
Workgroup: CoRE Working Group

Internet-Draft:

draft-tiloca-core-groupcomm-proxy-07

Updates: 7252 (if approved)

Published: 5 September 2022

Intended Status: Standards Track

Expires: 9 March 2023

Authors: M. Tiloca

RISE AB

E. Dijk

IoTconsultancy.nl

Proxy Operations for CoAP Group Communication

Abstract

This document specifies the operations performed by a proxy, when

using the Constrained Application Protocol (CoAP) in group

communication scenarios. Such a proxy processes a single request

sent by a client over unicast, and distributes the request over IP

multicast to a group of servers. Then, the proxy collects the

individual responses from those servers and relays those responses

back to the client, in a way that allows the client to distinguish

the responses and their origin servers through embedded addressing

information. This document updates RFC7252 with respect to caching

of response messages at proxies.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/crimson84/draft-tiloca-core-groupcomm-proxy.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc7252
https://mailarchive.ietf.org/arch/browse/core/
https://gitlab.com/crimson84/draft-tiloca-core-groupcomm-proxy
https://gitlab.com/crimson84/draft-tiloca-core-groupcomm-proxy
https://datatracker.ietf.org/drafts/current/


This Internet-Draft will expire on 9 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction

1.1.  Terminology

2.  The Multicast-Timeout Option

3.  The Response-Forwarding Option

3.1.  Encoding of Server Address

3.2.  Default Values of the Server Port Number

4.  Requirements and Objectives

5.  Protocol Description

5.1.  Request Sending at the Client

5.1.1.  Request Sending

5.1.2.  Supporting Observe

5.2.  Request Processing at the Proxy

5.2.1.  Request Processing

5.2.2.  Supporting Observe

5.3.  Request and Response Processing at the Server

5.3.1.  Request and Response Processing

5.3.2.  Supporting Observe

5.4.  Response Processing at the Proxy

5.4.1.  Response Processing

5.4.2.  Supporting Observe

5.5.  Response Processing at the Client

5.5.1.  Response Processing

5.5.2.  Supporting Observe

5.6.  Example

6.  Reverse-Proxies

6.1.  Processing on the Client Side

6.2.  Processing on the Proxy Side

7.  Caching

7.1.  Freshness Model

¶

¶

¶

https://trustee.ietf.org/license-info


7.2.  Validation Model

7.2.1.  Proxy-Servers Revalidation with Unicast Requests

7.2.2.  Proxy-Servers Revalidation with Group Requests

7.3.  Client-Proxy Revalidation with Group Requests

7.4.  Caching of End-To-End Protected Responses at Proxies

7.4.1.  Deterministic Requests to Achieve Cacheability

7.4.2.  Validation of Responses

8.  Chain of Proxies

8.1.  Request Processing at the Proxy

8.1.1.  Supporting Observe

8.2.  Response Processing at the Proxy

8.2.1.  Supporting Observe

9.  HTTP-CoAP Proxies

9.1.  The HTTP Multicast-Timeout Header Field

9.2.  The HTTP Response-Forwarding Header Field

9.3.  The HTTP Group-ETag Header Field

9.4.  Request Sending at the Client

9.5.  Request Processing at the Proxy

9.6.  Response Processing at the Proxy

9.7.  Response Processing at the Client

9.8.  Example

9.9.  Streamed Delivery of Responses to the Client

9.10. Reverse-Proxies

9.10.1.  Processing on the Client Side

9.10.2.  Processing on the Proxy Side

10. Security Considerations

10.1.  Client Authentication

10.2.  Multicast-Timeout Option

10.3.  Response-Forwarding Option

10.4.  Group-ETag Option

10.5.  HTTP-to-CoAP Proxies

11. IANA Considerations

11.1.  CoAP Option Numbers Registry

11.2.  CoAP Transport Information Registry

11.3.  Header Field Registrations

12. References

12.1.  Normative References

12.2.  Informative References

Appendix A.  Examples with Reverse-Proxy

A.1.  Example 1

A.2.  Example 2

A.3.  Example 3

Acknowledgments

Authors' Addresses



1. Introduction

The Constrained Application Protocol (CoAP) [RFC7252] allows the

presence of proxies, as intermediary entities supporting clients by

performing requests on their behalf and relaying back responses.

