
QUIC Working Group D. Tikhonov
Internet-Draft LiteSpeed Technologies
Intended status: Standards Track November 13, 2017
Expires: May 17, 2018

QMIN: Header Compression for QUIC
draft-tikhonov-quic-qmin-00

Abstract

 This specification defines QMIN, a compression format and protocol
 for HTTP/2 ([RFC7540]) headers. QMIN is based on HPACK ([RFC7541]).
 The modifications to HPACK are meant to allow robust compression use
 in QUIC: That is, no head-of-line blocking and low overhead. QMIN is
 guided by HPACK design principles. It inherits all of HPACK's data
 structures and retains binary compatibility with it. While designed
 with QUIC in mind, QMIN can be used in other contexts.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 17, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Tikhonov Expires May 17, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft QMIN: Header Compression for QUIC November 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Overview . 3
3. Checkpoint States . 5
3.1. Checkpoint State: NEW 5
3.2. Checkpoint State: PENDING 5
3.3. Checkpoint State: LIVE 5
3.4. Checkpoint State: DEAD 6

4. Control Stream . 6
4.1. Encoder Commands . 6
4.1.1. INSERT_ENTRY . 6
4.1.2. REUSE_ENTRY . 7
4.1.3. FLUSH_CHKPOINT 8
4.1.4. DROP_CHKPOINT . 8

4.2. Decoder Messages . 9
4.2.1. ACK_FLUSH . 9

4.3. Stream Notification Commands 9
4.3.1. STREAM_DONE . 9

4.4. Expansion . 10
5. Header Encoding . 10
6. Table Size Calculation 10
6.1. Entry Size . 10
6.2. Checkpoint Size . 10
6.3. Overall Table Size 11
6.4. Comparison with HPACK 11

7. Encoding Process . 11
7.1. Indexable Header Fields 11
7.1.1. New Index . 11
7.1.2. Existing Index 11

7.2. Non-indexable Header Fields 12
7.3. When Maximum Table Size Is Reached 12
7.4. Memory Cost of Flushing 12

8. Decoding Process . 12
9. Encoder Strategies . 13
9.1. Flushing and Dropping 13
9.1.1. Simple Strategy 13
9.1.2. Rule-Based Strategy 13
9.1.3. Feedback-Based Strategy 14

9.2. Control Channel Cost 14
10. HPACK Interoperability 15
11. Implementation Notes . 15
11.1. Control Messages Made Easy 15

12. QMIN Drawbacks . 15
13. Acknowledgements . 16

Tikhonov Expires May 17, 2018 [Page 2]

Internet-Draft QMIN: Header Compression for QUIC November 2017

14. References . 16
14.1. Normative References 16
14.2. Informative References 16

 Author's Address . 16

1. Introduction

 Google QUIC implementation uses HPACK to compress HTTP headers. HTTP
 headers for all requests and responses are sent on a dedicated
 stream. This introduces head-of-line (HoL) blocking: if this stream
 is blocked due to packet loss, all HTTP messages whose compressed
 headers follow the lost packet in the stream are stalled. Solving
 the HoL problem has been one of the goals of the IETF QUIC Working
 Group.

 QMIN solves the HoL problem and has the following beneficial
 properties:

 o The compression logic is mostly contained in the encoder, keeping
 the decoder simple.
 o QMIN is transport-independent.
 o Memory penalty over HPACK is manageable (Section 6.4).
 o QMIN and HPACK are interoperable (Section 10).

2. Overview

 The QMIN innovation is in using a *checkpointed* dynamic table, with
 the encoder always aware whether the decoder possesses the dynamic
 table entry (from here on, simply "entry") necessary for decoding a
 header. The encoder learns this information from messages carried on
 a single dedicated control stream. The reliable nature of this
 stream guarantees serialized protocol operation.

 In request and response streams, header blocks use either literal
 representations or references to entries that are known to exist in
 the decoder table. Dynamic table changes are communicated via the
 control stream. The process of decoding header blocks does not
 change the decoder state, thus avoiding the HoL blocking.

 QMIN inherits HPACK's data structures and encoding formats (see
 [RFC7541]).

 In addition, *checkpoints* are introduced. A checkpoint is used to
 track entries added to the dynamic table and streams that reference
 those entries.

