
Workgroup: ACE Working Group

Internet-Draft:

draft-tiloca-ace-group-oscore-profile-08

Published: 7 March 2022

Intended Status: Standards Track

Expires: 8 September 2022

Authors: M. Tiloca

RISE AB

R. Höglund

RISE AB

L. Seitz

Combitech

F. Palombini

Ericsson AB

Group OSCORE Profile of the Authentication and Authorization for

Constrained Environments Framework

Abstract

This document specifies a profile for the Authentication and

Authorization for Constrained Environments (ACE) framework. The

profile uses Group OSCORE to provide communication security between

a Client and a (set of) Resource Server(s) as members of an OSCORE

Group. The profile securely binds an OAuth 2.0 Access Token with the

public key of the Client associated with the private key used in the

OSCORE group. The profile uses Group OSCORE to achieve server

authentication, as well as proof-of-possession for the Client's

public key. Also, it provides proof of the Client's membership to

the correct OSCORE group, by binding the Access Token to information

from the Group OSCORE Security Context, thus allowing the Resource

Server(s) to verify the Client's membership upon receiving a message

protected with Group OSCORE from the Client.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (ace@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/ace/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/crimson84/draft-tiloca-ace-group-oscore-profile.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/ace/
https://gitlab.com/crimson84/draft-tiloca-ace-group-oscore-profile
https://gitlab.com/crimson84/draft-tiloca-ace-group-oscore-profile
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Protocol Overview

2.1. Pre-Conditions

2.2. Access Token Retrieval

2.3. Access Token Posting

2.4. Secure Communication

3. Client-AS Communication

3.1. C-to-AS: POST to Token Endpoint

3.1.1. 'context_id' Parameter

3.1.2. 'salt_input' Parameter

3.1.3. 'client_cred_verify' Parameter

3.1.4. 'client_cred_verify_mac' Parameter

3.2. AS-to-C: Access Token

3.2.1. Salt Input Claim

3.2.2. Context ID Input Claim

4. Client-RS Communication

4.1. C-to-RS POST to authz-info Endpoint

4.2. RS-to-C: 2.01 (Created)

4.3. Client-RS Secure Communication

4.3.1. Client Side

4.3.2. Resource Server Side

4.4. Access Rights Verification

4.5. Change of Client's Authentication Credential in the Group

5. Secure Communication with the AS

¶

¶

¶

¶

https://trustee.ietf.org/license-info

6. Discarding the Security Context

7. CBOR Mappings

8. Security Considerations

9. Privacy Considerations

10. IANA Considerations

10.1. ACE Profile Registry

10.2. OAuth Parameters Registry

10.3. OAuth Parameters CBOR Mappings Registry

10.4. CBOR Web Token Claims Registry

10.5. TLS Exporter Label Registry

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Dual Mode (Group OSCORE & OSCORE)

A.1. Protocol Overview

A.1.1. Pre-Conditions

A.1.2. Access Token Posting

A.1.3. Setup of the Pairwise OSCORE Security Context

A.1.4. Secure Communication

A.2. Client-AS Communication

A.2.1. C-to-AS: POST to Token Endpoint

A.2.2. AS-to-C: Access Token

A.3. Client-RS Communication

A.3.1. C-to-RS POST to authz-info Endpoint

A.3.2. RS-to-C: 2.01 (Created)

A.3.3. OSCORE Setup - Client Side

A.3.4. OSCORE Setup - Resource Server Side

A.3.5. Access Rights Verification

A.3.6. Change of Client's Authentication Credential in the

Group

A.4. Secure Communication with the AS

A.5. Discarding the Security Context

A.6. CBOR Mappings

A.7. Security Considerations

A.8. Privacy Considerations

Appendix B. Profile Requirements

Acknowledgments

Authors' Addresses

1. Introduction

A number of applications rely on a group communication model, where

a Client can access a resource shared by multiple Resource Servers

at once, e.g., over IP multicast. Typical examples are switching of

luminaries, actuators control, and distribution of software updates.

Secure communication in the group can be achieved by sharing a set

of keying material, which is typically provided upon joining the

group.¶

For some of such applications, it may be just fine to enforce access

control in a straightforward fashion. That is, any Client authorized

to join the group, hence to get the group keying material, can be

also implicitly authorized to perform any action at any resource of

any Server in the group. An example of application where such

implicit authorization might be used is a simple lighting scenario,

where the lightbulbs are the Servers, while the user account on an

app on the user's phone is the Client. In this case, it might be

fine to not require additional authorization evidence from any user

account, if it is acceptable that any current group member is also

authorized to switch on and off any light, or to check their status.

However, in different instances of such applications, the approach

above is not desirable, as different group members are intended to

have different access rights to resources of other group members.

That is, access control to the secure group communication channel

and access control to the resource space provided by servers in the

group should remain logically separated domains. For instance, a

more fine-grained approach is required in the two following use

cases.

As a first case, an application provides control of smart locks

acting as Servers in the group, where: a first type of Client, e.g.,

a user account of a child, is allowed to only query the status of

the smart locks; while a second type of Client, e.g., a user account

of a parent, is allowed to both query and change the status of the

smart locks. Further similar applications concern the enforcement of

different sets of permissions in groups with sensor/actuator

devices, e.g., thermostats, acting as Servers. Also, some group

members may even be intended as Servers only. Hence, they must be

prevented from acting as Clients altogether and from accessing

resources at other Servers, especially when attempting to perform

non-safe operations.

As a second case, building automation scenarios often rely on

Servers that, under different circumstances, enforce different level

of priority for processing received commands. For instance, BACnet

deployments consider multiple classes of Clients, e.g., a normal

light switch (C1) and an emergency fire panel (C2). Then, a C1

Client is not allowed to override a command from a C2 Client, until

the latter relinquishes control at its higher priority. That is: i)

only C2 Clients should be able to adjust the minimum required level

of priority on the Servers, so rightly locking out C1 Clients if

needed; and ii) when a Server is set to accept only high-priority

commands, only C2 Clients should be able to perform such commands

otherwise allowed also to C1 Clients. Given the different maximum

authority of different Clients, fine-grained access control would

effectively limit the execution of high- and emergency-priority

commands only to devices that are in fact authorized to do so.

¶

¶

¶

Besides, it would prevent a misconfigured or compromised device from

initiating a high-priority command and lock out normal control.

In the cases above, being a legitimate group member and storing the

group keying material is not supposed to imply any particular access

rights. Also, introducing a different security group for each

different set of access rights would result in additional keying

material to distribute and manage. In particular, if the access

rights for a single node change, this would require to evict that

node from the current group, followed by that node joining a

different group aligned with its new access rights. Moreover, the

keying material of both groups would have to be renewed for their

current members. Overall, this would have a non negligible impact on

operations and performance in the system.

A fine-grained access control model can be rather enforced within a

same group, by using the Authentication and Authorization for

Constrained Environments (ACE) framework [I-D.ietf-ace-oauth-authz].

That is, a Client has to first obtain authorization credentials in

the form of an Access Token, and post it to the Resource Server(s)

in the group before accessing the intended resources.

The ACE framework delegates to separate profile documents how to

secure communications between the Client and the Resource Server.

However each of the current profiles of ACE defined in [I-D.ietf-

ace-oscore-profile] [I-D.ietf-ace-dtls-authorize] [I-D.ietf-ace-

mqtt-tls-profile] admits a single security protocol that cannot be

used to protect group messages sent over IP multicast.

This document specifies the "coap_group_oscore" profile of the ACE

framework, where a Client uses CoAP [RFC7252] or CoAP over IP

multicast [I-D.ietf-core-groupcomm-bis] to communicate to one or

multiple Resource Servers, which are members of an application group

and share a common set of resources. This profile uses Group OSCORE

[I-D.ietf-core-oscore-groupcomm] as the security protocol to protect

messages exchanged between the Client and the Resource Servers.

Hence, it requires that both the Client and the Resource Servers

have previously joined the same OSCORE group.

That is, this profile describes how access control is enforced for a

Client after it has joined an OSCORE group, to access resources at

other members in that group. The process for joining the OSCORE

group through the respective Group Manager as defined in [I-D.ietf-

ace-key-groupcomm-oscore] takes place before the process described

in this document, and is out of the scope of this profile.

The Client proves its access to be authorized to the Resource Server

by using an Access Token, which is bound to a key (the proof-of-

possession key). This profile uses Group OSCORE to achieve server

¶

¶

¶

¶

¶

¶

authentication, as well as proof-of-possession for the Client's

public key used in the OSCORE group in question. Note that the proof

of possession is not done by a dedicated protocol element, but

rather occurs after the first Group OSCORE exchange.

Furthermore, this profile provides proof of the Client's membership

to the correct OSCORE group, by binding the Access Token to the

Client's authentication credential used in the group and including

the Client's public public key, as well as to information from the

pre-established Group OSCORE Security Context. This allows the

Resource Server to verify the Client's group membership upon

reception of a message protected with Group OSCORE from that Client.

OSCORE [RFC8613] specifies how to use COSE [I-D.ietf-cose-

rfc8152bis-struct][I-D.ietf-cose-rfc8152bis-algs] to secure CoAP

messages. Group OSCORE builds on OSCORE to provide secure group

communication, and ensures source authentication: by means of

digital signatures embedded in protected messages (in group mode);

or by protecting messages with pairwise keying material derived from

the asymmetric keys of the two peers exchanging the message (in

pairwise mode).

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

related to CBOR [RFC8949], COSE [I-D.ietf-cose-rfc8152bis-struct][I-

D.ietf-cose-rfc8152bis-algs], CoAP [RFC7252], OSCORE [RFC8613] and

Group OSCORE [I-D.ietf-core-oscore-groupcomm]. These especially

include:

Group Manager, as the entity responsible for a set of groups

where communications among members are secured with Group OSCORE.

Authentication credential, as the set of information associated

with an entity, including that entity's public key and parameters

associated with the public key. Examples of authentication

credentials are CBOR Web Tokens (CWTs) and CWT Claims Sets (CCSs)

[RFC8392], X.509 certificates [RFC7925] and C509 certificates [I-

D.ietf-cose-cbor-encoded-cert].

Members of an OSCORE group have an associated authentication

credential in the format used in the group. As per Section 2.3 of

[I-D.ietf-core-oscore-groupcomm], an authentication credential

provides the public key as well as the comprehensive set of

¶

¶

¶

¶

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-2.3

information related to the public key algorithm, including, e.g.,

the used elliptic curve (when applicable).

Readers are expected to be familiar with the terms and concepts

described in the ACE framework for authentication and authorization

[I-D.ietf-ace-oauth-authz], as well as in the OSCORE profile of ACE

[I-D.ietf-ace-oscore-profile]. The terminology for entities in the

considered architecture is defined in OAuth 2.0 [RFC6749]. In

particular, this includes Client (C), Resource Server (RS), and

Authorization Server (AS).

Note that, unless otherwise indicated, the term "endpoint" is used

here following its OAuth definition, aimed at denoting resources

such as /token and /introspect at the AS, and /authz-info at the RS.

This document does not use the CoAP definition of "endpoint", which

is "An entity participating in the CoAP protocol".

Additionally, this document makes use of the following terminology.

Equivalent COSE Key: a COSE Key built from an authentication

credential used in the OSCORE group. The equivalent COSE Key

preserves all the main information elements from the

authentication credential, in particular the key coordinates and

the comprehensive set of information related to the public key

algorithm, including, e.g., the used elliptic curve (when

applicable).

Pairwise-only group: an OSCORE group that uses only the pairwise

mode (see Section 9 of [I-D.ietf-core-oscore-groupcomm]).

Examples throughout this document are expressed in CBOR diagnostic

notation, without the tag and value abbreviations.

2. Protocol Overview

This section provides an overview of this profile, i.e., on how to

use the ACE framework for authentication and authorization [I-

D.ietf-ace-oauth-authz] to secure communications between a Client

and a (set of) Resource Server(s) using Group OSCORE [I-D.ietf-core-

oscore-groupcomm].

Note that this profile of ACE describes how access control can be

enforced for a node after it has joined an OSCORE group, to access

resources at other members in that group.

In particular, the process for joining the OSCORE group through the

respective Group Manager as defined in [I-D.ietf-ace-key-groupcomm-

oscore] must take place before the process described in this

document, and is out of the scope of this profile.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-9

An overview of the protocol flow for this profile is shown in Figure

1. In the figure, it is assumed that both RS1 and RS2 are associated

with the same AS. It is also assumed that C, RS1 and RS2 have

previously joined an OSCORE group with Group Identifier (gid)

"abcd0000", and got assigned Sender ID (sid) "0", "1" and "2" in the

group, respectively. The names of messages coincide with those of

[I-D.ietf-ace-oauth-authz] when applicable.¶

C RS1 RS2 AS

| [--- Resource Request -->] | | |

| | | |

| [<---- AS Request ------] | | |

| Creation Hints | | |

| | | |

|-------- POST /token --->|

| (aud: RS1, sid: 0, gid: abcd0000, ...) | |

| | | |

| | | |

|<-------------------------------- Access Token + RS Information -----|

| | (aud: RS1, sid: 0, gid: abcd0000, ...) |

| | | |

|---- POST /authz-info ----->| | |

| (access_token) | | |

| | | |

|<--- 2.01 Created ----------| | |

| | | |

|-------- POST /token --->|

| (aud: RS2, sid: 0, gid: abcd0000, ...) | |

| | | |

| | | |

| | | |

|<-------------------------------- Access Token + RS Information -----|

| | (aud: RS2, sid: 0, gid: abcd0000, ...) |

| | | |

|----- POST /authz-info ----------------->| |

| (access_token) | | |

| | | |

| | | |

|<--- 2.01 Created -----------------------| |

| | | |

|-- Group OSCORE Request -+->| | |

| (kid: 0, gid: abcd0000) \-------------->| |

| | | |

| /proof-of-possession/ |

| | | |

| | | |

|<-- Group OSCORE Response --| | |

| (kid: 1) | | |

| | | |

/proof-of-possession/ | | |

| | | |

/Mutual authentication | | |

 between C and RS1/ | | |

| | | |

| | | |

|<-- Group OSCORE Response ---------------| |

| (kid: 2) | | |

| | | |

/proof-of-possession/ | | |

| | | |

/Mutual authentication | | |

 between C and RS2/ | | |

| | | |

| ... | | |

Figure 1: Protocol Overview.

2.1. Pre-Conditions

Using Group OSCORE and this profile requires both the Client and the

Resource Servers to have previously joined the same OSCORE group.

This especially includes the derivation of the Group OSCORE Security

Context and the assignment of unique Sender IDs to use in the group.

Nodes may join the OSCORE group through the respective Group Manager

by using the approach defined in [I-D.ietf-ace-key-groupcomm-

oscore], which is also based on ACE.

