver and Intermediary but this protocol is fairly complex and

*

¶

*

¶

*

¶

¶

¶

¶

[CCC-Digital-Key-30]

[RFC2078]

[RFC2119]

[RFC4120]

[RFC8174]

its use would most like violate (Req-Simplicity). The system will

however support the Signal service for share initiation, in line

with (Req-init).

7. Out of Scope:

Identification and Authorization - solution shall not require

strong identification and authentication from user (e.g. using

PKI certificates).

Fully stopping people from sharing malicious content ("cat

pictures").

Solving problem of sharing to groups.

Detailing how credentials are provisioned either on a device or

with a provisioning partner.

8. Security Considerations

TODO Security

9. IANA Considerations

This document has no IANA actions.

10. Normative References

Car Connectivity Consortium, "Digital Key – The

Future of Vehicle Access", November 2021, <https://

global-carconnectivity.org/wp-content/uploads/2021/11/

CCC_Digital_Key_Whitepaper_Approved.pdf>.

Linn, J., "Generic Security Service Application Program

Interface, Version 2", RFC 2078, DOI 10.17487/RFC2078,

January 1997, <https://www.rfc-editor.org/rfc/rfc2078>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The

Kerberos Network Authentication Service (V5)", RFC 4120,

DOI 10.17487/RFC4120, July 2005, <https://www.rfc-

editor.org/rfc/rfc4120>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

¶

*

¶

*

¶

* ¶

*

¶

¶

¶

https://global-carconnectivity.org/wp-content/uploads/2021/11/CCC_Digital_Key_Whitepaper_Approved.pdf
https://global-carconnectivity.org/wp-content/uploads/2021/11/CCC_Digital_Key_Whitepaper_Approved.pdf
https://global-carconnectivity.org/wp-content/uploads/2021/11/CCC_Digital_Key_Whitepaper_Approved.pdf
https://www.rfc-editor.org/rfc/rfc2078
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4120
https://www.rfc-editor.org/rfc/rfc4120
https://www.rfc-editor.org/rfc/rfc8174

Acknowledgments

TODO acknowledge.

Authors' Addresses

Dmitry Vinokurov

Apple Inc

Email: dvinokurov@dezcom.org

Casey Astiz

Apple Inc

Email: castiz@apple.com

Alex Pelletier

Apple Inc

Email: a_pelletier@apple.com

Jean-Luc Giraud

Apple Inc

Email: jgiraud@apple.com

Alexey Bulgakov

Apple Inc

Email: abulgakov@apple.com

Matt Byington

Apple Inc

Email: mbyington@apple.com

Nick Sha

Alphabet Inc

Email: nicksha@google.com

¶

mailto:dvinokurov@dezcom.org
mailto:castiz@apple.com
mailto:a_pelletier@apple.com
mailto:jgiraud@apple.com
mailto:abulgakov@apple.com
mailto:mbyington@apple.com
mailto:nicksha@google.com

	Transfer Digital Credentials Securely - Requirements
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Use Cases
	4. Assumptions
	5. Requirements
	6. Review of existing solutions
	6.1. Arbitrary Messaging Channel (Email / WhatsApp / SMS / Signal / etc.)
	6.2. GSS-API, Kerberos
	6.3. Signal Protocol

	7. Out of Scope:
	8. Security Considerations
	9. IANA Considerations
	10. Normative References
	Acknowledgments
	Authors' Addresses