 Checkpoints are ordered in a list, from newest to oldest. A new
 checkpoint gets appended to the "new" end of the checkpoint list.

https://datatracker.ietf.org/doc/html/rfc7541

Tikhonov Expires May 17, 2018 [Page 3]

Internet-Draft QMIN: Header Compression for QUIC November 2017

 The encoder always has a checkpoint in the NEW state. Flushing a
 checkpoint is a two-step operation. First, a FLUSH_CHKPOINT command
 is sent to the decoder. At that time, the encoder's NEW checkpoint
 becomes PENDING. The decoder moves its NEW checkpoint directly to
 LIVE and responds with ACK_FLUSH message. When the encoder receives
 this message, its PENDING checkpoint becomes LIVE and entries
 associated with this checkpoint become available for encoding.

 The encoder always has exactly one NEW checkpoint, zero or one
 PENDING checkpoints, and zero or more LIVE and DEAD checkpoints. The
 decoder has exactly one NEW checkpoint and zero or more LIVE
 checkpoints.

 Unused entries are evicted indirectly, by dropping checkpoints.
 Before a checkpoint can be dropped, its state is changed to DEAD: the
 encoder cannot use an entry for encoding that is not referenced by a
 LIVE checkpoint. Changing a checkpoint's state to DEAD allows the
 checkpoint to age out. The encoder can decide to drop a DEAD
 checkpoint when it is no longer referenced by any active streams.
 See Section 3.

 The control stream is used to notify the encoder that the peer is
 done decoding HTTP headers for a stream using the STREAM_DONE
 message. The encoder uses this information to track which
 checkpoints can be dropped.

 When a checkpoint is dropped, the table entries it references are
 checked: if an entry is no longer referenced by any checkpoint, the
 entry is evicted. The encoder sends the DROP_CHKPOINT command to the
 decoder when it drops a checkpoint; no acknowledgement for this
 command is necessary.

 Dropping a checkpoint and the entries associated with it is not
 limited to just the oldest checkpoint; any DEAD checkpoint -- as long
 as state transition rules are followed -- may be dropped. This
 flexibility permits the encoder to use a number of strategies for
 entry eviction.

 As long as the maximum dynamic table size is observed, new
 checkpoints can be created; no upper limit on the number of
 checkpoints is specified. A well-balanced spread of checkpoints
 permits the encoder to recycle entries effectively.

 The HPACK index address space stays the same. The static table stays
 as-is. Indices are unique between all checkpoints. An index can be
 reused once no checkpoint references it.

Tikhonov Expires May 17, 2018 [Page 4]

Internet-Draft QMIN: Header Compression for QUIC November 2017

3. Checkpoint States

 A checkpoint can be in one of several states. It goes through these
 states in order, without skipping any, throughout its lifetime.

 On the encoder, the checkpoint states are:

 o NEW
 o PENDING
 o LIVE
 o DEAD

 On the decoder, only two states are used:

 o NEW
 o LIVE

3.1. Checkpoint State: NEW

 Applicability: encoder and decoder.

 All newly reused or inserted entries are referred to by the NEW
 checkpoint. There is always a NEW checkpoint. Whenever this
 checkpoint changes state, a new NEW checkpoint is created.

 The encoder and the decoder both begin with an empty NEW checkpoint.

3.2. Checkpoint State: PENDING

 Applicability: encoder only.

 At some point, the encoder may want to flush new entries. It then
 changes the NEW checkpoint state to PENDING and issues the
 FLUSH_CHKPOINT command. The entries in the PENDING checkpoint cannot
 be used for encoding yet; the encoder waits for ACK_FLUSH message.
 Upon receipt of this message, the PENDING checkpoint changes to the
 LIVE state.

 There can be at most one PENDING checkpoint.

3.3. Checkpoint State: LIVE

 Applicability: encoder and decoder.

 Entries that were added to the dynamic table when this checkpoint was
 in the NEW state can now be used to encode and decode headers. The
 decoder moves its NEW checkpoint to LIVE when it receives the

Tikhonov Expires May 17, 2018 [Page 5]

Internet-Draft QMIN: Header Compression for QUIC November 2017

 FLUSH_CHKPOINT command. The encoder moves its PENDING checkpoint to
 LIVE when it receives the ACK_FLUSH message.

 Other than the maximum table size, the number of LIVE checkpoints is
 not limited.

3.4. Checkpoint State: DEAD

 Applicability: encoder only.