After the Client and Resource Servers have joined the group, this

profile provides access control for accessing resources on those

Resource Servers, by securely communicating with Group OSCORE.

As a pre-requisite for this profile, the Client has to have

successfully joined the OSCORE group where also the Resource Servers

(RSs) are members. Depending on the limited information initially

available, the Client may have to first discover the exact OSCORE

group used by the RSs for the resources of interest, e.g., by using

the approach defined in [I-D.tiloca-core-oscore-discovery].

2.2. Access Token Retrieval

This profile requires that the Client retrieves an Access Token from

the AS for the resource(s) it wants to access on each of the RSs,

using the /token endpoint, as specified in Section 5.8 of [I-D.ietf-

ace-oauth-authz]. In a general case, it can be assumed that

different RSs are associated with different ASs, even if the RSs are

members of a same OSCORE group.

In the Access Token request to the AS, the Client MUST include the

Group Identifier of the OSCORE group and its own Sender ID in that

group. The AS MUST specify these pieces of information in the Access

Token, included in the Access Token response to the Client.

Furthermore, in the Access Token request to the AS, the Client MUST

also include: its own public key used in the OSCORE group; and a

proof-of-possession (PoP) evidence to proof possession of the

corresponding private key. The PoP evidence is computed over a PoP

input uniquely related to the secure communication association

between the Client and the AS. The AS MUST include also the public

key indicated by the Client in the Access Token.

The Access Token request and response MUST be confidentiality-

protected and ensure authenticity. This profile RECOMMENDS the use

of OSCORE between the Client and the AS, to reduce the number of

libraries the client has to support. Other protocols fulfilling the

security requirements defined in Sections 5 and 6 of [I-D.ietf-ace-

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-6

oauth-authz] MAY alternatively be used, such as TLS [RFC8446] or

DTLS [RFC6347][I-D.ietf-tls-dtls13].

2.3. Access Token Posting

After having retrieved the Access Token from the AS, the Client

posts the Access Token to the RS, using the /authz-info endpoint and

mechanisms specified in Section 5.10 of [I-D.ietf-ace-oauth-authz],

as well as Content-Format = application/ace+cbor. When using this

profile, the communication with the /authz-info endpoint is not

protected.

If the Access Token is valid, the RS replies to this POST request

with a 2.01 (Created) response with Content-Format = application/

ace+cbor. Also, the RS associates the received Access Token with the

Group OSCORE Security Context identified by the Group Identifier

specified in the Access Token, following Section 3.2 of [RFC8613].

In practice, the RS maintains a collection of Security Contexts with

associated authorization information, for all the clients that it is

currently communicating with, and the authorization information is a

policy used as input when processing requests from those clients.

Finally, the RS stores the association between i) the authorization

information from the Access Token; and ii) the Group Identifier of

the OSCORE group together with the Sender ID and the authentication

credential of the Client in that group. This binds the Access Token

with the Group OSCORE Security Context of the OSCORE group.

Finally, when the Client communicates with the RS using the Group

OSCORE Security Context, the RS verifies that the Client is a

legitimate member of the OSCORE group and especially the exact group

member with the same Sender ID associated with the Access Token.

This occurs when verifying a request protected with Group OSCORE,

since the request includes the Client's Sender ID and either it

embeds a signature computed also over that Sender ID (if protected

with the group mode), or it is protected by means of pairwise

symmetric keying material derived from the asymmetric keys of the

two peers (if protected with the pairwise mode).

2.4. Secure Communication

The Client can send a request protected with Group OSCORE [I-D.ietf-

core-oscore-groupcomm] to the RS. This can be a unicast request

addressed to the RS, or a multicast request addressed to the OSCORE

group where the RS is also a member. To this end, the Client uses

the Group OSCORE Security Context already established upon joining

the OSCORE group, e.g., by using the approach defined in [I-D.ietf-

ace-key-groupcomm-oscore]. The RS may send a response back to the

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.10
https://rfc-editor.org/rfc/rfc8613#section-3.2

Client, protecting it by means of the same Group OSCORE Security

Context.

3. Client-AS Communication

This section details the Access Token POST Request that the Client

sends to the /token endpoint of the AS, as well as the related

Access Token response.

The Access Token MUST be bound to the public key of the client as

proof-of-possession key (pop-key), by means of the 'cnf' claim.

3.1. C-to-AS: POST to Token Endpoint

The Client-to-AS request is specified in Section 5.8.1 of [I-D.ietf-

ace-oauth-authz]. The Client MUST send this POST request to the /

token endpoint over a secure channel that guarantees authentication,

message integrity and confidentiality.

The POST request is formatted as the analogous Client-to-AS request

in the OSCORE profile of ACE (see Section 3.1 of [I-D.ietf-ace-

oscore-profile]), with the following additional parameters that MUST

be included in the payload.

'context_id', defined in Section 3.1.1 of this document. This

parameter specifies the Group Identifier (GID), i.e., the Id

Context of an OSCORE group where the Client and the RS are

currently members. In particular, the Client wishes to

communicate with the RS using the Group OSCORE Security Context

associated with that OSCORE group.

'salt_input', defined in Section 3.1.2 of this document. This

parameter includes the Sender ID that the Client has in the

OSCORE group whose GID is specified in the 'context_id' parameter

above.

'req_cnf', defined in Section 3.1 of [I-D.ietf-ace-oauth-params].

This parameter follows the syntax from Section 3.1 of [RFC8747]

when including Value Type "COSE_Key" (1) and specifying an

asymmetric key. In particular, the specified public key is the

COSE Key equivalent to the authentication credential that the

Client uses in the OSCORE group. The specified public key will be

used as the pop-key bound to the Access Token.

Alternative Value Types defined in future specifications are fine

to consider, if indicating a non-encrypted asymmetric key or

full-fledged autentication credential.

In addition, the Client computes its proof-of-possession (PoP)

evidence, in order to prove possession of its own private key used

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.1
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-3.1
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-params-16#section-3.1
https://rfc-editor.org/rfc/rfc8747#section-3.1

in the OSCORE group to the AS. This allows the AS to verify that the

Client indeed owns the private key associated with that public key,

as its alleged identity credential within the OSCORE group.

To this end, the Client MUST use as PoP input the byte

representation of a quantity that uniquely represents the secure

communication association between the Client and the AS. It is

RECOMMENDED that the Client considers the following as PoP input.

If the Client and the AS communicate over (D)TLS, the PoP input

is an exporter value computed as defined in Section 7.5 of

[RFC8446]. In particular, the exporter label MUST be 'EXPORTER-

ACE-Sign-Challenge-Client-AS' defined in Section 10.5 of this

document, together with an empty 'context_value', and 32 bytes as

'key_length'.

If the Client and the AS communicate over OSCORE, the PoP input

is the output PRK of a HKDF-Extract step [RFC5869], i.e., PRK =

HMAC-Hash(salt, IKM). In particular, 'salt' takes (x1 | x2),

where x1 is the ID Context of the OSCORE Security Context between

the Client and the AS, x2 is the Sender ID of the Client in that

Security Context, and | denotes byte string concatenation. Also,

'IKM' is the OSCORE Master Secret of the OSCORE Security Context

between the Client and the AS.

The HKDF MUST be one of the HMAC-based HKDF [RFC5869] algorithms

defined for COSE [I-D.ietf-cose-rfc8152bis-algs]. The Client and

AS may agree on the HKDF algorithm to use during the Client's

registration at the AS. HKDF SHA-256 is mandatory to implement.

Then, the Client computes the PoP evidence as follows.

If the OSCORE group is not a pairwise-only group, the PoP

evidence MUST be a signature. The Client computes the signature

by using the same private key and signature algorithm it uses for

signing messages in the OSCORE group. The private key corresponds

to the authentication credential used in the OSCORE group, for

which the equivalent COSE Key is specified in the 'req_cnf'

parameter above.

If the OSCORE group is a pairwise-only group, the PoP evidence

MUST be a MAC computed as follows, by using the HKDF Algorithm

HKDF SHA-256, which consists of composing the HKDF-Extract and

HKDF-Expand steps [RFC5869].

MAC = HKDF(salt, IKM, info, L)

The input parameters of HKDF are as follows.

salt takes as value the empty byte string.

¶

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

¶

- ¶

https://rfc-editor.org/rfc/rfc8446#section-7.5

IKM is computed as a cofactor Diffie-Hellman shared secret,

see Section 5.7.1.2 of [NIST-800-56A], using an ECDH algorithm

pre-agreed between Client and AS. The Client uses its own

Diffie-Hellman private key and the Diffie-Hellman public key

of the AS. For X25519 and X448, the procedure is described in

Section 5 of [RFC7748].

The Client's private key corresponds to the Client's

authentication credential used in the OSCORE group, for which

the equivalent COSE Key is specified in the 'req_cnf'

parameter above. The Client may obtain the Diffie-Hellman

public key of the AS during its registration process at the

AS.

The Client and AS may agree on the ECDH algorithm to use

during the Client's registration at the AS. The ECDH-SS +

HKDF-256 algorithm specified in Section 6.3.1 of [I-D.ietf-

cose-rfc8152bis-algs] is mandatory to implement.

info takes as value the PoP input.

L is equal to 8, i.e., the size of the MAC, in bytes.

Finally, the Client MUST include one of the two following parameters

in the payload of the POST request to the AS.

'client_cred_verify', defined in Section 3.1.3 of this document,

specifying the Client's PoP evidence as a signature, which is

computed as defined above. This parameter MUST be included if and

only if the OSCORE group is not a pairwise-only group.

'client_cred_verify_mac', defined in Section 3.1.4 of this

document, specifying the Client's PoP evidence as a MAC, which is

computed as defined above. This parameter MUST be included if and

only if the OSCORE group is a pairwise-only group.

An example of such a request is shown in Figure 2.

-

¶

¶

¶

- ¶

- ¶

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc7748#section-5
https://datatracker.ietf.org/doc/html/draft-ietf-cose-rfc8152bis-algs-12#section-6.3.1

Figure 2: Example C-to-AS POST /token request for an Access Token bound

to an asymmetric key.

3.1.1. 'context_id' Parameter

The 'context_id' parameter is an OPTIONAL parameter of the Access

Token request message defined in Section 5.8.1 of [I-D.ietf-ace-

oauth-authz]. This parameter provides a value that the Client wishes

to use with the RS as a hint for a security context. Its exact

content is profile specific.

3.1.2. 'salt_input' Parameter

The 'salt_input' parameter is an OPTIONAL parameter of the Access

Token request message defined in Section 5.8.1 of [I-D.ietf-ace-

oauth-authz]. This parameter provides a value that the Client wishes

to use as part of a salt with the RS, for deriving cryptographic

keying material. Its exact content is profile specific.

3.1.3. 'client_cred_verify' Parameter

The 'client_cred_verify' parameter is an OPTIONAL parameter of the

Access Token request message defined in Section 5.8.1. of [I-D.ietf-

ace-oauth-authz]. This parameter provides a signature computed by

the Client to prove the possession of its own private key.

 Header: POST (Code=0.02)

 Uri-Host: "as.example.com"

 Uri-Path: "token"

 Content-Format: "application/ace+cbor"

 Payload:

 {

 "audience" : "tempSensor4711",

 "scope" : "read",

 "context_id" : h'abcd0000',

 "salt_input" : h'00',

 "req_cnf" : {

 "COSE_Key" : {

 "kty" : EC2,

 "crv" : P-256,

 "x" : h'd7cc072de2205bdc1537a543d53c60a6acb62eccd890c7fa

 27c9e354089bbe13',

 "y" : h'f95e1d4b851a2cc80fff87d8e23f22afb725d535e515d020

 731e79a3b4e47120'

 }

 },

 "client_cred_verify" : h'...'

 (signature content omitted for brevity)

 }

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.1
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.1
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.1.

3.1.4. 'client_cred_verify_mac' Parameter

The 'client_cred_verify_mac' parameter is an OPTIONAL parameter of

the Access Token request message defined in Section 5.8.1. of [I-

D.ietf-ace-oauth-authz]. This parameter provides a Message

Authentication Code (MAC) computed by the Client to prove the

possession of its own private key.

3.2. AS-to-C: Access Token

After having verified the POST request to the /token endpoint and

that the Client is authorized to obtain an Access Token

corresponding to its Access Token request, the AS MUST verify the

proof-of-possession (PoP) evidence. In particular, the AS proceeds

as follows.

As PoP input, the AS uses the same value considered by the Client

in Section 3.1.

As public key of the Client, the AS uses the one specified in the

'req_cnf' parameter of the Access Token request.

If the Access Token request includes the 'client_cred_verify'

parameter, this specifies the PoP evidence as a signature. Then,

the AS verifies the signature by using the public key of the

Client.

If the Access Token request includes the 'client_cred_verify_mac'

parameter, this specifies the PoP evidence as a Message

Authentication Code (MAC).

Then, the AS recomputes the MAC through the same process taken by

the Client when preparing the value of the

'client_cred_verify_mac' parameter for the Access Token (see

Section 3.1), with the difference that the AS uses its own

Diffie-Hellman private key and the Diffie-Hellman public key of

the Client. The verification succeeds if and only if the

recomputed MAC is equal to the MAC conveyed as PoP evidence in

the Access Token request.

If both the 'client_cred_verify' and 'client_cred_verify_mac'

parameters are present, or if the verification of the PoP evidence

fails, the AS considers the Client request invalid.

If the Client request was invalid, or not authorized, the AS returns

an error response as described in Section 5.8.3 of [I-D.ietf-ace-

oauth-authz].

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.1.
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.3

If all verifications are successful, the AS responds as defined in

Section 5.8.2 of [I-D.ietf-ace-oauth-authz]. In particular:

The AS can signal that the use of Group OSCORE is REQUIRED for a

specific Access Token by including the 'ace_profile' parameter

with the value "coap_group_oscore" in the Access Token response.

The Client MUST use Group OSCORE towards all the Resource Servers

for which this Access Token is valid. Usually, it is assumed that

constrained devices will be pre-configured with the necessary

profile, so that this kind of profile signaling can be omitted.

The AS MUST NOT include the 'rs_cnf' parameter defined in [I-

D.ietf-ace-oauth-params]. In general, the AS may not be aware of

the authentication credentials (and public keys included thereof)

that the RSs use in the OSCORE group. Also, the Client is able to

retrieve the authentication credentials of other group members

from the responsible Group Manager, both upon joining the group

or later on as a group member, as defined in [I-D.ietf-ace-key-

groupcomm-oscore].

The AS MUST include the following information as metadata of the

issued Access Token. The use of CBOR web tokens (CWT) as specified

in [RFC8392] is RECOMMENDED.

