
Workgroup: Tigress

Internet-Draft:

draft-tigress-sample-implementation-01

Published: 9 November 2022

Intended Status: Informational

Expires: 13 May 2023

Authors: D. Vinokurov

Apple Inc

A. Bulgakov

Apple Inc

J. L. Giraud

Apple Inc

C. Astiz

Apple Inc

A. Pelletier

Apple Inc

J. Hansen

Apple Inc

Transfer Digital Credentials Securely: sample implementation and threat

model

Abstract

This document describes a sample implementation of Tigress internet

draft [Tigress-00] and a threat model of this implementation.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

github.com/dimmyvi/tigress-sample-implementation. Status information

for this document may be found at https://datatracker.ietf.org/doc/

draft-tigress-sample-implementation/.

Source for this draft and an issue tracker can be found at https://

github.com/dimmyvi/tigress-sample-implementation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 May 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/dimmyvi/tigress-sample-implementation
https://github.com/dimmyvi/tigress-sample-implementation
https://datatracker.ietf.org/doc/draft-tigress-sample-implementation/
https://datatracker.ietf.org/doc/draft-tigress-sample-implementation/
https://github.com/dimmyvi/tigress-sample-implementation
https://github.com/dimmyvi/tigress-sample-implementation
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Sample Implementation - Digital Car Key sharing example.

4. Threat Model

5. Security Considerations

6. IANA Considerations

7. Normative References

Acknowledgments

Authors' Addresses

1. Introduction

This document provides a sample implementation and threat model for

Tigress draft [Tigress-00].

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

DCK - Digital Car Key

AP - Application Processor

TTL - Time To Live

AAA - Apple Anonymous Attestation - a subtype of WebAuthn

[WebAuthn-2]

PKI - public Key Infrastructure

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

https://trustee.ietf.org/license-info

UUID - a unique identifier defined in [RFC4122]

SMS - Short Message Service

OS - Operating System

URI - Uniform Resource Identifier

URL - Universal Resource Locator

RNG - Random Number Generator

3. Sample Implementation - Digital Car Key sharing example.

An Owner's device (Sender) starts sharing flow with selection of

credential entitlements for the key shared - e.g. access

entitlements (allow open the car, allow start the engine, allow

to drive the car), time of sharing - e.g. from 09/01/2022 to

09/03/2022, then generates a KeyCreationRequest (per

[CCC-Digital-Key-30]).

The Owner's device generates a new symmetric encryption key

(Secret) and builds an encrypted KeyCreationRequest. Then it

generates an attestation data, that follows a WebAuthn API

[WebAuthn-2], specific to Apple - AAA, which covers the encrypted

content. Owner device makes a call to Relay server (Intermediary)

- createMailbox, passing over the encrypted content, device

attestation, mailbox configuration (mailbox time-to-live, access

rights - Read/Write/Delete), preview (display information)

details, its push notification token and a unique deviceClaim.

Relay server verifies device attestation using WebAuthn

verification rules specific to attestation data used, including

verifying device PKI certificate in attestation blob. Relay

server creates a mailbox, using mailboxConfiguration received in

the request and stores encrypted content in it.

The mailbox has a time-to-live which defines when it is to expire

and be deleted by the Relay server. This time is limited by the

value that can be considered both sufficient to complete the

transfer and secure against brute force attacks on the encrypted

content - e.g. 48 hours.

Relay server generates a unique mailboxIdentifier value, that is

hard to predict - i.e. using UUID - and builds a full URL

(shareURL) referencing the mailbox - e.g. "https://

www.example.com/v1/m/2bba630e-519b-11ec-bf63-0242ac130002", which

it returns to the Owner device.

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

Owner's device locally stores the shareURL and the Secret and

sends the shareURL with optional vertical in URL parameter and

mandatory secret in Fragment part (e.g. "https://www.example.com/

v1/m/2bba630e-519b-11ec-bf63-0242ac130002?

v=c#hXlr6aRC7KgJpOLTNZaLsw==") to the Friend's device (Receiver)

over SMS.