 To evict old entries, the encoder marks a LIVE checkpoint as DEAD.
 (An entry that is not referenced by any LIVE checkpoint cannot be
 used for header encoding. Marking a checkpoint DEAD allows entries
 to age out.) When all streams whose header blocks were encoded using
 entries referenced by this checkpoint have been closed, the
 checkpoint is destroyed and the DROP_CHKPOINT message is sent to the
 decoder.

 There can be any number of DEAD checkpoints.

4. Control Stream

 The control stream is used to carry messages to the encoder and the
 decoder. This is the only way that dynamic table changes are
 communicated to the decoder.

 The messages are either

 o Commands issued by the encoder to the decoder;
 o Acknowledgements issued by the decoder; or
 o Stream processed notifications sent to the encoder.

 The format of the messages is similar in structure to the format of
 the encoded header fields in the header block as specified in HPACK
 (RFC 7541, Section 6). The same variable-length integer encoding
 mechanism is used (RFC 7541, Section 5).

4.1. Encoder Commands

 The encoder issues the following commands:

4.1.1. INSERT_ENTRY

 This message is sent by the encoder at the same time it creates a new
 indexed entry in its dynamic table. The smallest unused index in the
 address space ([62 - oO]) MUST be assigned to the new entry.

https://datatracker.ietf.org/doc/html/rfc7541#section-6
https://datatracker.ietf.org/doc/html/rfc7541#section-5

Tikhonov Expires May 17, 2018 [Page 6]

Internet-Draft QMIN: Header Compression for QUIC November 2017

 The decoder creates the new entry in the table, but does not make the
 entry available for decoding yet. If indexed name representation is
 used, but the decoder does not have this entry already referenced by
 its NEW checkpoint, it MUST treat it as an error.

 The format of this message is identical to HPACK's Literal Header
 Field Representation (RFC 7541, Section 6.2).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | Index (6+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Figure: Insert Entry - Indexed Name

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Figure: Insert Entry - New Name

4.1.2. REUSE_ENTRY

 This message is issued instead of INSERT_ENTRY whenever the encoder
 uses an indexed representation from an existing LIVE checkpoint to
 encode a header and this index has not yet been added to the NEW
 checkpoint.

 Upon receipt of the REUSE_ENTRY command, the decoder creates a
 reference to the corresponding entry in its NEW checkpoint.

 The encoder MUST NOT issue multiple REUSE_ENTRY commands for the same
 entry in the context of the same NEW checkpoint. If the decoder
 receives the REUSE_ENTRY message that specifies an index already
 referenced by its NEW checkpoint, it MUST treat it as an error. If a

https://datatracker.ietf.org/doc/html/rfc7541#section-6.2

Tikhonov Expires May 17, 2018 [Page 7]

Internet-Draft QMIN: Header Compression for QUIC November 2017

 non-existent index is specified, the decoder MUST treat is as an
 error.

 The format of this message is identical to HPACK's Indexed Header
 Field Representation (RFC 7541, Section 6.1).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Index (7+) |
 +---+---------------------------+

 Figure: Reuse Entry Message

4.1.3. FLUSH_CHKPOINT

 When the encoder wants to start using entries associated with the NEW
 checkpoint, it moves it from NEW to PENDING state and issues the
 FLUSH_CHKPOINT command.

 The decoder moves its checkpoint from NEW to LIVE: all newly inserted
 entries become available for decoding.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
 +---+---------------------------+

 Figure: Flush Checkpoint

4.1.4. DROP_CHKPOINT

 When a DEAD checkpoint is no longer referenced by any streams, the
 encoder MAY drop it. This means evicting all dynamic table entries
 whose reference counts have gone to zero and issuing the
 DROP_CHKPOINT command.

 The ID of the checkpoint to drop is its current position in the
 checkpoint list, from oldest to newest. Thus, the oldest checkpoint
 has ID 0, second-oldest has ID 1, and so on.

 The decoder performs the same operation as the encoder: decrements
 reference counts of dynamic table entries -- evicting those whose
 reference counts are now zero -- and drops the specified checkpoint.

https://datatracker.ietf.org/doc/html/rfc7541#section-6.1

Tikhonov Expires May 17, 2018 [Page 8]

Internet-Draft QMIN: Header Compression for QUIC November 2017

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+----+----+
 | 0 | 0 | 0 | 0 | 0 | 1 | ID (2+) |
 +---+------------------------+----+

 Figure: Drop Checkpoint

4.2. Decoder Messages

 The decoder sends replies to one of the encoder commands.