The profile "coap_group_oscore". If the Access Token is a CWT,

this is placed in the 'ace_profile' claim of the Access Token, as

per Section 5.10 of [I-D.ietf-ace-oauth-authz].

The salt input specified in the 'salt_input' parameter of the

Token Request. If the Access Token is a CWT, the content of the

'salt_input' parameter MUST be placed in the 'salt_input' claim

of the Access Token, defined in Section 3.2.1 of this document.

The Context Id input specified in the 'context_id' parameter of

the Token Request. If the Access Token is a CWT, the content of

the 'context_id' parameter MUST be placed in the

'contextId_input' claim of the Access Token, defined in Section

3.2.2 of this document.

The public key that the client uses in the OSCORE group and

specified in the 'req_cnf' parameter of the Token request.

If the Access Token is a CWT, the public key MUST be specified in

the 'cnf' claim, which follows the syntax from Section 3.1 of

[RFC8747] when including Value Type "COSE_Key" (1) and specifying

an asymmetric key. In particular, the 'cnf' claim includes the

same COSE Key specified in the 'req_cnf' parameter of the Token

Request, i.e., the COSE Key equivalent to the authentication

credential that the Client uses in the OSCORE group.

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.2
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.10
https://rfc-editor.org/rfc/rfc8747#section-3.1

Alternative Value Types defined in future specifications are fine

to consider, if indicating a non-encrypted asymmetric key or

full-fledged autentication credential.

Figure 3 shows an example of such an AS response. The access token

has been truncated for readability.

Figure 3: Example AS-to-C Access Token response with the Group OSCORE

profile.

Figure 4 shows an example CWT Claims Set, containing the Client's

public key in the group (as pop-key) in the 'cnf' claim.

Figure 4: Example CWT Claims Set with OSCORE parameters.

The same CWT Claims Set as in Figure 4 and encoded in CBOR is shown

in Figure 5, using the value abbreviations defined in [I-D.ietf-ace-

oauth-authz] and [RFC8747]. The bytes in hexadecimal are reported in

the first column, while their corresponding CBOR meaning is reported

¶

¶

 Header: Created (Code=2.01)

 Content-Type: "application/ace+cbor"

 Payload:

 {

 "access_token" : h'8343a1010aa2044c53 ...'

 (remainder of CWT omitted for brevity),

 "ace_profile" : "coap_group_oscore",

 "expires_in" : 3600

 }

¶

 {

 "aud" : "tempSensorInLivingRoom",

 "iat" : "1360189224",

 "exp" : "1360289224",

 "scope" : "temperature_g firmware_p",

 "cnf" : {

 "COSE_Key" : {

 "kty" : EC2,

 "crv" : P-256,

 "x" : h'd7cc072de2205bdc1537a543d53c60a6acb62eccd890c7fa

 27c9e354089bbe13',

 "y" : h'f95e1d4b851a2cc80fff87d8e23f22afb725d535e515d020

 731e79a3b4e47120'

 },

 "salt_input" : h'00',

 "contextId_input" : h'abcd0000'

 }

after the "#" sign on the second column, for easiness of

readability.

NOTE: it should be checked (and in case fixed) that the values used

below (which are not yet registered) are the final values registered

by IANA.

Figure 5: Example CWT Claims Set with OSCORE parameters, CBOR encoded.

3.2.1. Salt Input Claim

The 'salt_input' claim provides a value that the Client requesting

the Access Token wishes to use as a part of a salt with the RS,

e.g., for deriving cryptographic material.

¶

¶

A7 # map(7)

 03 # unsigned(3)

 76 # text(22)

 74656D7053656E736F72496E4C6976696E67526F6F6D

 06 # unsigned(6)

 1A 5112D728 # unsigned(1360189224)

 04 # unsigned(4)

 1A 51145DC8 # unsigned(1360289224)

 09 # unsigned(9)

 78 18 # text(24)

 74656D70657261747572655F67206669726D776172655F70

 08 # unsigned(8)

 A1 # map(1)

 01 # unsigned(1)

 A4 # map(4)

 01 # unsigned(1)

 02 # unsigned(2)

 20 # negative(0)

 01 # unsigned(1)

 21 # negative(1)

 58 20 # bytes(32)

 D7CC072DE2205BDC1537A543D53C60A6ACB62ECCD890C7FA27C9

 E354089BBE13

 22 # negative(2)

 58 20 # bytes(32)

 F95E1D4B851A2CC80FFF87D8E23F22AFB725D535E515D020731E

 79A3B4E47120

 18 3C # unsigned(60)

 41 # bytes(1)

 00

 18 3D # unsigned(61)

 44 # bytes(4)

 ABCD0000

¶

This parameter specifies the value of the salt input, encoded as a

CBOR byte string.

3.2.2. Context ID Input Claim

The 'contextId_input' claim provides a value that the Client

requesting the Access Token wishes to use with the RS, as a hint for

a security context.

This parameter specifies the value of the Context ID input, encoded

as a CBOR byte string.

4. Client-RS Communication

This section details the POST request and response to the /authz-

info endpoint between the Client and the RS.

The proof-of-possession required to bind the Access Token to the

Client is explicitly performed when the RS receives and verifies a

request from the Client protected with Group OSCORE, either with the

group mode (see Section 8 of [I-D.ietf-core-oscore-groupcomm]) or

with the pairwise mode (see Section 9 of [I-D.ietf-core-oscore-

groupcomm]).

In particular, the RS uses the Client's public key bound to the

Access Token, either when verifying the signature of the request (if

protected with the group mode), or when verifying the request as

integrity-protected with pairwise keying material derived from the

two peers' authentication credentials and asymmetric keys (if

protected with the pairwise mode). In either case, the RS also

authenticates the Client.

Similarly, when receiving a protected response from the RS, the

Client uses the RS's public key either when verifying the signature

of the response (if protected with the group mode), or when

verifying the response as integrity-protected with pairwise keying

material derived from the two peers' authentication credentials and

asymmetric keys (if protected with the pairwise mode). In either

case, the Client also authenticates the RS. Mutual authentication is

only achieved after the client has successfully verified the

protected response from the RS.

Therefore, an attacker using a stolen Access Token cannot generate a

valid Group OSCORE message as protected through the Client's private

key, and thus cannot prove possession of the pop-key bound to the

Access Token. Also, if a Client legitimately owns an Access Token

but has not joined the OSCORE group, it cannot generate a valid

Group OSCORE message, as it does not store the necessary keying

material shared among the group members.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-8
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-9

Furthermore, a Client C1 is supposed to obtain a valid Access Token

from the AS, as including the public key associated with its own

private key used in the OSCORE group, together with its own Sender

ID in that OSCORE group (see Section 3.1). This allows the RS

receiving an Access Token to verify with the Group Manager of that

OSCORE group whether such a Client has indeed that Sender ID and an

authentication credential including that public key in the OSCORE

group.

As a consequence, a different Client C2, also member of the same

OSCORE group, is not able to impersonate C1, by: i) getting a valid

Access Token, specifying the Sender ID of C1 and a different (made-

up) public key; ii) successfully posting the Access Token to RS; and

then iii) attempting to communicate using Group OSCORE impersonating

C1, while blaming C1 for the consequences.

4.1. C-to-RS POST to authz-info Endpoint

The Client posts the Access Token to the /authz-info endpoint of the

RS, as defined in Section 5.10.1 of [I-D.ietf-ace-oauth-authz].

4.2. RS-to-C: 2.01 (Created)

The RS MUST verify the validity of the Access Token as defined in

Section 5.10.1 of [I-D.ietf-ace-oauth-authz], with the following

additions.

The RS MUST check that the claims 'salt_input', 'contextId_input'

and 'cnf' are included in the Access Token.

The RS considers: the content of the 'contextId_input' claim as

the GID of the OSCORE group; the content of the 'salt_input'

claim as the Sender ID that the Client has in the group; and the

content of the 'cnf' claim as the COSE Key equivalent to the

authentication credential that the Client uses in the group.

The RS MUST check whether it already stores an authentication

credential associated with the pair (GID, Sender ID) above, such

that the COSE Key specified in the 'cnf' claim is its equivalent

COSE Key.

If this is not the case, the RS MUST request the Client's

authentication credential to the Group Manager of the OSCORE

group as described in Section 10 of [I-D.ietf-ace-key-groupcomm-

oscore], specifying the Client's Sender ID in the OSCORE group,

i.e., the value of the 'salt_input' claim. Then, the RS performs

the following actions.

The RS MUST check whether the Client's authentication

credential retrieved from the Group Manager is such that the

¶

¶

¶

¶

*

¶

*

¶

¶

¶

-

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.10.1
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.10.1
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-13#section-10

COSE Key specified in the 'cnf' claim of the Access Token is

its equivalent COSE Key.

The RS MUST check that the Client's Sender ID provided by the

Group Manager together with the Client's authentication

credential matches the one retrieved from the 'salt_input'

claim of the Access Token.

If any of the checks above fails, the RS MUST consider the Access

Token non valid, and MUST respond to the Client with an error

response code equivalent to the CoAP code 4.00 (Bad Request).

If the Access Token is valid and further checks on its content are

successful, the RS associates the authorization information from the

Access Token with the Group OSCORE Security Context.

In particular, the RS associates the authorization information from

the Access Token with the 3-tuple (GID, SaltInput, AuthCred), where

GID is the Group Identifier of the OSCORE Group, while SaltInput and

AuthCred are the Sender ID and the authentication credential that

the Client uses in that OSCORE group, respectively.

The RS MUST keep this association up-to-date over time, as the 3-

tuple (GID, SaltInput, AuthCred) associated with the Access Token

might change. In particular:

If the OSCORE group is rekeyed (see Section 3.2 of [I-D.ietf-

core-oscore-groupcomm] and Section 20 of [I-D.ietf-ace-key-

groupcomm-oscore]), the Group Identifier also changes in the

group, and the new one replaces the current 'GID' value in the 3-

tuple.

If the Client requests and obtains a new OSCORE Sender ID from

the Group Manager (see Section 2.5.3.1 of [I-D.ietf-core-oscore-

groupcomm] and Section 9 of [I-D.ietf-ace-key-groupcomm-oscore]),

the new Sender ID replaces the current 'SaltInput' value in the

3-tuple.

Finally, the RS MUST send a 2.01 (Created) response to the Client,

as defined in Section 5.10.1 of [I-D.ietf-ace-oauth-authz].

4.3. Client-RS Secure Communication

When previously joining the OSCORE group, both the Client and RS

have already established the related Group OSCORE Security Context

to communicate as group members. Therefore, they can simply start to

securely communicate using Group OSCORE, without deriving any

additional keying material or security association.

¶

-

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-13#section-20
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-2.5.3.1
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-13#section-9
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.10.1

4.3.1. Client Side

After having received the 2.01 (Created) response from the RS,

following the POST request to the authz-info endpoint, the Client

starts the communication with the RS, by sending a request protected

with Group OSCORE using the Group OSCORE Security Context [I-D.ietf-

core-oscore-groupcomm].

When communicating with the RS to access the resources as specified

by the authorization information, the Client MUST use the Group

OSCORE Security Context of the OSCORE group, whose GID was specified

in the 'context_id' parameter of the Token request.

4.3.2. Resource Server Side

After successful validation of the Access Token as defined in

Section 4.2 and after having sent the 2.01 (Created) response, the

RS can start to communicate with the Client using Group OSCORE [I-

D.ietf-core-oscore-groupcomm].

When processing an incoming request protected with Group OSCORE, the

RS MUST consider as valid Client's authentication credential only

the one associated to the stored Access Token. As defined in Section

4.5, a possible change of authentication credential requires the

Client to upload to the RS a new Access Token bound to the new

authentication credential.

Additionally, for every incoming request, if Group OSCORE

verification succeeds, the verification of access rights is

performed as described in Section 4.4.

After the expiration of the Access Token related to a Group OSCORE

Security Context, if the Client uses the Group OSCORE Security

Context to send a request for any resource intended for OSCORE group

members and that requires an active Access Token, the RS MUST

respond with a 4.01 (Unauthorized) error message protected with the

Group OSCORE Security Context.

4.4. Access Rights Verification

The RS MUST follow the procedures defined in Section 5.10.2 of [I-

D.ietf-ace-oauth-authz]. If an RS receives a Group OSCORE-protected

request from a Client, the RS processes it according to [I-D.ietf-

core-oscore-groupcomm].

If the Group OSCORE verification succeeds, and the target resource

requires authorization, the RS retrieves the authorization

information from the Access Token associated with the Group OSCORE

Security Context. Then, the RS MUST verify that the action requested

on the resource is authorized.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.10.2

The response code MUST be 4.01 (Unauthorized) if the RS has no valid

Access Token for the Client. If the RS has an Access Token for the

Client but no actions are authorized on the target resource, the RS

MUST reject the request with a 4.03 (Forbidden). If the RS has an

Access Token for the Client but the requested action is not

authorized, the RS MUST reject the request with a 4.05 (Method Not

Allowed).

4.5. Change of Client's Authentication Credential in the Group

During its membership in the OSCORE group, the client might change

the authentication credential it uses in the group. When this

happens, the Client uploads the new authentication credential to the

Group Manager, as defined in Section 11 of [I-D.ietf-ace-key-

groupcomm-oscore].

After that, and in order to continue communicating with the RS, the

Client MUST perform the following actions.

The Client requests a new Access Token to the AS, as defined in

Section 3. In particular, when sending the POST request as

defined in Section 3.1, the Client indicates:

The current Group Identifier of the OSCORE group, as value

of the 'context_id' parameter.

The current Sender ID it has in the OSCORE group, as value

of the 'salt_input' parameter.

The public key of the new authentication credential it uses

in the OSCORE group, as value of the 'req_cnf' parameter. In

particular, the specified public key is the COSE Key

equivalent to the new authentication credential that the

Client uses in the OSCORE group.

The proof-of-possession (PoP) evidence corresponding to the

public key of the new authentication credential, as value of

the 'client_cred_verify' or 'client_cred_verify_mac'

parameter.

After receiving the response from the AS (see Section 3.2), the

Client performs the same exchanges with the RS as defined in

Section 4.

When receiving the new Access Token, the RS performs the same steps

defined in Section 4.2, with the following addition, in case the new

Access Token is successfully verified and stored. The RS also

deletes the old Access Token, i.e., the one whose associated 3-tuple

has the same GID and SaltInput values as in the 3-tuple including

¶

¶

¶

1.

¶

*

¶

*

¶

*

¶

*

¶

2.

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-13#section-11

the new authentication credential of the Client and associated with

the new Access Token.

5. Secure Communication with the AS

As specified in the ACE framework (see Sections 5.8 and 5.9 of [I-

D.ietf-ace-oauth-authz]), the requesting entity (RS and/or Client)

and the AS communicate via the /token or /introspection endpoint.