Friend's device receives the shareURL in SMS, messaging

application makes an automatic GET call to shareURL (excluding

Fragment part - Secret) - and fetches a preview (Display

Information) html page with OpenGraph tags in the head:

Figure 1: OpenGraph preview of a credential

Messaging application shows a preview of the DCK on the Friend's

device that Owner wants to share with them. User accepts the

shareURL by clicking on the preview in the messaging application.

Messaging application redirects the user to wallet (credential

manager application) using a deep link mechanism embedded into

the OS.

Wallet receives the shareURL with the Secret in the Fragment.

Friend's device checks if the Relay server is in allow-list of

accepted Relay servers.

Wallet reads secure content from the mailbox using shareURL

(without the Fragment part) with ReadSecureContentFromMailbox

method, passing a unique deviceClaim with the request. Thus,

relay server binds the mailbox (identified by mailboxIdentifier)

with the Owner's device (with Owner's device deviceClaim at the

mailbox creation time) and the Friend's device (with Friend's

device deviceClaim at the first time Friend's device calls

ReadSecureContentFromMailbox for the mailbox). Now only these 2

devices are allowed to read and write secure content to this

particular mailbox. This secures the message exchange and

*

¶

*

¶

<html prefix="og: https://ogp.me/ns#">

<head>

 <title>Shared Key</title>

 <meta content="Shared Key" property="og:title"/>

 <meta content="You've been invited to add a shared digital car key to your device." property="og:description"/>

 <meta content="https://example.com/displayInfo/general.png" property="og:url"/>

 <meta content="https://example.com/displayInfo/general.png" property="og:image"/>

 <meta content="200" property="og:image:width"/>

 <meta content="100" property="og:image:height"/>

</head>

</html>

*

¶

*

¶

*

prevents other devices from altering the exchange between Owner

and Friend.

Friend's device decrypts secure content using Secret and extracts

KeyCreationRequest (ref to [CCC-Digital-Key-30] specification).

Friend's device generates a KeySigningRequest (ref to

[CCC-Digital-Key-30] specification), encrypts it with Secret and

uploads to the mailbox with UpdateMailbox call to Relay server,

providing its unique deviceClaim and push notification token.

Relay server sends a push notification to Owner's device via Push

Notification Server.

Owner device, having received a push notification message, reads

secure content from the mailbox using shareURL with

ReadSecureContentFromMailbox method, passing its unique

deviceClaim with the request. Owner's device decrypts secure

content using Secret and extracts KeySigningRequest (ref to

[CCC-Digital-Key-30] specification).

Owner's device signs the Friend's device public key with Owner's

private key and creates a KeyImportRequest (ref to

[CCC-Digital-Key-30] specification). Owner's device encrypts it

with the Secret and uploads to the mailbox with UpdateMailbox

call to Relay server, providing its unique deviceClaim.

Relay server sends a push notification to Friend's device via

Push Notification Server.

Friend's device, having received a push notification message,

reads secure content from the mailbox using shareURL with

ReadSecureContentFromMailbox method, passing its unique

deviceClaim with the request. Friend device decrypts secure

content using Secret and extracts KeyImportRequest (ref to

[CCC-Digital-Key-30] specification). Friend's device provisions

the new credential to the wallet and deletes the mailbox with

DeleteMailbox call to the Relay server. As an additional security

measure, Friend device asks for a verification code (PIN code)

generated by Owner's device and communicated to Friend out-of-

band.

4. Threat Model

Threat model for the sample implementation is provided at the

following URL: [threat_model]: https://github.com/dimmyvi/tigress-

sample-implementation/blob/main/threat_model.png "Threat model for

Tigress sample implementation"

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

Item Asset Threat Impact Mitigation Comment

1 Owner's DCK

Kicking-off

arbitrary key

sharing by

spoofing user

identity

DCK becomes

shared with

arbitrary

user/

adversary

allowing them

access to the

Owner's car

1) User auth (face/

touch ID), 2) Secure

Intent

2

Content on

Intermediary

server

Content

recovery by

brute forcing

secret

Exposure of

encrypted

content and

key

redemption

1) Strong source of

randomness for salt, 2)

At least 128 bit key

length, 3) Limitted TTL

of the mailbox

3

Content on

Intermediary

server

Content

recovery by

intercepting

secret

Ability to

decrypt

content on

Intermediary

server

1) Physical separation

between content and

secret, e.g. secret

sent as URI fragment to

recipient, 2) Optional

second factor(e.g.