CoAP supports also group communication over IP multicast [I-D.ietf-

core-groupcomm-bis], where a group request can be addressed to

multiple recipient servers, each of which may reply with an

individual unicast response. As discussed in Section 3.5 of [I-

D.ietf-core-groupcomm-bis], this group communication scenario poses

a number of issues and limitations to proxy operations.

In particular, the client sends to the proxy a single unicast

request, which the proxy forwards to a group of servers over IP

multicast. Later on, the proxy replies to the client's original

unicast request, by relaying back the responses from the servers.

As per [RFC7252], a CoAP-to-CoAP proxy relays those responses to the

client as separate CoAP messages, all matching (by Token) with the

client's original unicast request. A possible alternative approach

for aggregating those responses into a single CoAP response sent to

the client would require a specific aggregation content-format,

which is not available yet. Both these approaches have open issues.

This document considers the former approach. That is, after

forwarding a CoAP group request from the client to the group of CoAP

servers, the proxy relays the individual responses back to the

client as separate CoAP messages. The described method addresses all

the related issues raised in Section 3.5 of [I-D.ietf-core-

groupcomm-bis]. To this end, a dedicated signaling protocol is

defined, using two new CoAP options.

Using this protocol, the client explicitly confirms its intent to

perform a proxied group request and its support for receiving

multiple responses as a result, i.e., one or more from each origin

server. Also, the client signals for how long it is willing to wait

for responses. When relaying to the client a response to the group

request, the proxy indicates the addressing information of the

origin server. This enables the client to distinguish, multiple

diffent responses by origin and to possibly contact one or more of

the respective servers by sending individual unicast request(s) to

the indicated address(es). In doing these follow-up unicast

requests, the client may optionally bypass the proxy.

This document also defines how the proposed protocol is used between

an HTTP client and an HTTP-CoAP cross-proxy, in order to forward an

HTTP group request from the client to a group of CoAP servers, and

relay back the individual CoAP responses as HTTP responses.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.5
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.5


Finally, this document defines a caching model for proxies and

specifies how they can serve a group request by using cached

responses. Therefore, this document updates [RFC7252].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with terms and concepts defined

in CoAP [RFC7252], Group Communication for CoAP [I-D.ietf-core-

groupcomm-bis], CBOR [RFC8949], OSCORE [RFC8613] and Group OSCORE 

[I-D.ietf-core-oscore-groupcomm].

Unless specified otherwise, the term "proxy" refers to a CoAP-to-

CoAP forward-proxy, as defined in Section 5.7.2 of [RFC7252].

2. The Multicast-Timeout Option

The Multicast-Timeout Option defined in this section has the

properties summarized in Figure 1, which extends Table 4 of 

[RFC7252].

Since the option is not Safe-to-Forward, the column "N" indicates a

dash for "not applicable". The value of the Multicast-Timeout Option

specifies a timeout value in seconds, encoded as an unsigned integer

(see Section 3.2 of [RFC7252]).

Figure 1: The Multicast-Timeout Option.

This document specifically defines how this option is used by a

client in a CoAP request, to indicate to a proxy its support for and

interest in receiving multiple responses to a proxied CoAP group

request, i.e., one or more from each origin server, and for how long

it is willing to wait for receiving responses via that proxy (see 

Section 5.1.1 and Section 5.2.1).

¶

¶

¶

¶

¶

¶

+------+---+---+---+---+------------+--------+--------+---------+

| No.  | C | U | N | R | Name       | Format | Length | Default |

+------+---+---+---+---+------------+--------+--------+---------+

|      |   |   |   |   |            |        |        |         |

| TBD1 |   | x | - |   | Multicast- |  uint  |  0-4   | (none)  |

|      |   |   |   |   | Timeout    |        |        |         |

|      |   |   |   |   |            |        |        |         |

+------+---+---+---+---+------------+--------+--------+---------+

           C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

¶

https://rfc-editor.org/rfc/rfc7252#section-5.7.2
https://rfc-editor.org/rfc/rfc7252#section-3.2


When sending a CoAP group request to a proxy via IP unicast, to be

forwarded by the proxy to a targeted group of servers, the client

includes the Multicast-Timeout Option into the request. The option

value indicates after how much time in seconds the client will stop

accepting responses matching its original unicast request, with the

exception of notifications if the CoAP Observe Option [RFC7641] is

used in the same request. This allows the proxy to stop relaying

responses back to the client, if those are received from servers

after the indicated amount of time has elapsed.