The use of CoAP and OSCORE [RFC8613] for this communication is

RECOMMENDED in this profile. Other protocols fulfilling the security

requirements defined in Sections 5 and 6 of [I-D.ietf-ace-oauth-

authz] (such as HTTP and DTLS or TLS) MAY be used instead.

If OSCORE [RFC8613] is used, the requesting entity and the AS are

expected to have a pre-established Security Context in place. How

this Security Context is established is out of the scope of this

profile. Furthermore, the requesting entity and the AS communicate

using OSCORE through the /introspection endpoint as specified in

Section 5.9 of [I-D.ietf-ace-oauth-authz], and through the /token

endpoint as specified in Section 5.8 of [I-D.ietf-ace-oauth-authz].

6. Discarding the Security Context

As members of an OSCORE group, the Client and the RS may

independently leave the group or be forced to, e.g., if compromised

or suspected so. Upon leaving the OSCORE group, the Client or RS

also discards the Group OSCORE Security Context, which may anyway be

renewed by the Group Manager through a group rekeying process (see

Section 3.2 of [I-D.ietf-core-oscore-groupcomm]).

The Client or RS can acquire a new Group OSCORE Security Context, by

re-joining the OSCORE group, e.g., by using the approach defined in

[I-D.ietf-ace-key-groupcomm-oscore]. In such a case, the Client

SHOULD request a new Access Token and post it to the RS.

7. CBOR Mappings

The new parameters defined in this document MUST be mapped to CBOR

types as specified in Figure 6, using the given integer abbreviation

for the map key.

¶

¶

¶

¶

¶

¶

/------------------------+----------+------------\

| Parameter name | CBOR Key | Value Type |

|------------------------+----------+------------|

| context_id | TBD | bstr |

| salt_input | TBD | bstr |

| client_cred_verify | TBD | bstr |

| client_cred_verify_mac | TBD | bstr |

\------------------------+----------+------------/

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.9
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-6
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.9
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-3.2

Figure 6: CBOR mappings for new parameters.

The new claims defined in this document MUST be mapped to CBOR types

as specified in Figure 7, using the given integer abbreviation for

the map key.

Figure 7: CBOR mappings for new claims.

8. Security Considerations

This document specifies a profile for the Authentication and

Authorization for Constrained Environments (ACE) framework [I-

D.ietf-ace-oauth-authz]. Thus, the general security considerations

from the ACE framework also apply to this profile.

The proof-of-possession (PoP) key bound to an Access Token is always

an asymmetric key, i.e., the public key that the Client uses in the

OSCORE group. This means that there is never a same shared secret

used as PoP key with possible multiple RSs. Therefore, it is

possible and safe for the AS to issue an Access Token whose audience

comprises multiple RSs.

In such a case, as per Section 6.1 of [I-D.ietf-ace-oauth-authz],

the AS has to ensure the integrity protection of the Access Token by

protecting it through an asymmetric signature. In addition, the used

audience has to correctly identify all the RSs that are intended

recipients of the Access Token. As a particular case, the audience

can be the name of the OSCORE group, if the Access Token is intended

to all the RSs in that group.

Furthermore, this document inherits the general security

considerations about Group OSCORE [I-D.ietf-core-oscore-groupcomm],

as to the specific use of Group OSCORE according to this profile.

Group OSCORE is designed to secure point-to-point as well as point-

to-multipoint communications, providing a secure binding between a

single request and multiple corresponding responses. In particular,

Group OSCORE fulfills the same security requirements of OSCORE, for

group requests and responses.

¶

/-----------------+----------+------------\

| Claim name | CBOR Key | Value Type |

|-----------------+----------+------------|

| salt_input | TBD | bstr |

| contextId_input | TBD | bstr |

\-----------------+----------+------------/

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-6.1

Group OSCORE ensures source authentication of messages both in group

mode (see Section 8 of [I-D.ietf-core-oscore-groupcomm]) and in

pairwise mode (see Section 9 of [I-D.ietf-core-oscore-groupcomm]).

When protecting an outgoing message in group mode, the sender uses

its private key to compute a digital signature, which is embedded in

the protected message. The group mode can be used to protect

messages sent over multicast to multiple recipients, or sent over

unicast to one recipient.

When protecting an outgoing message in pairwise mode, the sender

uses a pairwise symmetric key, as derived from the asymmetric keys

of the two peers exchanging the message. The pairwise mode can be

used to protect only messages intended to one recipient.

9. Privacy Considerations

This document specifies a profile for the Authentication and

Authorization for Constrained Environments (ACE) framework [I-

D.ietf-ace-oauth-authz]. Thus the general privacy considerations

from the ACE framework also apply to this profile.

As this profile uses Group OSCORE, the privacy considerations from

[I-D.ietf-core-oscore-groupcomm] apply to this document as well.

An unprotected response to an unauthorized request may disclose

information about the RS and/or its existing relationship with the

Client. It is advisable to include as little information as possible

in an unencrypted response. However, since both the Client and the

RS share a Group OSCORE Security Context, unauthorized, yet

protected requests are followed by protected responses, which can

thus include more detailed information.

Although it may be encrypted, the Access Token is sent in the clear

to the /authz-info endpoint at the RS. Thus, if the Client uses the

same single Access Token from multiple locations with multiple

Resource Servers, it can risk being tracked through the Access

Token's value.

Note that, even though communications are protected with Group

OSCORE, some information might still leak, due to the observable

size, source address and destination address of exchanged messages.

10. IANA Considerations

This document has the following actions for IANA.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-8
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-9

10.1. ACE Profile Registry

IANA is asked to add the following entry to the "ACE Profile"

registry defined in Section 8.8 of [I-D.ietf-ace-oauth-authz].

Name: coap_group_oscore

Description: Profile to secure communications between constrained

nodes using the Authentication and Authorization for Constrained

Environments framework, by enabling authentication and fine-

grained authorization of members of an OSCORE group, that use a

pre-established Group OSCORE Security Context to communicate with

Group OSCORE. Optionally, the dual mode defined in Appendix A

additionally establishes a pairwise OSCORE Security Context, and

thus also enables OSCORE communication between two members of the

OSCORE group.

CBOR Value: TBD (value between 1 and 255)

Reference: [[this document]]

10.2. OAuth Parameters Registry

IANA is asked to add the following entries to the "OAuth Parameters"

registry.

Name: "context_id"

Parameter Usage Location: token request

Change Controller: IESG

Specification Document(s): Section 3.1.1 of [[this document]]

Name: "salt_input"

Parameter Usage Location: token request

Change Controller: IESG

Specification Document(s): Section 3.1.2 of [[this document]]

Name: "client_cred_verify"

Parameter Usage Location: token request

Change Controller: IESG

Specification Document(s): Section 3.1.3 of [[this document]]

Name: "client_cred_verify_mac"

¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-8.8

Parameter Usage Location: token request

Change Controller: IESG

Specification Document(s): Section 3.1.4 of [[this document]]

Name: "client_cred"

Parameter Usage Location: token request

Change Controller: IESG

Specification Document(s): Appendix A.2.1.1 of [[this document]]

10.3. OAuth Parameters CBOR Mappings Registry

IANA is asked to add the following entries to the "OAuth Parameters

CBOR Mappings" registry defined in Section 8.10 of [I-D.ietf-ace-

oauth-authz].

Name: "context_id"

CBOR Key: TBD

Value Type: bstr

Reference: Section 3.1.1 of [[this document]]

Name: "salt_input"

CBOR Key: TBD

Value Type: bstr

Reference: Section 3.1.2 of [[this document]]

Name: "client_cred_verify"

CBOR Key: TBD

Value Type: bstr

Reference: Section 3.1.3 of [[this document]]

Name: "client_cred_verify_mac"

CBOR Key: TBD

Value Type: bstr

Reference: Section 3.1.4 of [[this document]]

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-8.10

Name: "client_cred"

CBOR Key: TBD

Value Type: bstr

Reference: Appendix A.2.1.1 of [[this document]]

10.4. CBOR Web Token Claims Registry

IANA is asked to add the following entries to the "CBOR Web Token

Claims" registry.

Claim Name: "salt_input"

Claim Description: Client provided salt input

JWT Claim Name: "N/A"

Claim Key: TBD

Claim Value Type(s): bstr

Change Controller: IESG

Specification Document(s): Section 3.2.1 of [[this document]]

Claim Name: "contextId_input"

Claim Description: Client context id input

JWT Claim Name: "N/A"

Claim Key: TBD

Claim Value Type(s): bstr

Change Controller: IESG

Specification Document(s): Section 3.2.2 of [[this document]]

Claim Name: "client_cred"

Claim Description: Client Credential

JWT Claim Name: "N/A"

Claim Key: TBD

Claim Value Type(s): map

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

[I-D.ietf-ace-key-groupcomm-oscore]

[I-D.ietf-ace-oauth-authz]

[I-D.ietf-ace-oauth-params]

[I-D.ietf-ace-oscore-profile]

Change Controller: IESG

Specification Document(s): Appendix A.2.2.2 of [[this document]]

10.5. TLS Exporter Label Registry

IANA is asked to add the following entry to the "TLS Exporter Label"

registry defined in Section 6 of [RFC5705] and updated in Section 12

of [RFC8447].

Value: EXPORTER-ACE-Sign-Challenge-Client-AS

DTLS-OK: Y

Recommended: N

Reference: [[this document]] (Section 3.1)

11. References

11.1. Normative References

Tiloca, M., Park, J., and F.

Palombini, "Key Management for OSCORE Groups in ACE",

Work in Progress, Internet-Draft, draft-ietf-ace-key-

groupcomm-oscore-13, 7 March 2022, <https://www.ietf.org/

archive/id/draft-ietf-ace-key-groupcomm-oscore-13.txt>.

Seitz, L., Selander, G., Wahlstroem, E.,

Erdtman, S., and H. Tschofenig, "Authentication and

Authorization for Constrained Environments (ACE) using

the OAuth 2.0 Framework (ACE-OAuth)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-authz-46, 8 November

2021, <https://www.ietf.org/archive/id/draft-ietf-ace-

oauth-authz-46.txt>.

Seitz, L., "Additional OAuth Parameters for Authorization

in Constrained Environments (ACE)", Work in Progress,

Internet-Draft, draft-ietf-ace-oauth-params-16, 7

September 2021, <https://www.ietf.org/archive/id/draft-

ietf-ace-oauth-params-16.txt>.

Palombini, F., Seitz, L., Selander,

G., and M. Gunnarsson, "OSCORE Profile of the

Authentication and Authorization for Constrained

Environments Framework", Work in Progress, Internet-

Draft, draft-ietf-ace-oscore-profile-19, 6 May 2021,

<https://www.ietf.org/archive/id/draft-ietf-ace-oscore-

profile-19.txt>.

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc5705#section-6
https://rfc-editor.org/rfc/rfc8447#section-12
https://www.ietf.org/archive/id/draft-ietf-ace-key-groupcomm-oscore-13.txt
https://www.ietf.org/archive/id/draft-ietf-ace-key-groupcomm-oscore-13.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-46.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-authz-46.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-params-16.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oauth-params-16.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oscore-profile-19.txt
https://www.ietf.org/archive/id/draft-ietf-ace-oscore-profile-19.txt

[I-D.ietf-core-groupcomm-bis]

[I-D.ietf-core-oscore-groupcomm]

[I-D.ietf-cose-rfc8152bis-algs]

[I-D.ietf-cose-rfc8152bis-struct]

[NIST-800-56A]

[RFC2119]

[RFC5705]

[RFC5869]

Dijk, E., Wang, C., and M. Tiloca,

"Group Communication for the Constrained Application

Protocol (CoAP)", Work in Progress, Internet-Draft,

draft-ietf-core-groupcomm-bis-06, 7 March 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-groupcomm-

bis-06.txt>.

Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,

and J. Park, "Group OSCORE - Secure Group Communication

for CoAP", Work in Progress, Internet-Draft, draft-ietf-

core-oscore-groupcomm-14, 7 March 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-oscore-

groupcomm-14.txt>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", Work in Progress, Internet-Draft,

draft-ietf-cose-rfc8152bis-algs-12, 24 September 2020,

<https://www.ietf.org/archive/id/draft-ietf-cose-

rfc8152bis-algs-12.txt>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", Work in Progress, Internet-

Draft, draft-ietf-cose-rfc8152bis-struct-15, 1 February

2021, <https://www.ietf.org/archive/id/draft-ietf-cose-

rfc8152bis-struct-15.txt>.

Barker, E., Chen, L., Roginsky, A., Vassilev, A.,

and R. Davis, "Recommendation for Pair-Wise Key-

Establishment Schemes Using Discrete Logarithm

Cryptography - NIST Special Publication 800-56A, Revision

3", April 2018, <https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-56Ar3.pdf>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rescorla, E., "Keying Material Exporters for Transport

Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,

March 2010, <https://www.rfc-editor.org/info/rfc5705>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-06.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-06.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-06.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-14.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-14.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-14.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-algs-12.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-algs-12.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-struct-15.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-struct-15.txt
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869

[RFC6749]

[RFC6920]

[RFC7252]

[RFC7748]

[RFC8174]

[RFC8392]

[RFC8447]

[RFC8613]

[RFC8747]

[RFC8949]

[I-D.ietf-ace-dtls-authorize]

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,

Keranen, A., and P. Hallam-Baker, "Naming Things with

Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,

<https://www.rfc-editor.org/info/rfc6920>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/info/rfc7748>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jones, M., Wahlstroem, E., Erdtman, S., and H.

Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI

10.17487/RFC8392, May 2018, <https://www.rfc-editor.org/

info/rfc8392>.

Salowey, J. and S. Turner, "IANA Registry Updates for TLS

and DTLS", RFC 8447, DOI 10.17487/RFC8447, August 2018,

<https://www.rfc-editor.org/info/rfc8447>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.

Tschofenig, "Proof-of-Possession Key Semantics for CBOR

Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March

2020, <https://www.rfc-editor.org/info/rfc8747>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

11.2. Informative References

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6920
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8447
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8747
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949

[I-D.ietf-ace-mqtt-tls-profile]

[I-D.ietf-cose-cbor-encoded-cert]

[I-D.ietf-tls-dtls13]

[I-D.tiloca-core-oscore-discovery]

[RFC6347]

[RFC7925]

Gerdes, S., Bergmann, O., Bormann, C., Selander, G., and

L. Seitz, "Datagram Transport Layer Security (DTLS)

Profile for Authentication and Authorization for

Constrained Environments (ACE)", Work in Progress,

Internet-Draft, draft-ietf-ace-dtls-authorize-18, 4 June

2021, <https://www.ietf.org/archive/id/draft-ietf-ace-

dtls-authorize-18.txt>.