4.2.1. ACK_FLUSH

 The decoder SHOULD inform the encoder that it has performed the flush
 using ACK_FLUSH message. The encoder's PENDING checkpoint becomes
 LIVE when this acknowledgement is received.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
 +---+---------------------------+

 Figure: Ack Flush

4.3. Stream Notification Commands

4.3.1. STREAM_DONE

 When all HTTP headers for a stream have been decoded, this message is
 sent to inform the encoder that the peer is done with the stream.
 This allows the encoder to decrement its reference counts,
 potentially triggering a checkpoint flush or a checkpoint drop.

 It is preferable to send this message as soon as possible. For
 example, one does not have to wait until stream FIN is read if HTTP
 headers have been decoded and there are no trailers.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+----+-----+-----+
 | 0 | 0 | 0 | 0 | 1 | Stream ID (3+) |
 +---+--------------------------------+

 Figure: Stream Done

 The client knows that the server is done with the request if the
 stream is reset or it has read all of the response. A QMIN
 implementation SHOULD use this knowledge to let the encoder know that

Tikhonov Expires May 17, 2018 [Page 9]

Internet-Draft QMIN: Header Compression for QUIC November 2017

 the stream is done. The encoder SHOULD use the earliest indicator to
 move its mechanisms along. Any subsequent indicators are no-ops.

4.4. Expansion

 Two bit patterns are still available to the command coding scheme:
 001 and 00000001. The former is used to encode the dynamic table
 size update by HPACK (RFC 7541, Section 6.3). There is no inherent
 limitation in QMIN as to why it could not support this command.

5. Header Encoding

 The headers are encoded in the same way they are encoded by HPACK,
 except QMIN does not support the dynamic table size update specified
 in RFC 7541, Section 6.3 in the headers block. This is because
 header block decoding is not to change the decoder state.

6. Table Size Calculation

 HPACK defines the dynamic table size as "the sum of the size of its
 entries." (RFC 7541, Section 4.1). QMIN's dynamic table entry
 carries another element -- reference count -- which increases the
 entry size.

 QMIN introduces checkpoints, whose size should also be accounted for.
 A decoder-side checkpoint keeps track of the index values created or
 reused when it was NEW.

6.1. Entry Size

 A QMIN entry contains a reference count, which makes it larger that
 the HPACK entry. Using a standard integer size, the QMIN entry
 overhead is set to 36 bytes: 32 bytes overhead of the HPACK entry
 plus four bytes for the additional reference count field. Thus, the
 QMIN entry size is the sum of the entry name size, the entry value
 size, and 36.

6.2. Checkpoint Size

 QMIN uses the smallest possible available value (Section 4.1.2) in
 the index address space for new entries. Therefore, the total number
 of index values is at most the value of the largest index in use. A
 checkpoint can track indices via a bitmask: 1 bit per index. The
 size of a checkpoint, then, is defined as

 (Highest Index Value - 62) / 8 + 128

 The additional 128 bytes is the checkpoint overhead.

https://datatracker.ietf.org/doc/html/rfc7541#section-6.3
https://datatracker.ietf.org/doc/html/rfc7541#section-6.3
https://datatracker.ietf.org/doc/html/rfc7541#section-4.1

Tikhonov Expires May 17, 2018 [Page 10]

Internet-Draft QMIN: Header Compression for QUIC November 2017

6.3. Overall Table Size

 The decoder table size is calculated as number of entries times the
 entry size as calculated in Section 6.1 plus the number of
 checkpoints times the checkpoint size as calculated in Section 6.2.

6.4. Comparison with HPACK

 In HPACK, a table with 700 dynamic entries and 35,000 bytes allocated
 to header names and values is

 700 * 32 + 35,000 = 57,400 bytes.

 The same table in QMIN with 10 checkpoints is

 700 * 36 + 35,000 + 10 * ((1000 / 8) + 128) = 62,730 bytes.

 This is a 9% increase in memory consumption.

7. Encoding Process

 Given a header field to compress, the encoder returns the compressed
 representation of it. In addition, it may emit one or more commands
 that should be sent on the control stream.

7.1. Indexable Header Fields

 An indexable header field is that which the user specifies as "with
 indexing" (RFC 7541, Section 6.2).

7.1.1. New Index

 If no matching entry is found, a new entry is created, its ID is
 recorded in the NEW checkpoint, and the encoder emits the
 INSERT_ENTRY command.

 If the encoded name component refers to an existing entry, this entry
 is reused as described in Section 7.1.2.