The Multicast-Timeout Option is of class U in terms of OSCORE

processing (see Section 4.1 of [RFC8613]).

3. The Response-Forwarding Option

The Response-Forwarding Option defined in this section has the

properties summarized in Figure 2, which extends Table 4 of 

[RFC7252]. The option is intended only for inclusion in CoAP

responses, and builds on the Base-Uri option from Section 3 of [I-

D.bormann-coap-misc].

Since the option is intended only for responses, the column "N"

indicates a dash for "not applicable".

Figure 2: The Response-Forwarding Option.

This document specifically defines how this option is used by a

proxy that can perform proxied CoAP group requests.

Upon receiving a response to such request from a server, the proxy

includes the Response-Forwarding Option into the response sent to

the origin client (see Section 5). The proxy uses the option to

indicate the addressing information where the client can send an

individual request intended to that origin server.

In particular, the client can use the addressing information

specified in the option to identify the response originator and

¶

¶

¶

¶

+------+---+---+---+---+------------+--------+--------+---------+

| No.  | C | U | N | R | Name       | Format | Length | Default |

+------+---+---+---+---+------------+--------+--------+---------+

|      |   |   |   |   |            |        |        |         |

| TBD2 |   |   | - |   | Response-  |  (*)   | 10-25  | (none)  |

|      |   |   |   |   | Forwarding |        |        |         |

|      |   |   |   |   |            |        |        |         |

+------+---+---+---+---+------------+--------+--------+---------+

           C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

(*) See below.

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-4.1
https://datatracker.ietf.org/doc/html/draft-bormann-coap-misc-27#section-3


possibly send it individual requests later on, either directly, or

indirectly via the proxy, as unicast requests.

The option value is set to the byte serialization of the CBOR array

'tp_info' defined in Section 4.2.1 of [I-D.ietf-core-observe-

multicast-notifications], including only the set of elements

'srv_addr'. In turn, the set includes the integer 'tp_id'

identifying the used transport protocol, and further elements whose

number, format and encoding depend on the value of 'tp_id'.

The value of 'tp_id' MUST be taken from the "Value" column of the

"CoAP Transport Information" registry defined in Section 16.5 of [I-

D.ietf-core-observe-multicast-notifications]. The elements of

'srv_addr' following 'tp_id' are specified in the corresponding

entry of the Registry, under the "Server Addr" column.

If the server is reachable through CoAP transported over UDP, the

'tp_info' array includes the following elements, encoded as defined

in Section 4.2.1.1 of [I-D.ietf-core-observe-multicast-

notifications].

'tp_id': the CBOR integer with value 1. This element MUST be

present.

'srv_host': a CBOR byte string, encoding the unicast IP address

of the server. This element is tagged and identified by the CBOR

tag 260 "Network Address (IPv4 or IPv6 or MAC Address)". This

element MUST be present.

'srv_port': a CBOR unsigned integer or the CBOR simple value

"null" (0xf6). This element MAY be present.

If present as a CBOR unsigned integer, it has as value the

destination UDP port number to use for individual requests to the

server.

If present as the CBOR simple value "null" (0xf6), the client

MUST assume that the same port number specified in the group URI

of the original unicast CoAP group request sent to the proxy (see

Section 5.1.1) can be used for individual requests to the server.

If not present, the client MUST assume that the default port

number 5683 defined in [RFC7252] can be used as the destination

UDP port number for individual requests to the server.