Sengul, C. and A. Kirby, "Message

Queuing Telemetry Transport (MQTT)-TLS profile of

Authentication and Authorization for Constrained

Environments (ACE) Framework", Work in Progress,

Internet-Draft, draft-ietf-ace-mqtt-tls-profile-15, 1

March 2022, <https://www.ietf.org/archive/id/draft-ietf-

ace-mqtt-tls-profile-15.txt>.

Mattsson, J. P., Selander, G., Raza, S., Höglund, J.,

and M. Furuhed, "CBOR Encoded X.509 Certificates (C509

Certificates)", Work in Progress, Internet-Draft, draft-

ietf-cose-cbor-encoded-cert-03, 10 January 2022,

<https://www.ietf.org/archive/id/draft-ietf-cose-cbor-

encoded-cert-03.txt>.

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-43, 30 April 2021, <https://www.ietf.org/

internet-drafts/draft-ietf-tls-dtls13-43.txt>.

Tiloca, M., Amsuess, C., and P.

V. D. Stok, "Discovery of OSCORE Groups with the CoRE

Resource Directory", Work in Progress, Internet-Draft,

draft-tiloca-core-oscore-discovery-11, 7 March 2022,

<https://www.ietf.org/archive/id/draft-tiloca-core-

oscore-discovery-11.txt>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Tschofenig, H., Ed. and T. Fossati, "Transport Layer

Security (TLS) / Datagram Transport Layer Security (DTLS)

Profiles for the Internet of Things", RFC 7925, DOI

https://www.ietf.org/archive/id/draft-ietf-ace-dtls-authorize-18.txt
https://www.ietf.org/archive/id/draft-ietf-ace-dtls-authorize-18.txt
https://www.ietf.org/archive/id/draft-ietf-ace-mqtt-tls-profile-15.txt
https://www.ietf.org/archive/id/draft-ietf-ace-mqtt-tls-profile-15.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-03.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-03.txt
https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/archive/id/draft-tiloca-core-oscore-discovery-11.txt
https://www.ietf.org/archive/id/draft-tiloca-core-oscore-discovery-11.txt
https://www.rfc-editor.org/info/rfc6347

[RFC8446]

10.17487/RFC7925, July 2016, <https://www.rfc-editor.org/

info/rfc7925>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Dual Mode (Group OSCORE & OSCORE)

This appendix defines the dual mode of this profile, which allows

using both OSCORE [RFC8613] and Group OSCORE [I-D.ietf-core-oscore-

groupcomm] as security protocols, by still relying on a single

Access Token.

That is, the dual mode of this profile specifies how a Client uses

CoAP [RFC7252] to communicate to a single Resource Server, or CoAP

over IP multicast [I-D.ietf-core-groupcomm-bis] to communicate to

multiple Resource Servers that are members of a group and share a

common set of resources.

In particular, the dual mode of this profile uses two complementary

security protocols to provide secure communication between the

Client and the Resource Server(s). That is, it defines the use of

either OSCORE or Group OSCORE to protect unicast requests addressed

to a single Resource Server, as well as possible responses.

Additionally, it defines the use of Group OSCORE to protect

multicast requests sent to a group of Resource Servers, as well as

possible individual responses. Like in the main mode of this

profile, the Client and the Resource Servers need to have already

joined the same OSCORE group, for instance by using the approach

defined in [I-D.ietf-ace-key-groupcomm-oscore], which is also based

on ACE.

The Client proves its access to be authorized to the Resource Server

by using an Access Token, which is bound to a key (the proof-of-

possession key). This profile mode uses OSCORE to achieve proof of

possession, and OSCORE or Group OSCORE to achieve server

authentication.

Unlike in the main mode of this profile, where a public key is used

as pop-key, this dual mode uses OSCORE-related, symmetric keying

material as pop-key instead. Furthermore, this dual mode provides

proof of Client's membership to the correct OSCORE group, by

securely binding the pre-established Group OSCORE Security Context

to the pairwise OSCORE Security Context newly established between

the Client and the Resource Server.

In addition to the terminology used for the main mode of this

profile, the rest of this appendix refers also to "pairwise OSCORE

Security Context" as to an OSCORE Security Context established

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc8446

between only one Client and one Resource Server, and used to

communicate with OSCORE [RFC8613].

A.1. Protocol Overview

This section provides an overview on how to use the ACE framework

for authentication and authorization [I-D.ietf-ace-oauth-authz] to

secure communications between a Client and a (set of) Resource

Server(s) using OSCORE [RFC8613] and/or Group OSCORE [I-D.ietf-core-

oscore-groupcomm].

Just as for main mode of this profile overviewed in Section 2, the

process for joining the OSCORE group through the respective Group

Manager as defined in [I-D.ietf-ace-key-groupcomm-oscore] must take

place before the process described in the rest of this section, and

is out of the scope of this profile.

An overview of the protocol flow for the dual mode of this profile

is shown in Figure 8. In the figure, it is assumed that both RS1 and

RS2 are associated with the same AS. It is also assumed that C, RS1

and RS2 have previously joined an OSCORE group with Group Identifier

(gid) "abcd0000", and got assigned Sender ID (sid) "0", "1" and "2"

in the group, respectively. The names of messages coincide with

those of [I-D.ietf-ace-oauth-authz] when applicable.

¶

¶

¶

¶

C RS1 RS2 AS

| [--- Resource Request -->] | | |

| | | |

| [<---- AS Request ------] | | |

| Creation Hints | | |

| | | |

|-------- POST /token --->|

| (aud: RS1, sid: 0, gid: abcd0000, ...) | |

| | | |

|<-------------------------------- Access Token + RS Information -----|

| | (aud: RS1, sid: 0, gid: abcd0000, ...) |

| | | |

|---- POST /authz-info ----->| | |

| (access_token, N1, ID1) | | |

| | | |

|<-- 2.01 Created (N2, ID2) -| | |

| | | |

/Pairwise /Pairwise | |

 Security Context Security Context | |

 Derivation/ Derivation/ | |

| | | |

|-------- POST /token --->|

| (aud: RS2, sid: 0, gid: abcd0000, ...) | |

| | | |

|<-------------------------------- Access Token + RS Information -----|

| | (aud: RS2, sid: 0, gid: abcd0000, ...) |

| | | |

|---- POST /authz-info ------------------>| |

| (access_token, N1', ID1') | | |

| | | |

|<-- 2.01 Created (N2', ID2')-------------| |

| | | |

/Pairwise Security | /Pairwise Security |

 Context Derivation/ | Context Derivation/ |

| | | |

|----- OSCORE Request ------>| | |

| (kid: ID2) | | |

| | | |

| | | |

| | | |

| | | |

| /Proof-of-possession; | |

| Pairwise Security | |

| Context storage/ | |

| | | |

|<---- OSCORE Response ------| | |

| | | |

/Proof-of-possession; | | |

 Pairwise Security | | |

 Context storage/ | | |

| | | |

/Mutual authentication | | |

 between C and RS1 | | |

 (as OSCORE peers)/ | | |

| | | |

| | | |

|- Group OSCORE Request -+-->| | |

| (kid: 0, gid: abcd0000) \-------------->| |

| | | |

|<-- Group OSCORE Response --| | |

| (kid: 1) | | |

| | | |

/Mutual authentication | | |

 between C and RS1 | | |

 (as group members)/ | | |

| | | |

|<-- Group OSCORE Response ---------------| |

| (kid: 2) | | |

| | | |

/Mutual authentication | | |

 between C and RS2 | | |

 (as group members)/ | | |

| | | |

| ... | | |

Figure 8: Protocol Overview.

A.1.1. Pre-Conditions

The same pre-conditions for the main mode of this profile (see

Section 2.1) hold for the dual mode described in this appendix.

A.1.2. Access Token Posting

After having retrieved the Access Token from the AS, the Client

generates a nonce N1 and an identifier ID1 unique in the sets of its

own Recipient IDs from its pairwise OSCORE Security Contexts. The

client then posts both the Access Token, N1 and its chosen ID to the

RS, using the /authz-info endpoint and mechanisms specified in

Section 5.10 of [I-D.ietf-ace-oauth-authz] and Content-Format =

application/ace+cbor.

When using the dual mode of this profile, the communication with the

authz-info endpoint is not protected, except for update of access

rights. Note that, when using the dual mode, this request can

alternatively be protected with Group OSCORE, using the Group OSCORE

Security Context paired with the pairwise OSCORE Security Context

originally established with the first Access Token posting.

If the Access Token is valid, the RS replies to this POST request

with a 2.01 (Created) response with Content-Format = application/

ace+cbor, which in a CBOR map contains a nonce N2 and an identifier

ID2 unique in the sets of its own Recipient IDs from its pairwise

OSCORE Security Contexts.

A.1.3. Setup of the Pairwise OSCORE Security Context

After sending the 2.01 (Created) response, the RS sets the ID

Context of the pairwise OSCORE Security Context (see Section 3 of

[RFC8613]) to the Group Identifier of the OSCORE group specified in

the Access Token, concatenated with N1, concatenated with N2,

concatenated with the value in the contextId parameter of the

OSCORE_Input_Material provided in the 'cnf' claim of the Access

Token.

Then, the RS derives the complete pairwise OSCORE Security Context

associated with the received Access Token, following Section 3.2 of

[RFC8613]. In practice, the RS maintains a collection of Security

Contexts with associated authorization information, for all the

clients that it is currently communicating with, and the

authorization information is a policy used as input when processing

requests from those clients.

During the derivation process, the RS uses: the ID Context above;

the exchanged nonces N1 and N2; the identifier ID1 received from the

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.10
https://rfc-editor.org/rfc/rfc8613#section-3
https://rfc-editor.org/rfc/rfc8613#section-3.2

Client, set as its own OSCORE Sender ID; the identifier ID2 provided

to the Client, set as its Recipient ID for the Client; and the

parameters in the Access Token. The derivation process uses also the

Master Secret of the OSCORE group, that the RS knows as a group

member, as well as the Sender ID of the Client in the OSCORE group,

which is specified in the Access Token. This ensures that the

pairwise OSCORE Security Context is securely bound to the Group

OSCORE Security Context of the OSCORE group.

Finally, the RS stores the association between i) the authorization

information from the Access Token; and ii) the Group Identifier of

the OSCORE group together with the Sender ID and the authentication

credential of the Client in that group.

After having received the nonce N2, the Client sets the ID Context

in its pairwise OSCORE Security Context (see Section 3 of [RFC8613])

to the Group Identifier of the OSCORE group, concatenated with N1,

concatenated with N2, concatenated with the value in the contextId

parameter of the OSCORE_Input_Material provided in the 'cnf'

parameter of the Access Token response from the AS. Then, the Client

derives the complete pairwise OSCORE Security Context, following

Section 3.2 of [RFC8613].

During the derivation process, the Client uses: the ID Context

above, the exchanged nonces N1 and N2; the identifier ID1 provided

to the RS, set as its own Recipient ID for the RS; the identifier

ID2 received from the RS, set as its own OSCORE Sender ID; and the

parameters received from the AS. The derivation process uses also

the Master Secret of the OSCORE group, that the Client knows as a

group member, as well as its own Sender ID in the OSCORE group.

When the Client communicates with the RS using the pairwise OSCORE

Security Context, the RS achieves proof-of-possession of the

credentials bound to the Access Token. Also, the RS verifies that

the Client is a legitimate member of the OSCORE group.

A.1.4. Secure Communication

Other than starting the communication with the RS using Group OSCORE

as described in Section 4.3, the Client can send to the RS a request

protected with OSCORE, using the pairwise OSCORE Security Context.

If the request is successfully verified, then the RS stores the

pairwise OSCORE Security Context, and uses it to protect the

possible response, as well as further communications with the

Client, until the Access Token is deleted, due to, for example,

expiration. This pairwise OSCORE Security Context is discarded when

an Access Token (whether the same or different) is used to

successfully derive a new pairwise OSCORE Security Context.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-3
https://rfc-editor.org/rfc/rfc8613#section-3.2

As discussed in Section 7 of [I-D.ietf-ace-oscore-profile], the use

of random nonces N1 and N2 during the exchange between the Client

and the RS prevents the reuse of an Authenticated Encryption with

Associated Data (AEAD) nonce/key pair for two different messages.

Reuse might otherwise occur when Client and RS derive a new pairwise

OSCORE Security Context from an existing (non-expired) Access Token,

e.g., in case of reboot of either the Client or the RS, and might

lead to loss of both confidentiality and integrity.

Additionally, just as per the main mode of this profile (see Section

4.3), the Client and RS can also securely communicate by protecting

messages with Group OSCORE, using the Group OSCORE Security Context

already established upon joining the OSCORE group.

A.2. Client-AS Communication

This section details the Access Token POST Request that the Client

sends to the /token endpoint of the AS, as well as the related

Access Token response.

Section 3.2 of [RFC8613] defines how to derive a pairwise OSCORE

Security Context based on a shared Master Secret and a set of other

parameters, established between the OSCORE client and server, which

the client receives from the AS in this exchange.

The proof-of-possession key (pop-key) received from the AS in this

exchange MUST be used to build the Master Secret in OSCORE (see

Appendix A.3.3 and Appendix A.3.4).

A.2.1. C-to-AS: POST to Token Endpoint

The Client-to-AS request is specified in Section 5.8.1 of [I-D.ietf-

ace-oauth-authz]. The Client MUST send this POST request to the /

token endpoint over a secure channel that guarantees authentication,

message integrity and confidentiality.

The POST request is formatted as the analogous Client-to-AS request

in the main mode of this profile (see Section 3.1), with the

following modifications.

The parameter 'req_cnf' MUST NOT be included in the payload.

The parameter 'client_cred', defined in Appendix A.2.1.1 of this

document, MUST be included in the payload. This parameter

specifies the public key that the Client uses in the OSCORE

group, whose identifier is indicated in the 'context_id'

parameter. In particular, the specified public key is the COSE

Key equivalent to the authentication credential that the Client

uses in the OSCORE group.

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-7
https://rfc-editor.org/rfc/rfc8613#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.1

The proof-of-possession (PoP) evidence included in the

'client_cred_verify' or 'client_cred_verify_mac' parameter is

computed by using the Client's private key associated with the

public key in the 'client_cred' parameter above.

An example of such a request is shown in Figure 9.

Figure 9: Example C-to-AS POST /token request for an Access Token bound

to a symmetric key.

Later on, the Client may want to update its current access rights,

without changing the existing pairwise OSCORE Security Context with

the RS. In this case, the Client MUST include in its POST request to

the /token endpoint a 'req_cnf' parameter, defined in Section 3.1 of

[I-D.ietf-ace-oauth-params], which MUST include a 'kid' field, as

defined in Section 3.1 of [RFC8747]. The 'kid' field has as value a

CBOR byte string containing the OSCORE_Input_Material Identifier

(assigned as discussed in Appendix A.2.2).