7.1.2. Existing Index

 An indexable header field causes the encoder to search the table. If
 an existing dynamic table entry is found that is referenced by at
 least one LIVE checkpoint, it can be used to encode the header field.
 The encoder records a reference to the stream using this entry in one
 of the checkpoints. (Which checkpoint to select can be decided based
 on strategy. See Section 9.1).

https://datatracker.ietf.org/doc/html/rfc7541#section-6.2

Tikhonov Expires May 17, 2018 [Page 11]

Internet-Draft QMIN: Header Compression for QUIC November 2017

 If the NEW checkpoint does not have a reference to this entry, the
 reference is recorded in the NEW checkpoint and the REUSE_ENTRY
 command is emitted.

7.2. Non-indexable Header Fields

 Non-indexable header fields are compressed the same way as HPACK (RFC
7541, Sections 6.2.2 and 6.2.3). The encoder state is not changed.

 No command is emitted.

7.3. When Maximum Table Size Is Reached

 When the encoder table reaches its maximum size, further insertions
 into the dynamic table are not possible. In this case, the encoder
 compresses header fields without inserting or reusing entries and
 without emitting any commands.

 A simple recovery strategy is to mark one or more checkpoints DEAD
 immediately.

 Alternatively, the existing table may provide an acceptable
 compression level. It may be more efficient to wait until this level
 falls below a threshold before marking checkpoints DEAD, as it may
 become possible to drop an already-DEAD checkpoint before the
 threshold is reached.

 The encoder SHOULD try to avoid reaching a point when it can no
 longer insert new entries. See Section 9.

7.4. Memory Cost of Flushing

 Because flushing automatically creates a new NEW checkpoint, it is
 possible to get into a situation where a flush is not possible due to
 the memory constraint. If inserting a new entry would result in
 subsequent inability to flush, the encoder SHOULD flush instead.

8. Decoding Process

 All header field representations defined in HPACK (Section 6 of
 [RFC7541]) are used as-is. Dynamic size update (Ibid., Section 6.3)
 or an unknown command MUST be treated as an error.

 The decoder looks up dynamic entries in its table when it is given a
 header list to decode. If corresponding entry is not found or if it
 is found but not referred to by any of LIVE checkpoints, this MUST be
 treated as an error.

https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7541#section-6
https://datatracker.ietf.org/doc/html/rfc7541#section-6

Tikhonov Expires May 17, 2018 [Page 12]

Internet-Draft QMIN: Header Compression for QUIC November 2017

9. Encoder Strategies

9.1. Flushing and Dropping

 The encoder decides when to flush checkpoints and when to declare
 them dead. Flushing SHOULD occur when enough new entries have been
 created to try to reuse them. Marking checkpoints as DEAD SHOULD
 happen before the table size is exhausted.

 If an entry used to encode a header field is referenced to by more
 than one LIVE checkpoint, one of them is selected to refer to the
 stream ID whose header field has been encoded. Which LIVE checkpoint
 to pick is a decision that also affects compression performance.

 Several strategies are outlined below.

9.1.1. Simple Strategy

 The encoder picks a number of streams to use as a threshold for
 flushing checkpoints. Every time header blocks for N streams have
 been encoded, flush.

 The encoder picks the oldest checkpoint to mark as DEAD. It does so
 when table size reaches some proportion, let's say 3/4, of the
 maximum table size.

 The newest LIVE checkpoint that references an entry used for encoding
 is picked to record the stream ID.

 This strategy is estimated to work well most of the time due to the
 temporal aspect of the checkpoint dropping policy. When a connection
 is used to serve a small number of requests, however, the compression
 will be overall suboptimal, as the initial period when no dynamic
 table is available for encoding is amortized poorly.

9.1.2. Rule-Based Strategy

 Heuristic rules may provide performance improvement over the simple
 strategy above. For example:

 o Flush very often, perhaps once for every new stream, when the
 number of dynamic entries is very small (such as when the encoder
 has just been instantiated). Since the table size is likely to be
 small when only few dynamic entries exist, one can fit a lot of
 checkpoints and still be able to add new entries to the table.
 These early-flushed checkpoints will also be easier to drop later,
 as they are not referenced by many streams.