The CDDL notation [RFC8610] provided below describes the 'tp_info'

CBOR array using the format defined above.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-04#section-4.2.1
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-04#section-16.5
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-04#section-4.2.1.1


At present, 'tp_id' is expected to take only value 1 (UDP) when

using forward proxies, UDP being the only currently available

transport for CoAP to work over IP multicast. While additional

multicast-friendly transports may be defined in the future, other

current tranport protocols can still be useful in applications

relying on a reverse-proxy (see Section 6).

The rest of this section considers the new values of 'tp_id'

registered by this document (see Section 11.2), and specifies:

The encoding for the elements of 'tp_info' following 'tp_id' (see

Section 3.1).

The port number assumed by the client if the element 'srv_port'

of 'tp_info' is not present (see Section 3.2).

The Response-Forwarding Option is of class U in terms of OSCORE

processing (see Section 4.1 of [RFC8613]).

3.1. Encoding of Server Address

This document defines some values used as transport protocol

identifiers, whose respective new entries are included in the "CoAP

Transport Information" registry defined in Section 16.5 of [I-

D.ietf-core-observe-multicast-notifications].

For each of these values, the following table summarizes the

elements specified under the "Srv Addr" and "Req Info" columns of

the registry, together with their CBOR encoding and short

description.

While not listed here for brevity, the element 'tp_id' is always

present as a CBOR integer in the element set "Srv Addr".

tp_info = [

       tp_id : 1,             ; UDP as transport protocol

    srv_host : #6.260(bstr),  ; IP address where to reach the server

  ? srv_port : uint / null    ; Port number where to reach the server

]

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-4.1
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-04#section-16.5


3.2. Default Values of the Server Port Number

If the 'srv_port' element of the 'tp_info' array is not present, the

client MUST assume the following value as port number where to send

individual requests intended to the server, based on the value of

'tp_id'.

If 'tp_id' is equal to 1, i.e., CoAP over UDP, the default port

number 5683 as defined in [RFC7252].

If 'tp_id' is equal to 2, i.e., CoAP over UDP secured with DTLS,

the default port number 5684 as defined in [RFC7252].

If 'tp_id' is equal to 3, i.e., CoAP over TCP, the default port

number 5683 as defined in [RFC8323].

If 'tp_id' is equal to 4, i.e., CoAP over TCP secured with TLS,

the default port number 5684 as defined in [RFC8323].

If 'tp_id' is equal to 5, i.e., CoAP over WebSockets, the default

port number 80 as defined in [RFC8323].

If 'tp_id' is equal to 6, i.e., CoAP over WebSockets secured with

TLS, the default port number 443 as defined in [RFC8323].

4. Requirements and Objectives

In this section, the word "proxy" is not limited to forward-proxies.

Instead, it comprises also reverse-proxies and HTTP-to-CoAP proxies.

+----------+-------------+----------+--------------+---------------+

| 'tp_id'  | Element Set | Element  | CBOR Type    | Description   |

| Values   |             |          |              |               |

+----------+-------------+----------+--------------+---------------+

| 2, 3, 4, | Srv Addr    | srv_host | #6.260(bstr) | Address of    |

| 5, 6     |             |          |     (*)      | the server    |

|          |             +----------+--------------+---------------+

|          |             | srv_port | uint / null  | Port number   |

|          |             |          |              | of the server |

|          +-------------+----------+--------------+---------------+

|          | Req Info    | cli_host | #6.260(bstr) | Address of    |

|          |             |          |     (*)      | the client    |

|          |             +----------+--------------+---------------+

|          |             | cli_port | uint         | Port number   |

|          |             |          |              | of the client |

+----------+-------------+----------+--------------+---------------+

* The CBOR byte string is tagged and identified by the

  CBOR tag 260 "Network Address (IPv4 or IPv6 or MAC Address)".

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶



This document assumes that the following requirements are fulfilled.

REQ1. The proxy is explicitly configured (allow-list) to perform

proxied group requests on behalf of specific allowed client(s).

REQ2. The proxy MUST identify a client sending a unicast group

request to be proxied, in order to verify whether the client is

allowed-listed to do so. For example, this can rely on one of the

following security associations.