This identifier, together with other information such as audience,

can be used by the AS to determine the shared secret bound to the

proof-of-possession Access Token and therefore MUST identify a

symmetric key that was previously generated by the AS as a shared

secret for the communication between the Client and the RS. The AS

*

¶

¶

 Header: POST (Code=0.02)

 Uri-Host: "as.example.com"

 Uri-Path: "token"

 Content-Format: "application/ace+cbor"

 Payload:

 {

 "audience" : "tempSensor4711",

 "scope" : "read",

 "context_id" : h'abcd0000',

 "salt_input" : h'00',

 "client_cred" : {

 "COSE_Key" : {

 "kty" : EC2,

 "crv" : P-256,

 "x" : h'd7cc072de2205bdc1537a543d53c60a6acb62eccd890c7fa

 27c9e354089bbe13',

 "y" : h'f95e1d4b851a2cc80fff87d8e23f22afb725d535e515d020

 731e79a3b4e47120'

 }

 },

 "client_cred_verify" : h'...'

 (signature content omitted for brevity),

 }

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-params-16#section-3.1
https://rfc-editor.org/rfc/rfc8747#section-3.1

MUST verify that the received value identifies a proof-of-possession

key that has previously been issued to the requesting Client. If

that is not the case, the Client-to-AS request MUST be declined with

the error code "invalid_request" as defined in Section 5.8.3 of [I-

D.ietf-ace-oauth-authz].

This POST request for updating the access rights of an Access Token

SHOULD NOT include the parameters 'salt_input', 'context_id',

'client_cred' and 'client_cred_verify'. An exception is the case

defined in Appendix A.3.6, where the Client, following a change of

authentication credential in the OSCORE group, requests a new Access

Token associated with the public key of the new authentication

credential, while still without changing the existing pairwise

OSCORE Security Context with the RS.

An example of such a request is shown in Figure 10.

Figure 10: Example C-to-AS POST /token request for updating rights to

an Access Token bound to a symmetric key.

A.2.1.1. 'client_cred' Parameter

The 'client_cred' parameter is an OPTIONAL parameter of the Access

Token request message defined in Section 5.8.1. of [I-D.ietf-ace-

oauth-authz]. This parameter provides an asymmetric key that the

Client wishes to use as its own public key, but which is not used as

proof-of-possession key.

This parameter follows the syntax of the 'cnf' claim from

Section 3.1 of [RFC8747] when including Value Type "COSE_Key" (1)

and specifying an asymmetric key. Alternative Value Types defined in

future specifications are fine to consider if indicating a non-

encrypted asymmetric key.

¶

¶

¶

 Header: POST (Code=0.02)

 Uri-Host: "as.example.com"

 Uri-Path: "token"

 Content-Format: "application/ace+cbor"

 Payload:

 {

 "audience" : "tempSensor4711",

 "scope" : "read",

 "req_cnf" : {

 "kid" : h'01'

 }

 }

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.3
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.1.
https://rfc-editor.org/rfc/rfc8747#section-3.1

A.2.2. AS-to-C: Access Token

After having verified the POST request to the /token endpoint and

that the Client is authorized to obtain an Access Token

corresponding to its Access Token request, the AS MUST verify the

proof-of-possession (PoP) evidence.

In particular, the AS proceeds as defined in Section 3.2, with the

difference that it uses the public key specified in the

'client_cred' parameter as public key of the Client.

If both the 'client_cred_verify' and 'client_cred_verify_mac'

parameters are present, or if the verification of the PoP evidence

fails, the AS considers the Client request invalid. The AS does not

perform this operation when asked to update a previously released

Access Token.

If all verifications are successful, the AS responds as defined in

Section 5.8.2 of [I-D.ietf-ace-oauth-authz]. If the Client request

was invalid, or not authorized, the AS returns an error response as

described in Section 5.8.3 of [I-D.ietf-ace-oauth-authz].

The AS can signal that the use of OSCORE and Group OSCORE is

REQUIRED for a specific Access Token by including the "ace_profile"

parameter with the value "coap_group_oscore" in the Access Token

response. This means that the Client MUST use OSCORE and/or Group

OSCORE towards all the Resource Servers for which this Access Token

is valid.

In particular, the Client MUST follow Appendix A.3.3 to derive the

pairwise OSCORE Security Context to use for communications with the

RS. Instead, the Client has already established the related Group

OSCORE Security Context to communicate with members of the OSCORE

group, upon previously joining that group.

Usually, it is assumed that constrained devices will be pre-

configured with the necessary profile, so that this kind of profile

signaling can be omitted.

In contrast with the main mode of this profile, the Access Token

response to the Client is analogous to the one in the OSCORE profile

of ACE, as described in Section 3.2 of [I-D.ietf-ace-oscore-

profile]. In particular, the AS provides an OSCORE_Input_Material

object, which is defined in Section 3.2.1 of [I-D.ietf-ace-oscore-

profile] and included in the 'cnf' parameter (see Section 3.2 of [I-

D.ietf-ace-oauth-params]) of the Access Token response.

The AS MUST send different OSCORE_Input_Material (and therefore

different Access Tokens) to different authorized clients, in order

for the RS to differentiate between clients.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.2
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-5.8.3
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-3.2.1
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-params-16#section-3.2

In the issued Access Token, the AS MUST include as metadata the same

information as defined in the main mode of this profile (see Section

3.2) with the following modifications.

The public key that the client uses in the OSCORE group and

specified in the 'client_cred' parameter of the Token request

(see Appendix A.2.1) MUST also be included in the Access Token.

If the Access Token is a CWT, the AS MUST include it in the

'client_cred' claim of the Access Token, defined in Appendix A.

2.2.2 of this document. In particular, the 'client_cred' claim

includes the same COSE Key specified in the 'client_cred'

parameter of the Token Request, i.e., the COSE Key equivalent to

the authentication credential that the Client uses in the OSCORE

group.

The OSCORE_Input_Material specified in the 'cnf' parameter of the

Access Token response MUST also be included in the Access Token.

If the Access Token is a CWT, the same OSCORE_Input_Material

included in the 'cnf' parameter of the Access Token response MUST

be included in the 'osc' field of the 'cnf' claim of the Access

Token (see Section 3.2 of [I-D.ietf-ace-oscore-profile]).

Figure 11 shows an example of such an AS response. The access token

has been truncated for readability.

Figure 11: Example AS-to-C Access Token response with the Group OSCORE

profile.

¶

*

¶

¶

*

¶

¶

 Header: Created (Code=2.01)

 Content-Type: "application/ace+cbor"

 Payload:

 {

 "access_token" : h'8343a1010aa2044c53 ...'

 (remainder of CWT omitted for brevity),

 "ace_profile" : "coap_group_oscore",

 "expires_in" : 3600,

 "cnf" : {

 "osc" : {

 "alg" : AES-CCM-16-64-128,

 "id" : h'01',

 "ms" : h'f9af838368e353e78888e1426bd94e6f',

 "salt" : h'1122',

 "contextId" : h'99'

 }

 }

 }

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-3.2

Figure 12 shows an example CWT, containing the necessary OSCORE

parameters in the 'cnf' claim.

Figure 12: Example CWT with OSCORE parameters.

The same CWT as in Figure 12 and encoded in CBOR is shown in Figure

13, using the value abbreviations defined in [I-D.ietf-ace-oauth-

authz] and [RFC8747].

NOTE: it should be checked (and in case fixed) that the values used

below (which are not yet registered) are the final values registered

in IANA.

¶

 {

 "aud" : "tempSensorInLivingRoom",

 "iat" : 1360189224,

 "exp" : 1360289224,

 "scope" : "temperature_g firmware_p",

 "cnf" : {

 "osc" : {

 "alg" : AES-CCM-16-64-128,

 "id" : h'01',

 "ms" : h'f9af838368e353e78888e1426bd94e6f',

 "salt" : h'1122',

 "contextId" : h'99'

 },

 "salt_input" : h'00',

 "contextId_input" : h'abcd0000',

 "client_cred" : {

 "COSE_Key" : {

 "kty" : EC2,

 "crv" : P-256,

 "x" : h'd7cc072de2205bdc1537a543d53c60a6acb62eccd890c7fa

 27c9e354089bbe13',

 "y" : h'f95e1d4b851a2cc80fff87d8e23f22afb725d535e515d020

 731e79a3b4e47120'

 }

 }

 }

¶

¶

A8 # map(8)

 03 # unsigned(3)

 76 # text(22)

 74656D7053656E736F72496E4C6976696E67526F6F6D

 06 # unsigned(6)

 1A 5112D728 # unsigned(1360189224)

 04 # unsigned(4)

 1A 51145DC8 # unsigned(1360289224)

 09 # unsigned(9)

 78 18 # text(24)

 74656D70657261747572655F67206669726D776172655F70

 08 # unsigned(8)

 A1 # map(1)

 04 # unsigned(4)

 A5 # map(5)

 04 # unsigned(4)

 0A # unsigned(10)

 00 # unsigned(0)

 41 # bytes(1)

 01 # "\x01"

 02 # unsigned(2)

 50 # bytes(16)

 F9AF838368E353E78888E1426BD94E6F

 05 # unsigned(5)

 42 # bytes(2)

 1122 # "\x11\""

 06 # unsigned(6)

 41 # bytes(1)

 99 # "\x99"

 18 3C # unsigned(60)

 41 # bytes(1)

 00

 18 3D # unsigned(61)

 44 # bytes(4)

 ABCD0000

 18 3E # unsigned(62)

 A1 # map(1)

 01 # unsigned(1)

 A4 # map(4)

 01 # unsigned(1)

 02 # unsigned(2)

 20 # negative(0)

 01 # unsigned(1)

 21 # negative(1)

 58 20 # bytes(32)

 D7CC072DE2205BDC1537A543D53C60A6ACB62ECCD890C7FA27C9

 E354089BBE13

 22 # negative(2)

 58 20 # bytes(32)

 F95E1D4B851A2CC80FFF87D8E23F22AFB725D535E515D020731E

 79A3B4E47120

Figure 13: Example CWT with OSCORE parameters.

If the Client has requested an update to its access rights using the

same pairwise OSCORE Security Context, which is valid and

authorized, the AS MUST omit the 'cnf' parameter in the response to

the client.

Instead, the updated Access Token conveyed in the AS-to-C response

MUST include a 'cnf' claim specifying a 'kid' field, as defined in

Section 3.1 of [RFC8747]. The response from the AS MUST carry the

OSCORE Input Material identifier in the 'kid' field within the 'cnf'

claim of the Access Token. That is, the 'kid' field is a CBOR byte

string, with value the same value of the 'kid' field of the

'req_cnf' parameter from the C-to-AS request for updating rights to

the Access Token (see Figure 10). This information needs to be

included in the Access Token, in order for the RS to identify the

previously generated pairwise OSCORE Security Context.

Figure 14 shows an example of such an AS response. The Access Token

has been truncated for readability.

Figure 14: Example AS-to-C Access Token response with the Group OSCORE

profile, for update of access rights.

Figure 15 shows an example CWT, containing the necessary OSCORE

parameters in the 'cnf' claim for update of access rights.

¶

¶

¶

 Header: Created (Code=2.01)

 Content-Type: "application/ace+cbor"

 Payload:

 {

 "access_token" : h'8343a1010aa2044c53 ...'

 (remainder of CWT omitted for brevity),

 "profile" : "coap_group_oscore",

 "expires_in" : 3600

 }

¶

 {

 "aud" : "tempSensorInLivingRoom",

 "iat" : 1360189224,

 "exp" : 1360289224,

 "scope" : "temperature_h",

 "cnf" : {

 "kid" : h'01'

 }

 }

https://rfc-editor.org/rfc/rfc8747#section-3.1

Figure 15: Example CWT with OSCORE parameters for update of access

rights.

A.2.2.1. Public Key Hash as Client Credential

As a possible optimization to limit the size of the Access Token,

the AS may specify as value of the 'client_cred' claim simply the

hash of the Client's public key, i.e., the hash of the COSE Key K

equivalent to the authentication credential that the Client uses in

the OSCORE group.

The specifically used hash-function MUST be collision-resistant on

byte-strings, and MUST be selected from the "Named Information Hash

Algorithm" Registry defined in Section 9.4 of [RFC6920].

In particular, the AS provides the Client with an Access Token as

defined in Appendix A.2.2, with the following differences.

The AS prepares INPUT_HASH as follows, with | denoting byte string

concatenation.

If the equivalent COSE Key K has COSE Key Type OKP, INPUT_HASH =

i, where 'i' is the x-parameter of the COSE_Key specified in the

'client_cred' parameter of the Token request, encoded as a CBOR

byte string.

If the equivalent COSE Key K has COSE Key Type EC2, INPUT_HASH =

(i_1 | i_2), where 'i_1' and 'i_2' are the x-parameter and y-

parameter of the COSE_Key specified in the 'client_cred'

parameter of the Token request, respectively, each encoded as a

CBOR byte string.

If the equivalent COSE Key K has COSE Key Type RSA, INPUT_HASH =

(i_1 | i_2), where 'i_1' and 'i_2' are the n-parameter and e-

parameter of the COSE_Key specified in the 'client_cred'

parameter of the Token request, respectively, each encoded as a

CBOR byte string.

Then, the AS hashes INPUT_HASH according to the procedure described

in [RFC6920], with the output OUTPUT_HASH in binary format, as

described in Section 6 of [RFC6920].

Finally, the AS includes a single entry within the 'client_cred'

claim of the Access Token. This entry has label "kid" (3) defined in

Section 3.1 of [RFC8747], and value a CBOR byte string wrapping

OUTPUT_HASH.

Upon receiving the Access Token, the RS processes it according to

Appendix A.3.2, with the following differences.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6920#section-9.4
https://rfc-editor.org/rfc/rfc6920#section-6
https://rfc-editor.org/rfc/rfc8747#section-3.1

The RS considers: the content of the 'contextId_input' claim as the

GID of the OSCORE group; the content of the 'salt_input' claim as

the Sender ID that the Client has in the group; and the content of

the 'client_cred' claim as the hash RECEIVED_HASH of a COSE Key

equivalent to the authentication credential that the Client uses in

the group.

The RS MUST check whether it already stores an authentication

credential associated with the pair (GID, Sender ID) above, such

that the recomputed hash NEW_HASH of its equivalent COSE Key matches

with RECEIVED_HASH from the 'client_cred' claim.

If this is not the case, the RS MUST request the Client's

authentication credential to the Group Manager of the OSCORE group

as described in Section 10 of [I-D.ietf-ace-key-groupcomm-oscore],

specifying the Client's Sender ID in the OSCORE group, i.e., the

value of the 'salt_input' claim. Then, the RS performs the following

actions.