Device PIN, Activation

Options - please refer

to CCC Technical

Specification) can be

proposed to the user

via user notification

based on security

options of selected

primary sharing channel

(used to share URL with

secret)

4

Content on

Intermediary

server

Access to

content by

multiple

arbitrary

users/devices

1) Adversary

can go to

partner and

redeem the

shared key,

2) Adversary

can send push

notifications

1) Mailboxes identified

by version 4 UUID

defined in [RFC4122]

(hard to guess/

bruteforce), 2)

Mailboxes 'tied' to

sender and recipient

(trust on first use via

deviceClaim), 3) TTL

limit for mailboxes, 4)

Mailboxes deleted after

pass redemption

5

Content on

Intermediary

server

Compromised

Intermediary

server

1) Adversary

can redeem

the

sharedKey, 2)

Adversary can

1) Separation between

content and secret,

e.g. secret sent as URI

fragment to recipient,

Item Asset Threat Impact Mitigation Comment

send push

notifications

2) TTL limit for

mailboxes

6

Content on

Intermediary

server and

Push Tokens

Unauthenticated

access to

mailbox on

Intermediary

server

1) Adversary

can redeem

the

sharedKey, 2)

Adversary can

send push

notifications

1) Mailboxes identified

by version 4 UUID

defined in [RFC4122]

(hard to guess/

bruteforce), 2)

Mailboxes 'tied' to

sender and recipient

(trust on first use via

deviceClaim), 3) TTL

limit for mailboxes, 4)

Mailboxes deleted after

pass redemption

7

Content on

Intermediary

server

User stores

non-credential

information in

mailbox (e.g.

"cat pictures")

Service

abuse,

Adversary can

use

Intermediary

server as

cloud storage

1) Mailboxes have size

limit, 2) Mailboxes

have TTL

8 Device PIN

Receiver device

compromised

(redemption

before friend)

Device PIN

can exposure

and

forwarding to

an advarsary

Activation Options as

defined in

[CCC-Digital-Key-30],

Section 11.2 Sharing

Principles, subsection

11.2.1.3. Activation

Options

9 Device PIN
Weak PIN can be

easily guessed

Anyone with

share URL in

their

possession

can guess the

PIN and

redeem the

key

1) Use of strong RNG as

a source to generate

Device PIN, 2) Long

enough PIN (e.g. 6

digits) as per

[NIST-800-63B]

recommendations, 3)

Limit the number of

retries (e.g. Device

PIN retry counter +

limit) as per

[NIST-800-63B]

recommendations

[NIST-800-63B],

section 5.1.1.1

Memorized

Secret

Authenticators

10 Device PIN

Eavesdropping

on weak msg

channels/app

PIN exposure

would allow

one with

possession of

share URL and

In person, out of band

PIN transfer, e.g.

voice channel

Item Asset Threat Impact Mitigation Comment

Secret to

redeem key

11 Device PIN

PIN recovery

via timing

attack

Adversary

with shared

URL in

possession

can recover

PIN based on

the response

delay, in the

case where

the PIN

verification

is not

invariant

1) Time invariant

compare, 2) PIN retry

counter/limit

12

Device PIN

retry

counter/

limit

Device PIN

brute force

Device PIN

successful

guess

1) Use of strong RNG as

a source to generate

Device PIN, 2) Long

enough PIN (e.g. 6

digits) as per

[NIST-800-63B]

recommendations, 3)

Limit the number of

retries (e.g. Device

PIN retry counter +

limit) as per

[NIST-800-63B]

recommendations

[NIST-800-63B],

section 5.1.1.1

Memorized

Secret

Authenticators

13
Sharing

Invitation

Messaging

channel

eavesdropping

Share

invitation

forwarding

and DCK

redemtion by

malicious

party

1) Send invitation and

Device PIN via

different channels,

e.g. Device PIN can be

shared out of band

(over voice), 2) Use of

E2E encrypted msg apps/

chhannel

14
Sharing

Invitation

Voluntary/

Involuntary

forwarding by

Friend

DCK

redemption

before Friend

Use of messaging apps

with anti-forwarding

mechanisms(e.g. hide

link, copy/past

prevention)