A TLS [RFC8446] or DTLS [RFC6347][RFC9147] channel between the

client and the proxy, where the client has been authenticated

during the secure channel establishment.

A pairwise OSCORE [RFC8613] Security Context between the

client and the proxy, as defined in [I-D.tiloca-core-oscore-

capable-proxies].

REQ3. If secure, end-to-end communication is required between the

client and the servers in the CoAP group, exchanged messages MUST

be protected by using Group OSCORE [I-D.ietf-core-oscore-

groupcomm], as discussed in Section 5 of [I-D.ietf-core-

groupcomm-bis]. This requires the client and the servers to have

previously joined the correct OSCORE group, for instance by using

the approach described in [I-D.ietf-ace-key-groupcomm-oscore].

The correct OSCORE group to join can be pre-configured or

alternatively discovered, for instance by using the approach

described in [I-D.tiloca-core-oscore-discovery].

This document defines how to achieve the following objectives.

OBJ1. The proxy gets an indication from the client that the

client is in fact interested in and capable to handle multiple

responses to a proxied group request. With particular reference

to a unicast CoAP group request sent to the proxy, this means

that the client is capable to receive those responses as separate

CoAP responses, each matching with the original unicast request.

OBJ2. The proxy learns for how long it should wait for responses

to a proxied group request, before starting to ignore following

responses to it (except for notifications, if a CoAP Observe

Option is used [RFC7641]).

OBJ3. The proxy relays to the client any multiple responses to

the proxied group request. With particular reference to a

client's original CoAP unicast request sent to the proxy, those

responses are sent to the client as separate CoAP responses, each

matching with the original unicast request.

¶

*

¶

*

¶

-

¶

-

¶

*

¶

¶

*

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-5


OBJ4. The client is able to distinguish the different responses

to the proxied group request, as well as their corresponding

origin servers.

OBJ5. The client is enabled to optionally contact one or more of

the responding origin servers in the future, either directly or

via the proxy.

5. Protocol Description

This section specifies the steps of the signaling protocol.

5.1. Request Sending at the Client

This section defines the operations performed by the client, for

sending a request targeting a group of servers via the proxy.

5.1.1. Request Sending

The client proceeds according to the following steps.

The client prepares a unicast CoAP group request addressed to

the proxy. The request specifies the group URI where the

request has to be forwarded to, as a string in the Proxi-URI

option or by using the Proxy-Scheme option with the group URI

constructed from the URI-* options (see Section 3.5.1 of [I-

D.ietf-core-groupcomm-bis]).

The client MUST retain the Token value used for this original

unicast request beyond the reception of a first CoAP response

matching with it. To this end, the client follows the same

rules for Token retention defined for multicast CoAP requests

in Section 3.1.5 of [I-D.ietf-core-groupcomm-bis].

In particular, the client picks an amount of time T that it is

fine to wait for before freeing up the Token value.

Specifically, the value of T MUST be such that:

T < T_r , where T_r is the amount of time that the client is

fine to wait for before potentially reusing the Token value.

Note that T_r MUST NOT be less than MIN_TOKEN_REUSE_TIME

defined in Section 3.1.5 of [I-D.ietf-core-groupcomm-bis].

T should be at least the expected worst-case time taken by

the request and response processing on the proxy and on the

servers in the addressed CoAP group.

T should be at least the expected worst-case round-trip

delay between the client and the proxy plus the worst-case

*

¶

*

¶

¶

¶

¶

1. 

¶

2. 

¶

¶

*

¶

*

¶

*

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.5.1
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.1.5
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.1.5


round-trip delay between the proxy and any one of the origin

servers.

The client MUST include the Multicast-Timeout Option defined in

Section 2 into the unicast request to send to the proxy. The

option value specifies an amount of time T' < T. The difference

(T - T') should be at least the expected worst-case round-trip

time between the client and the proxy.

The client can specify T' = 0 as option value, thus indicating

to be not interested in receiving responses from the origin

servers through the proxy. In such a case, the client SHOULD

also include a No-Response Option [RFC7967] with value 26

(suppress all response codes), if it supports the option.