The RS MUST check whether RECEIVED_HASH matches with the

recomputed hash NEW_HASH of a COSE Key equivalent to the Client's

authentication credential retrieved from the Group Manager.

The RS MUST check that the Client's Sender ID provided by the

Group Manager together with the Client's authentication

credential matches the one retrieved from the 'salt_input' claim

of the Access Token.

The RS MUST calculate NEW_HASH using the same method used by the AS

described above, and using the same hash function. The hash function

to use can be determined from the information conveyed in the

'client_cred' claim, as the procedure described in [RFC6920] also

encodes the used hash function as metadata of the hash value.

A.2.2.2. Client Credential Claim

The 'client_cred' claim provides an asymmetric key that the Client

owning the Access Token wishes to use as its own public key, but

which is not used as proof-of-possession key.

This parameter follows the syntax of the 'cnf' claim from

Section 3.1 of [RFC8747] when including Value Type "COSE_Key" (1)

and specifying an asymmetric key. Alternative Value Types defined in

future specifications are fine to consider, if indicating a non-

encrypted asymmetric key or full-fledged autentication credential.

A.3. Client-RS Communication

This section details the POST request and response to the /authz-

info endpoint between the Client and the RS. With respect to the

¶

¶

¶

*

¶

*

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-13#section-10
https://rfc-editor.org/rfc/rfc8747#section-3.1

exchanged messages and their content, the Client and the RS perform

as defined in the OSCORE profile of ACE (see Section 4 of [I-D.ietf-

ace-oscore-profile]).

That is, the Client generates a nonce N1 and posts it to the RS,

together with: an identifier ID1 unique in the sets of its own

Recipient IDs from its pairwise OSCORE Security Contexts; and the

Access Token that includes the material provisioned by the AS.

Then, the RS generates a nonce N2, and an identifier ID2 unique in

the sets of its own Recipient IDs from its pairwise OSCORE Security

Contexts. After that, the RS derives a pairwise OSCORE Security

Context as described in Section 3.2 of [RFC8613]. In particular, it

uses the two exchanged nonces and the two identifiers established

with the Client, as well as two shared secrets together with

additional pieces of information specified in the Access Token.

Both the client and the RS generate the pairwise OSCORE Security

Context using the pop-key as part of the OSCORE Master Secret. In

addition, the derivation of the pairwise OSCORE Security Context

takes as input also information related to the OSCORE group, i.e.,

the Master Secret and Group Identifier of the group, as well as the

Sender ID of the Client in the group. Hence, the derived pairwise

OSCORE Security Context is also securely bound to the Group OSCORE

Security Context of the OSCORE Group. Thus, the proof-of-possession

required to bind the Access Token to the Client occurs after the

first OSCORE message exchange.

Therefore, an attacker using a stolen Access Token cannot generate a

valid pairwise OSCORE Security Context and thus cannot prove

possession of the pop-key. Also, if a Client legitimately owns an

Access Token but has not joined the OSCORE group, that Client cannot

generate a valid pairwise OSCORE Security Context either, since it

lacks the Master Secret used in the OSCORE group.

Besides, just as in the main mode (see Section 4), the RS is able to

verify whether the Client has indeed the claimed Sender ID and

authentication credential in the OSCORE group.

A.3.1. C-to-RS POST to authz-info Endpoint

The Client MUST generate a nonce N1, an OSCORE Recipient ID (ID1),

and post them to the /authz-info endpoint of the RS together with

the Access Token, as defined in the OSCORE profile of ACE (see

Section 4.1 of [I-D.ietf-ace-oscore-profile]).

The same recommendations, considerations and behaviors defined in

Section 4.1 of [I-D.ietf-ace-oscore-profile] hold.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-4
https://rfc-editor.org/rfc/rfc8613#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-4.1
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-4.1

If the Client has already posted a valid Access Token, has already

established a pairwise OSCORE Security Context with the RS, and

wants to update its access rights, the Client can do so by posting

the new Access Token (retrieved from the AS and specifying the

updated set of access rights) to the /authz-info endpoint.

The Client MUST protect the request using either the pairwise OSCORE

Security Context established during the first Access Token exchange,

or the Group OSCORE Security Context associated with that pairwise

OSCORE Security Context.

In either case, the Client MUST only send the Access Token in the

payload, i.e., no nonce or identifier are sent. After proper

verification (see Section 4.2 of [I-D.ietf-ace-oscore-profile]), the

new Access Token will supersede the old one at the RS, by replacing

the corresponding authorization information. At the same time, the

RS will maintain the same pairwise OSCORE Security Context and Group

OSCORE Security Context, as now both associated with the new Access

Token.

A.3.2. RS-to-C: 2.01 (Created)

The RS MUST verify the validity of the Access Token as defined in

Section 4.2, with the following modifications.

If the POST request to /authz-info is not protected, the RS

checks that the 'cnf' claim is included in the Access Token and

that it contains an OSCORE_Input_Material object. Also, the RS

checks that the 'salt_input', 'client_cred' and 'contextId_input'

claims are included in the Access Token.

If the POST request to /authz-info is protected with the pairwise

OSCORE Security Context shared with the Client or with the Group

OSCORE Security Context of the OSCORE group, i.e., the Client is

requesting an update of access rights, the RS checks that the

'cnf' claim is included in the Access Token and that it contains

only the 'kid' field.

If the 'salt_input', 'client_cred' and 'contextId_input' claims

are included in the Access Token, the RS extracts the content of

'client_cred'. Then, the RS considers that content as the COSE

Key equivalent to the authentication credential that the Client

uses in the group, whose GID is specified in the

'contextId_input' claim. The RS can compare this public key with

the actual COSE Key equivalent to the authentication credential

of the claimed Client, retrieved from its local storage or from

the Group Manager (see Section 4.2).

¶

¶

¶

¶

*

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-4.2

If any of the checks fails, the RS MUST consider the Access Token

non valid, and MUST respond to the Client with an error response

code equivalent to the CoAP code 4.00 (Bad Request).

If the Access Token is valid and further checks on its content are

successful, the RS proceeds as follows.

In case the POST request to /authz-info was not protected, the RS

MUST generate a nonce N2, an OSCORE Recipient ID (ID2), and include

them in the 2.01 (Created) response to the Client, as defined in the

OSCORE profile of ACE (see Section 4.2 of [I-D.ietf-ace-oscore-

profile]).

Instead, in case the POST request to /authz-info was protected, the

RS MUST ignore any nonce and identifiers in the request, if any was

sent. Then, the RS MUST check that the 'kid' field of the 'cnf'

claim in the new Access Token matches the identifier of the OSCORE

Input Material of a pairwise OSCORE Security Context such that:

The pairwise OSCORE Security Context was used to protect the

request, if this was protected with OSCORE; or

The pairwise OSCORE Security Context is bound to the Group OSCORE

Security Context used to protect the request, if this was

protected with Group OSCORE.

If either verification is successful, the new Access Token

supersedes the old one at the RS. Besides, the RS associates the new

Access Token to the same pairwise OSCORE Security Context identified

above, as also bound to a Group OSCORE Security Context. The RS MUST

respond with a 2.01 (Created) response with no payload, protected

with the same Security Context used to protect the request. In

particular, no new pairwise OSCORE Security Context is established

between the Client and the RS. If any verification fails, the RS

MUST respond with a 4.01 (Unauthorized) error response.

Further recommendations, considerations and behaviors defined in

Section 4.2 of [I-D.ietf-ace-oscore-profile] hold for this document.

A.3.3. OSCORE Setup - Client Side

Once having received the 2.01 (Created) response from the RS,

following an unprotected POST request to the /authz-info endpoint,

the Client MUST extract the nonce N2 from the 'nonce2' parameter,

and the Client identifier from the 'ace_server_recipientid'

parameter in the CBOR map of the response payload. Note that this

identifier is used by C as Sender ID in the pairwise OSCORE Security

Context to be established with the RS, and is different as well as

unrelated to the Sender ID of C in the OSCORE group.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-4.2
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-4.2

Then, the Client performs the following actions, in order to set up

and fully derive the pairwise OSCORE Security Context for

communicating with the RS.

The Client MUST set the ID Context of the pairwise OSCORE

Security Context as the concatenation of: i) GID, i.e., the Group

Identifier of the OSCORE group, as specified by the Client in the

'context_id' parameter of the Client-to-AS request; ii) the nonce

N1; iii) the nonce N2; and iv) CID, i.e., the value in the

contextId parameter of the OSCORE_Input_Material provided in the

'cnf' parameter of the Access Token response from the AS. The

concatenation occurs in this order: ID Context = GID | N1 | N2 |

CID, where | denotes byte string concatenation.

The Client MUST set the updated Master Salt of the pairwise

OSCORE Security Context as the concatenation of SaltInput, MSalt,

the nonce N1, the nonce N2 and GMSalt, where: i) SaltInput is the

Sender ID that the Client has in the OSCORE group, which is known

to the Client as a member of the OSCORE group; ii) MSalt is the

(optional) Master Salt in the pairwise OSCORE Security Context

(received from the AS in the Token); and iii) GMSalt is the

(optional) Master Salt in the Group OSCORE Security Context,

which is known to the Client as a member of the OSCORE group. The

concatenation occurs in this order: Master Salt = SaltInput |

MSalt | N1 | N2 | GMSalt, where | denotes byte string

concatenation. Optional values, if not specified, are not

included in the concatenation. The five parameters SaltInput,

MSalt, N1, N2 and GMSalt are to be concatenated as encoded CBOR

byte strings. An example of Master Salt construction using CBOR

encoding is given in Figure 16.

¶

*

¶

*

¶

Figure 16: Example of Master Salt construction using CBOR encoding.

The Client MUST set the Master Secret of the pairwise OSCORE

Security Context to the concatenation of MSec and GMSec, where:

i) MSec is the value of the 'ms' parameter in the

OSCORE_Input_Material of the 'cnf' parameter, received from the

AS in Appendix A.2.2; while ii) GMSec is the Master Secret of the

Group OSCORE Security Context, which is known to the Client as a

member of the OSCORE group.

The Client MUST set the Recipient ID as ace_client_recipientid,

sent as described in Appendix A.3.1.

The Client MUST set the Sender ID as ace_server_recipientid,

received as described in Appendix A.3.1.

The Client MUST set the AEAD Algorithm, ID Context, HKDF, and

OSCORE Version as indicated in the corresponding parameters

received from the AS in Appendix A.2.2, if present in the

OSCORE_Input_Material of the 'cnf' parameter. In case these

parameters are omitted, the default values SHALL be used as

described in Sections 3.2 and 5.4 of [RFC8613].

Finally, the client MUST derive the complete pairwise OSCORE

Security Context following Section 3.2.1 of [RFC8613].

From then on, when communicating with the RS to access the resources

as specified by the authorization information, the Client MUST use

the newly established pairwise OSCORE Security Context or the Group

SaltInput, MSalt, N1, N2 and GMSalt, in CBOR diagnostic notation:

 SaltInput = h'00'

 MSalt = h'f9af838368e353e78888e1426bd94e6f'

 N1 = h'018a278f7faab55a'

 N2 = h'25a8991cd700ac01'

 GMSalt = h'99'

SaltInput, MSalt, N1, N2 and GMSalt, as CBOR encoded byte strings:

 SaltInput = 0x4100

 MSalt = 0x50f9af838368e353e78888e1426bd94e6f

 N1 = 0x48018a278f7faab55a

 N2 = 0x4825a8991cd700ac01

 GMSalt = 0x4199

Master Salt = 0x41 00

 50 f9af838368e353e78888e1426bd94e6f

 48 018a278f7faab55a

 48 25a8991cd700ac01

 41 99

*

¶

*

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-3.2
https://rfc-editor.org/rfc/rfc8613#section-5.4
https://rfc-editor.org/rfc/rfc8613#section-3.2.1

OSCORE Security Context of the OSCORE Group where both the Client

and the RS are members.

If any of the expected parameters is missing (e.g., any of the

mandatory parameters from the AS or the RS), or if

ace_client_recipientid equals ace_server_recipientid (and as a

consequence the Sender and Recipient Keys derived would be equal,

see Section 3.3 of [RFC8613]), then the client MUST stop the

exchange, and MUST NOT derive the pairwise OSCORE Security Context.

The Client MAY restart the exchange, to get the correct security

input material.

The Client can use this pairwise OSCORE Security Context to send

requests to the RS protected with OSCORE. Besides, the Client can

use the Group OSCORE Security Context for protecting unicast

requests to the RS, or multicast requests to the OSCORE group

including also the RS. Mutual authentication as group members is

only achieved after the client has successfully verified the Group

OSCORE protected response from the RS. Similarly, mutual

authentication as OSCORE peers is only achieved after the client has

successfully verified the OSCORE protected response from the RS,

using the pairwise OSCORE Security Context.

Note that the ID Context of the pairwise OSCORE Security Context can

be assigned by the AS, communicated and set in both the RS and

Client after the exchange specified in this profile is executed.

Subsequently, the Client and RS can update their ID Context by

running a mechanism such as the one defined in Appendix B.2 of

[RFC8613] if they both support it and are configured to do so. In

that case, the ID Context in the pairwise OSCORE Security Context

will not match the "contextId" parameter of the corresponding

OSCORE_Input_Material. Running the procedure in Appendix B.2 of

[RFC8613] results in the keying material in the pairwise OSCORE

Security Contexts of the Client and RS being updated. The Client can

achieve the same result by re-posting the Access Token to the

unprotected /authz-info endpoint at the RS, as described in

Section 4.1 of [I-D.ietf-ace-oscore-profile], although without

updating the ID Context.

A.3.4. OSCORE Setup - Resource Server Side

After validation of the Access Token as defined in Appendix A.3.2

and after sending the 2.01 (Created) response to an unprotected POST

request to the /authz-info endpoint, the RS performs the following

actions, in order to set up and fully derive the pairwise OSCORE

Security Context created to communicate with the Client.

The RS MUST set the ID Context of the pairwise OSCORE Security

Context as the concatenation of: i) GID, i.e., the Group

¶

¶

¶

¶

¶

*

https://rfc-editor.org/rfc/rfc8613#section-3.3
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-4.1

Identifier of the OSCORE group, as specified in the 'contextId'

parameter of the OSCORE_Input_Material, in the 'cnf' claim of the

Access Token received from the Client (see Appendix A.3.1); ii)

the nonce N1; iii) the nonce N2; and iv) CID which is the value

in the contextId parameter of the OSCORE_Input_Material provided

in the 'cnf' claim of the Access Token. The concatenation occurs

in this order: ID Context = GID | N1 | N2 | CID, where | denotes

byte string concatenation.