Tikhonov Expires May 17, 2018 [Page 13]

Internet-Draft QMIN: Header Compression for QUIC November 2017

 o Flush when the number of newly added entries is 1/10 of the number
 of existing entries. When this many new entries have been added,
 it is a likely indicator making them available for encoding will
 improve overall compression.
 o When declaring a checkpoint DEAD:

 * Pick a LIVE checkpoint that is referenced by the fewest
 existing streams; or
 * Pick a LIVE checkpoint that references the largest number of
 old entries, where an "old" entry is that which has not been
 used for encoding in a period of some number of checkpoints.

 Other rules are possible.

9.1.3. Feedback-Based Strategy

 The goal of QMIN is to produce the best compression. The compression
 level can be computed by dividing the sum of the sizes of all header
 fields submitted for compression by the number of compressed bytes
 returned *plus* the size of all commands sent to the decoder. A
 checkpoint can be taken as unit of time and a decaying average can be
 computed.

 Availability of entries that can be used for compression directly
 affects compression performance. This availability, in turn, is a
 function of how often checkpoints are flushed and which checkpoints
 are marked for deletion. Flushing very often costs memory;
 infrequent flushing delays entry availability.

 It is possible to come up with a dynamic function that adjusts these
 parameters based on feedback: the compression performance.

9.2. Control Channel Cost

 Sending commands on the control channel affects the overall
 compression level. Sending an INSERT_ENTRY command for a header
 field that is never reused is more expensive than not inserting the
 field at all. A single large, ever-changing HTTP header (for
 example, session state in a cookie) could defeat the compression
 mechanism. The encoder SHOULD prevent this from happening.

 Since a header field that repeats is likely to repeat more than once,
 a simple conservative approach is never to insert a header field that
 is not known to have repeated. Because HTTP header names are
 relatively small and not as numerous as the header values, it is
 possible to maintain a history of a number of recently compressed
 header fields. (To use less memory, hashes of header values, instead
 of the values themselves, can be stored.) The encoder can consult

Tikhonov Expires May 17, 2018 [Page 14]

Internet-Draft QMIN: Header Compression for QUIC November 2017

 this history and only issue an INSERT_ENTRY command if the header
 field has been seen before.

10. HPACK Interoperability

 Because QMIN uses the same binary format as HPACK, the two are
 interoperable. This makes it possible for peers to use the current
 HTTP/QUIC HPACK mechanism to talk to peers that use QMIN. It is
 useful: all implementations do not have to start using QMIN at the
 same time.

 For this to work, four things must be true:

 1. The HPACK side must advertise maximum dynamic table size of zero.
 2. The HPACK side must not send dynamic table size updates.
 3. The HPACK side must consume and discard data sent on the control
 stream. This is so that QMIN sender does not get stuck when it
 reaches the stream flow control limit.
 4. The HPACK side must assume that peer's dynamic table size is
 zero. This is to prevent HPACK encoder from relying on dynamic
 entries.

 (1) and (2) are already true according to [I-D.ietf-quic-http]. (3)
 and (4) are trivial modifications.

11. Implementation Notes

11.1. Control Messages Made Easy

 Since INSERT_ENTRY and REUSE_ENTRY messages are identical to the
 encoded header field representation, the latter can be placed onto
 the control stream verbatim. Generate once, use twice.

12. QMIN Drawbacks

 The following QMIN properties affect compression negatively:

 o All insertion commands are duplicated: they are sent both as
 literal representation in headers block and as insertion commands
 on the control stream.
 o A new entry cannot be used until the checkpoint is flushed and the
 encoder receives ACK_FLUSH message. Until that time, the header
 field literal representation must be used for subsequent
 encodings.

Tikhonov Expires May 17, 2018 [Page 15]

Internet-Draft QMIN: Header Compression for QUIC November 2017

13. Acknowledgements

 QMIN is based on HPACK ([RFC7540]); I am thankful to its authors.

 Observations of the following members of the IETF QUIC WG have been
 particularly insightful:

 o Alan Frindell;
 o Charles 'Buck' Krasic; and
 o Mike Bishop.

 Finally, my colleagues at LiteSpeed Technologies reviewed the rough
 draft and provided valuable feedback:

 o George Wang;
 o Ron Saad.

14. References

14.1. Normative References

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

14.2. Informative References

 [I-D.ietf-quic-http]
 Bishop, M., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-07 (work in progress), October
 2017.

Author's Address

 Dmitri Tikhonov
 LiteSpeed Technologies

 Email: dtikhonov@litespeedtech.com

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-07

Tikhonov Expires May 17, 2018 [Page 16]