Consistently, if the unicast request to send to the proxy

already included a No-Response Option with value 26, the client

SHOULD specify T' = 0 as value of the Multicast-Timeout Option.

The client processes the request as defined in [I-D.ietf-core-

groupcomm-bis], and also as in [I-D.ietf-core-oscore-groupcomm]

when secure group communication is used between the client and

the servers.

The client sends the request to the proxy as a unicast CoAP

message. When doing so, the client protects the request

according to the security association it has with the proxy.

The exact method that the client uses to estimate the worst-case

processing times and round-trip delays mentioned above is out of the

scope of this document. However, such a method is expected to be

already used by the client when generally determining an appropriate

Token lifetime and reuse interval.

5.1.2. Supporting Observe

When using CoAP Observe [RFC7641], the client follows what is

specified in Section 3.7 of [I-D.ietf-core-groupcomm-bis], with the

difference that it sends a unicast request to the proxy, to be

forwarded to the group of servers, as defined in Section 5.1.1 of

this document.

Furthermore, the client especially follows what is specified in 

Section 5 of [RFC7641], i.e., it registers its interest to be an

observer with the proxy, as if it was communicating with the

servers.

¶

3. 

¶

¶

¶

4. 

¶

5. 

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.7
https://rfc-editor.org/rfc/rfc7641#section-5


5.2. Request Processing at the Proxy

This section defines the operations performed by the proxy, when

receiving a request to forward to a group of servers.

5.2.1. Request Processing

Upon receiving the request from the client, the proxy proceeds

according to the following steps.

The proxy decrypts the request, according to the security

association it has with the client.

The proxy identifies the client, and verifies that the client

is in fact allowed-listed to have its requests proxied to CoAP

group URIs.

The proxy verifies the presence of the Multicast-Timeout

Option, as a confirmation that the client is fine to receive

multiple CoAP responses matching with the same original

request.

If the Multicast-Timeout Option is not present, the proxy MUST

stop processing the request and MUST reply to the client with a

4.00 (Bad Request) response. The response MUST include a

Multicast-Timeout Option with an empty (zero-length) value,

indicating that the Multicast-Timeout Option was missing and

has to be included in the request. As per Section 5.9.2 of

[RFC7252] The response SHOULD include a diagnostic payload.

The proxy retrieves the value T' from the Multicast-Timeout

Option, and then removes the option from the client's request.

The proxy forwards the client's request to the group of

servers. In particular, the proxy sends it as a CoAP group

request over IP multicast, addressed to the group URI specified

by the client.

The proxy sets a timeout with the value T' retrieved from the

Multicast-Timeout Option of the original unicast request.

In case T' > 0, the proxy will ignore responses to the

forwarded group request coming from servers, if received after

the timeout expiration, with the exception of Observe

notifications (see Section 5.4).

In case T' = 0, the proxy will ignore all responses to the

forwarded group request coming from servers.

¶

¶

1. 

¶

2. 

¶

3. 

¶

¶

4. 

¶

5. 

¶

6. 

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-5.9.2


If the proxy supports caching of responses, it can serve the

original unicast request also by using cached responses, as per 

Section 7.

5.2.2. Supporting Observe

When using CoAP Observe [RFC7641], the proxy takes the role of the

client and registers its own interest to observe the target resource

with the servers as per Section 5 of [RFC7641].

When doing so, the proxy especially follows what is specified for

the client in Section 3.7 of [I-D.ietf-core-groupcomm-bis], by

forwarding the group request to the servers over IP multicast as

defined in Section 5.2.1 of this document.

5.3. Request and Response Processing at the Server

This section defines the operations performed by the server, when

receiving a group request from the proxy.

5.3.1. Request and Response Processing

Upon receiving the request from the proxy, the server proceeds

according to the following steps.

The server processes the group request as defined in [I-D.ietf-

core-groupcomm-bis], and also as in [I-D.ietf-core-oscore-

groupcomm] when secure group communication is used between the

client and the server.

The server processes the response to be relayed to the client

as defined in [I-D.ietf-core-groupcomm-bis], and also as in [I-

D.ietf-core-oscore-groupcomm] when secure group communication

is used between the client and the server.