15
Sharing

Invitation

Friend device

compromise

allow malware

to forward

invitation to

an adversary

Share

invitation

forwarding

and key

redemption by

Activation Options as

defined in

[CCC-Digital-Key-30],

Section 11.2 Sharing

Principles, subsection

Item Asset Threat Impact Mitigation Comment

malicious

party

11.2.1.3. Activation

Options

16
Sharing

Invitation

User mistakenly

shares with the

wrong person

DCK

redemption by

adversary/not

intended user

1) Send invitation and

Device PIN via

different channels,

e.g. Device PIN can be

shared out of band

(over voice), 2) DCK

revocation

17
Sharing

Invitation

Owner device

compromise

allow malware

to forward

invitation to

an adversary

Share

invitation

forwarding

and key

redemption by

malicious

party

Activation Options as

defined in

[CCC-Digital-Key-30],

Section 11.2 Sharing

Principles, subsection

11.2.1.3. Activation

Options

18
Sharing

Invitation

Friend device

OEM account

take over

DCK

provisioning

on

adversary's

device

1) Binding to

deviceClaim, 2) Device

PIN shared out of band,

3) Activation Options

as defined in

[CCC-Digital-Key-30],

Section 11.2 Sharing

Principles, subsection

11.2.1.3. Activation

Options

19

User's

credentials,

payment card

details, etc

Phishing

attacks

leveraging

malicious Java

Script in

preview page

1) Preview

page URL

fragement

contains

encryption

key - meaning

malicious JS

could use key

to decrypt

contents, 2)

Malicious

Java Script

can phish for

user

credentials,

payment card

information,

or other

sensitive

data

1) Properly vet Java

Script that is embedded

in the preview page, 2)

Define strong content

security policy

Table 1

[CCC-Digital-Key-30]

[NIST-800-63B]

[RFC2119]

[RFC4122]

[RFC8174]

[Tigress-00]

[WebAuthn-2]

5. Security Considerations

TODO Security

6. IANA Considerations

This document has no IANA actions.

7. Normative References

Car Connectivity Consortium, "Digital Key

Release 3", July 2022, <https://carconnectivity.org/

download-digital-key-3-specification/>.

NIST, "NIST Special Publication 800-63B, Digital

Identity Guidelines", November 2022, <https://

pages.nist.gov/800-63-3/sp800-63b.html>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

rfc/rfc4122>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Vinokurov, D., Byington, M., Lerch, M., Pelletier, A.,

and N. Sha, "Transfer Digital Credentials Securely",

November 2022, <https://datatracker.ietf.org/doc/draft-

art-tigress/>.

W3, "Web Authentication - An API for accessing Public

Key Credentials - Level 2", April 2021, <https://

www.w3.org/TR/webauthn-2/>.

Acknowledgments

TODO acknowledge.

Authors' Addresses

Dmitry Vinokurov

Apple Inc

¶

¶

¶

https://carconnectivity.org/download-digital-key-3-specification/
https://carconnectivity.org/download-digital-key-3-specification/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/draft-art-tigress/
https://datatracker.ietf.org/doc/draft-art-tigress/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/

Email: dvinokurov@apple.com

Alexey Bulgakov

Apple Inc

Email: abulgakov@apple.com

Jean-Luc Giraud

Apple Inc

Email: jgiraud@apple.com

Casey Astiz

Apple Inc

Email: castiz@apple.com

Alex Pelletier

Apple Inc

Email: a_pelletier@apple.com

Jake Hansen

Apple Inc

Email: jake.hansen@apple.com

mailto:dvinokurov@apple.com
mailto:abulgakov@apple.com
mailto:jgiraud@apple.com
mailto:castiz@apple.com
mailto:a_pelletier@apple.com
mailto:jake.hansen@apple.com

	Transfer Digital Credentials Securely: sample implementation and threat model
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Sample Implementation - Digital Car Key sharing example.
	4. Threat Model
	5. Security Considerations
	6. IANA Considerations
	7. Normative References
	Acknowledgments
	Authors' Addresses