The RS MUST set the new Master Salt of the pairwise OSCORE

Security Context as the concatenation of SaltInput, MSalt, the

nonce N1, the nonce N2 and GMSalt, where: i) SaltInput is the

Sender ID that the Client has in the OSCORE group, as specified

in the 'salt_input' claim included in the Access Token received

from the Client (see Appendix A.3.1); ii) MSalt is the (optional)

Master Salt in the pairwise OSCORE Security Context as specified

in the 'salt' parameter in the OSCORE_Input_Material of the 'cnf'

claim, included in the Access Token received from the Client; and

iii) GMSalt is the (optional) Master Salt in the Group OSCORE

Security Context, which is known to the RS as a member of the

OSCORE group. The concatenation occurs in this order: Master Salt

= SaltInput | MSalt | N1 | N2 | GMSalt, where | denotes byte

string concatenation. Optional values, if not specified, are not

included in the concatenation. The same considerations for

building the Master Salt, considering the inputs as encoded CBOR

byte strings as in Figure 16, hold also for the RS.

The RS MUST set the Master Secret of the pairwise OSCORE Security

Context to the concatenation of MSec and GMSec, where: i) MSec is

the value of the 'ms' parameter in the OSCORE_Input_Material of

the 'cnf' claim, included in the Access Token received from the

Client (see Appendix A.3.1); while ii) GMSec is the Master Secret

of the Group OSCORE Security Context, which is known to the RS as

a member of the OSCORE group.

The RS MUST set the Recipient ID as ace_server_recipientid, sent

as described in Appendix A.3.2.

The RS MUST set the Sender ID as ace_client_recipientid, received

as described in Appendix A.3.2.

The RS MUST set the AEAD Algorithm, ID Context, HKDF, and OSCORE

Version from the corresponding parameters received from the

Client in the Access Token (see Appendix A.3.1), if present in

the OSCORE_Input_Material of the 'cnf' claim. In case these

parameters are omitted, the default values SHALL be used as

described in Sections 3.2 and 5.4 of [RFC8613].

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc8613#section-3.2
https://rfc-editor.org/rfc/rfc8613#section-5.4

Finally, the RS MUST derive the complete pairwise OSCORE Security

Context following Section 3.2.1 of [RFC8613].

Once having completed the derivation above, the RS MUST associate

the authorization information from the Access Token with the just

established pairwise OSCORE Security Context. Furthermore, as

defined in Section 4.2, the RS MUST associate the authorization

information from the Access Token with the Group OSCORE Security

Context.

Then, the RS uses this pairwise OSCORE Security Context to verify

requests from and send responses to the Client protected with

OSCORE, when this Security Context is used. If OSCORE verification

fails, error responses are used, as specified in Section 8 of

[RFC8613].

Besides, the RS uses the Group OSCORE Security Context to verify

(multicast) requests from and send responses to the Client protected

with Group OSCORE. When processing an incoming request protected

with Group OSCORE, the RS MUST consider as valid authentication

credential of the Client only the authentication credential

associated with the stored Access Token. As defined in Appendix A.

3.6, a change of authentication credential in the group requires the

Client to upload to the RS a new Access Token, where the

'client_cred' claim specifies a COSE Key equivalent to the new

authentication credential that the Client has in the group.

If Group OSCORE verification fails, error responses are used, as

specified in Sections 8 and 9 of [I-D.ietf-core-oscore-groupcomm].

Additionally, for every incoming request, if OSCORE or Group OSCORE

verification succeeds, the verification of access rights is

performed as described in Appendix A.3.5.

After the deletion of the Access Token related to a pairwise OSCORE

Security Context and to a Group OSCORE Security Context, due to, for

example, expiration, the RS MUST NOT use the pairwise OSCORE

Security Context. The RS MUST respond with an unprotected 4.01

(Unauthorized) error message to received requests that correspond to

a pairwise OSCORE Security Context with a deleted Access Token.

Also, if the Client uses the Group OSCORE Security Context to send a

request for any resource intended for OSCORE group members and that

requires an active Access Token, the RS MUST respond with a 4.01

(Unauthorized) error message protected with the Group OSCORE

Security Context.

The same considerations, related to the value of the ID Context

changing, as in Appendix A.3.3 hold also for the RS.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-3.2.1
https://rfc-editor.org/rfc/rfc8613#section-8
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-8
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-9

A.3.5. Access Rights Verification

The RS MUST follow the procedures defined in Section 4.4.

Additionally, if the RS receives an OSCORE-protected request from a

Client, the RS processes it according to [RFC8613].

If the OSCORE verification succeeds, and the target resource

requires authorization, the RS retrieves the authorization

information from the Access Token associated with the pairwise

OSCORE Security Context and to the Group OSCORE Security Context.

Then, the RS MUST verify that the action requested on the resource

is authorized.

The response code MUST be 4.01 (Unauthorized) if the RS has no valid

Access Token for the Client.

A.3.6. Change of Client's Authentication Credential in the Group

During its membership in the OSCORE group, the client might change

the authentication credential it uses in the group. When this

happens, the Client uploads the new authentication credential to the

Group Manager, as defined in Section 11 of [I-D.ietf-ace-key-

groupcomm-oscore].

After that, the Client may still have an Access Token previously

uploaded to the RS, which is not expired yet and still valid to the

best of the Client's knowledge. Then, in order to continue

communicating with the RS, the Client MUST perform the following

actions.

The Client requests a new Access Token to the AS, as defined in

Appendix A.2.1 for the update of access rights, i.e., with the

'req_cnf' parameter including only a 'kid' field. In

particular, when sending the POST request to the AS, the Client

indicates:

The current Group Identifier of the OSCORE group, as value

of the 'context_id' parameter.

The current Sender ID it has in the OSCORE group, as value

of the 'salt_input' parameter.

The public key of the new authentication credential it uses

in the OSCORE group, as value of the 'client_cred'

parameter. In particular, the specified public key is the

COSE Key equivalent to the new authentication credential

that the Client uses in the OSCORE group.

¶

¶

¶

¶

¶

¶

1.

¶

*

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-13#section-11

The proof-of-possession (PoP) evidence corresponding to the

public key of the new authentication credential, as value of

the 'client_cred_verify' or 'client_cred_verify_mac'

parameter.

The same current or instead new set of access rights, as

value of the 'scope' parameter.

After receiving the response from the AS (see Appendix A.2.2),

the Client performs the same exchanges with the RS as defined

in Appendix A.3, with the following difference: the POST

request to /authz-info for uploading the new Access Token MUST

be protected with the pairwise OSCORE Security Context shared

with the RS.

When receiving the new Access Token, the RS performs the same steps

defined in Appendix A.3.2. In particular, no new pairwise OSCORE

Security Context is established between the Client and the RS.

A.4. Secure Communication with the AS

The same considerations for secure communication with the AS as

defined in Section 5 hold.

A.5. Discarding the Security Context

The Client and the RS MUST follow what is defined in Section 6 of

[I-D.ietf-ace-oscore-profile] about discarding the pairwise OSCORE

Security Context.

Additionally, they MUST follow what is defined in the main mode of

the profile (see Section 6), with respect to the Group OSCORE

Security Context.

The Client or RS can acquire a new Group OSCORE Security Context, by

re-joining the OSCORE group, e.g., by using the approach defined in

[I-D.ietf-ace-key-groupcomm-oscore]. In such a case, the Client

SHOULD request a new Access Token and post it to the RS, in order to

establish a new pairwise OSCORE Security Context and bind it to the

Group OSCORE Security Context obtained upon re-joining the group.

A.6. CBOR Mappings

The new parameters defined in this document MUST be mapped to CBOR

types as specified in Figure 6, with the following addition, using

the given integer abbreviation for the map key.

*

¶

*

¶

2.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-19#section-6

Figure 17: CBOR mappings for new parameters.

The new claims defined in this document MUST be mapped to CBOR types

as specified in Figure 7, with the following addition, using the

given integer abbreviation for the map key.

Figure 18: CBOR mappings for new claims.

A.7. Security Considerations

The dual mode of this profile inherits the security considerations

from the main mode (see Section 8), as well as from the security

considerations of the OSCORE profile of ACE [I-D.ietf-ace-oscore-

profile]. Also, the security considerations about OSCORE [RFC8613]

hold for the dual mode of this profile, as to the specific use of

OSCORE.

Unlike the main mode and consistently with Section 6.1 of [I-D.ietf-

ace-oauth-authz], the dual mode of this profile cannot be used to

issue an Access Token for an audience that comprises multiple RSs.

This is because the proof-of-possession key bound to an Access Token

is the OSCORE Master Secret included in the OSCORE_Input_Material

object of the 'cnf' claim, and it has to be shared only between the

Client and one RS.

A.8. Privacy Considerations

The same privacy considerations as defined in the main mode of this

profile apply (see Section 9).

In addition, as this profile mode also uses OSCORE, the privacy

considerations from [RFC8613] apply as well, as to the specific use

of OSCORE.

Furthermore, this profile mode inherits the privacy considerations

from the OSCORE profile of ACE [I-D.ietf-ace-oscore-profile].

/----------------+----------+------------\

| Parameter name | CBOR Key | Value Type |

|----------------+----------+------------|

| client_cred | TBD | map |

\----------------+----------+------------/

¶

/--------------+----------+------------\

| Claim name | CBOR Key | Value Type |

|--------------+----------+------------|

| client_cred | TBD | map |

\--------------+----------+------------/

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-46#section-6.1

Appendix B. Profile Requirements

This appendix lists the specifications on this profile based on the

requirements of the ACE framework, as requested in Appendix C of [I-

D.ietf-ace-oauth-authz].

(Optional) discovery process of how the Client finds the right AS

for an RS it wants to send a request to: Not specified.

Communication protocol the Client and the RS must use: CoAP.

Security protocol(s) the Client and RS must use: Group OSCORE,

i.e., exchange of secure messages by using a pre-established

Group OSCORE Security Context. The optional dual mode defined in

Appendix A additionally uses OSCORE, i.e., establishment of a

pairwise OSCORE Security Context and exchange of secure messages.

How the Client and the RS mutually authenticate: Explicitly, by

possession of a common Group OSCORE Security Context, and by

either: usage of digital signatures embedded in messages, if

protected with the group mode of Group OSCORE; or protection of

messages with the pairwise mode of Group OSCORE, by using

pairwise symmetric keys, derived from the asymmetric keys of the

two peers exchanging the message. Note that the mutual

authentication is not completed before the Client has verified an

OSCORE or a Group OSCORE response using the corresponding

security context.

Content-format of the protocol messages: "application/ace+cbor".

Proof-of-Possession protocol(s) and how to select one; which key

types (e.g., symmetric/asymmetric) supported: Group OSCORE

algorithms; distributed and verified asymmetric keys. In the

optional dual mode defined in Appendix A: OSCORE algorithms; pre-

established symmetric keys.

profile identifier: coap_group_oscore

(Optional) how the RS talks to the AS for introspection: HTTP/

CoAP (+ TLS/DTLS/OSCORE).

How the client talks to the AS for requesting a token: HTTP/CoAP

(+ TLS/DTLS/OSCORE).

How/if the authz-info endpoint is protected: Not protected.

(Optional) other methods of token transport than the authz-info

endpoint: Not specified.

¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

Acknowledgments

The authors sincerely thank Benjamin Kaduk, John Mattsson, Dave

Robin, Jim Schaad and Goeran Selander for their comments and

feedback.

The work on this document has been partly supported by VINNOVA and

the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-

Home (Grant agreement 952652).

Authors' Addresses

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

Sweden

Email: marco.tiloca@ri.se

Rikard Höglund

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

Sweden

Email: rikard.hoglund@ri.se

Ludwig Seitz

Combitech

Djäknegatan 31

SE-21135 Malmö Malmö

Sweden

Email: ludwig.seitz@combitech.com

Francesca Palombini

Ericsson AB

Torshamnsgatan 23

SE-16440 Stockholm Kista

Sweden

Email: francesca.palombini@ericsson.com

¶

¶

mailto:marco.tiloca@ri.se
mailto:rikard.hoglund@ri.se
mailto:ludwig.seitz@combitech.com
mailto:francesca.palombini@ericsson.com

	Group OSCORE Profile of the Authentication and Authorization for Constrained Environments Framework
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	2.1. Pre-Conditions
	2.2. Access Token Retrieval
	2.3. Access Token Posting
	2.4. Secure Communication

	3. Client-AS Communication
	3.1. C-to-AS: POST to Token Endpoint
	3.1.1. 'context_id' Parameter
	3.1.2. 'salt_input' Parameter
	3.1.3. 'client_cred_verify' Parameter
	3.1.4. 'client_cred_verify_mac' Parameter

	3.2. AS-to-C: Access Token
	3.2.1. Salt Input Claim
	3.2.2. Context ID Input Claim

	4. Client-RS Communication
	4.1. C-to-RS POST to authz-info Endpoint
	4.2. RS-to-C: 2.01 (Created)
	4.3. Client-RS Secure Communication
	4.3.1. Client Side
	4.3.2. Resource Server Side

	4.4. Access Rights Verification
	4.5. Change of Client's Authentication Credential in the Group

	5. Secure Communication with the AS
	6. Discarding the Security Context
	7. CBOR Mappings
	8. Security Considerations
	9. Privacy Considerations
	10. IANA Considerations
	10.1. ACE Profile Registry
	10.2. OAuth Parameters Registry
	10.3. OAuth Parameters CBOR Mappings Registry
	10.4. CBOR Web Token Claims Registry
	10.5. TLS Exporter Label Registry

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Dual Mode (Group OSCORE & OSCORE)
	A.1. Protocol Overview
	A.1.1. Pre-Conditions
	A.1.2. Access Token Posting
	A.1.3. Setup of the Pairwise OSCORE Security Context
	A.1.4. Secure Communication

	A.2. Client-AS Communication
	A.2.1. C-to-AS: POST to Token Endpoint
	A.2.1.1. 'client_cred' Parameter

	A.2.2. AS-to-C: Access Token
	A.2.2.1. Public Key Hash as Client Credential
	A.2.2.2. Client Credential Claim

	A.3. Client-RS Communication
	A.3.1. C-to-RS POST to authz-info Endpoint
	A.3.2. RS-to-C: 2.01 (Created)
	A.3.3. OSCORE Setup - Client Side
	A.3.4. OSCORE Setup - Resource Server Side
	A.3.5. Access Rights Verification
	A.3.6. Change of Client's Authentication Credential in the Group

	A.4. Secure Communication with the AS
	A.5. Discarding the Security Context
	A.6. CBOR Mappings
	A.7. Security Considerations
	A.8. Privacy Considerations

	Appendix B. Profile Requirements
	Acknowledgments
	Authors' Addresses