5.3.2. Supporting Observe

When using CoAP Observe [RFC7641], the server especially follows

what is specified in Section 3.7 of [I-D.ietf-core-groupcomm-bis]

and Section 5 of [RFC7641].

5.4. Response Processing at the Proxy

This section defines the operations performed by the proxy, when

receiving a response matching with a forwarded group request.

¶

¶

¶

¶

¶

1. 

¶

2. 

¶

¶

¶

https://rfc-editor.org/rfc/rfc7641#section-5
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.7
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.7
https://rfc-editor.org/rfc/rfc7641#section-5


5.4.1. Response Processing

Upon receiving a response matching with the group request before the

amount of time T' has elapsed, the proxy proceeds according to the

following steps.

The proxy MUST include the Response-Forwarding Option defined

in Section 3 into the response. The proxy specifies as option

value the addressing information of the server generating the

response, encoded as defined in Section 3. In particular:

The 'srv_addr' element of the 'srv_info' array MUST specify

the server IPv6 address if the multicast request was

destined for an IPv6 multicast address, and MUST specify the

server IPv4 address if the multicast request was destined

for an IPv4 multicast address.

If present, the 'srv_port' element of the 'srv_info' array

MUST specify the port number of the server as the source

port number of the response. This element MUST be present if

the source port number of the response differs from the

default port number for the transport protocol specified in

the 'tp_id' element.

The proxy forwards the response back to the client. When doing

so, the proxy protects the response according to the security

association it has with the client.

As discussed in Section 3.1.6 of [I-D.ietf-core-groupcomm-bis], it

is possible that a same server replies with multiple responses to

the same group request, i.e., with the same Token. As long as the

proxy forwards responses to a group request back to the origin

client, the proxy MUST follow the steps defined above and forward

also such multiple responses "as they come".

Upon timeout expiration, i.e., T' seconds after having sent the

group request over IP multicast, the proxy frees up its local Token

value associated with that request. Thus, following late responses

to the same group request will be discarded and not forwarded back

to the client.

5.4.2. Supporting Observe

When using CoAP Observe [RFC7641], the proxy acts as a client

registered with the servers, as described earlier in Section 5.2.2.

Furthermore, the proxy takes the role of a server when forwarding

notifications from origin servers back to the client. To this end,

the proxy follows what is specified in Section 3.7 of [I-D.ietf-

¶

1. 

¶

*

¶

*

¶

2. 

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.1.6
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.7


core-groupcomm-bis] and Section 5 of [RFC7641], with the following

additions.

At step 1 in Section 5.4, the proxy includes the Response-

Forwarding Option in every notification, including non-2.xx

notifications resulting in removing the proxy from the list of

observers of the origin server.

The proxy frees up its Token value used for a group observation

only if, after the timeout expiration, no 2.xx (Success)

responses matching with the group request and also including an

Observe option have been received from any origin server. After

that, as long as observations are active with servers in the

group for the target resource of the group request, notifications

from those servers are forwarded back to the client, as defined

in Section 5.4, and the Token value used for the group

observation is not freed during this time.

Finally, the proxy SHOULD regularly verify that the client is still

interested in receiving observe notifications for a group

observation. To this end, the proxy can rely on the same approach

discussed for servers in Section 3.7 of [I-D.ietf-core-groupcomm-

bis], with more details available in Section 4.5 of [RFC7641].

5.5. Response Processing at the Client

This section defines the operations performed by the client, when

receiving a response matching with a request that targeted a group

of servers via the proxy.

5.5.1. Response Processing

Upon receiving from the proxy a response matching with the original

unicast request before the amount of time T has elapsed, the client

proceeds according to the following steps.

The client processes the response as defined in [I-D.ietf-core-

groupcomm-bis]. When doing so, the client decrypts the response

according to the security association it has with the proxy.

If secure group communication is used end-to-end between the

client and the servers, the client processes the response

resulting at the end of step 1, as defined in [I-D.ietf-core-

oscore-groupcomm].

The client identifies the origin server, whose addressing

information is specified as value of the Response-Forwarding

Option. If the 'srv_port' element of the 'tp_info' array in the

Response-Forwarding Option is not present or specifies the CBOR

simple value "null" (0xf6), then the client determines the port

¶

*

¶

*

¶

¶

¶

¶

1. 

¶

2. 

¶

3. 

https://rfc-editor.org/rfc/rfc7641#section-5
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.7
https://rfc-editor.org/rfc/rfc7641#section-4.5


number where to send unicast requests to the server -- in case

this is needed -- as defined in Section 3. In the former case,

the assumed default port number depends on the transport

protocol specified by the 'tp_id' element of the 'tp_info'

array (see Section 3.2).

In particular, the client is able to distinguish different

responses as originated by different servers. Optionally, the

client may contact one or more of those servers individually,

i.e., directly (bypassing the proxy) or indirectly (via a

proxied unicast request).

In order to individually reach an origin server again through

the proxy, the client is not required to understand or support

the transport protocol indicated in the Response-Forwarding

Option, as used between the proxy and the origin server, in

case it differs from "UDP" (1). That is, using the IPv4/IPv6

address value and optional port value from the Response-

Forwarding Option, the client simply creates the correct URI

for the individual request, by means of the Proxy-Uri or Uri-

Scheme Option in the unicast request to the proxy. The client

uses the transport protocol it knows, and has used before, to

send the request to the proxy.

As discussed in Section 3.1.6 of [I-D.ietf-core-groupcomm-bis], it

is possible that the client receives multiple responses to the same

group request, i.e., with the same Token, from the same origin

server. The client normally processes at the CoAP layer each of

those responses from the same origin server, and decides how to

exactly handle them depending on its available context information

(see Section 3.1.6 of [I-D.ietf-core-groupcomm-bis]).

Upon the timeout expiration, i.e., T seconds after having sent the

original unicast request to the proxy, the client frees up its local

Token value associated with that request. Note that, upon this

timeout expiration, the Token value is not eligible for possible

reuse yet (see Section 5.1.1). Thus, until the actual amount of time

before enabling Token reusage has elapsed, any following late

responses to the same request forwarded by the proxy will be

discarded, as these are not matching (by Token) with any active

request from the client.

5.5.2. Supporting Observe

When using CoAP Observe [RFC7641], the client frees up its Token

value only if, after the timeout T expiration, no 2.xx (Success)

responses matching with the original unicast request and also

including an Observe option have been received.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.1.6
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.1.6


Instead, if at least one such response has been received, the client

continues receiving those notifications as forwarded by the proxy,

as long as the observation for the target resource of the original

unicast request is active.

5.6. Example

The example in this section refers to the following actors.

One origin client C, with address C_ADDR and port number C_PORT.

One proxy P, with address P_ADDR and port number P_PORT.

Two origin servers S1 and S2, where the server Sx has address

Sx_ADDR and port number Sx_PORT.

The origin servers are members of a CoAP group with IP multicast

address G_ADDR and port number G_PORT. Also, the origin servers are

members of a same application group, and share the same resource /r.

The communication between C and P is based on CoAP over UDP, as per 

[RFC7252]. The communication between P and the origin servers is

based on CoAP over UDP and IP multicast, as per [I-D.ietf-core-

groupcomm-bis].

Finally, 'bstr(X)' denotes a CBOR byte string where its value is the

byte serialization of X.

¶

¶

* ¶

* ¶

*

¶

¶

¶

¶



C                          P                      S1           S2

|                          |                      |             |

|------------------------->|                      |             |

| Src: C_ADDR:C_PORT       |                      |             |

| Dst: P_ADDR:P_PORT       |                      |             |

| Proxi-URI {              |                      |             |

|  coap://G_ADDR:G_PORT/r  |                      |             |

| }                        |                      |             |

| Multicast-Timeout: 60    |                      |             |

|                          |                      |             |

|                          |                      |             |

|                          | Src: P_ADDR:P_PORT   |             |

|                          | Dst: G_ADDR:G_PORT   |             |

|                          | Uri-Path: /r         |             |

|                          |---------------+----->|             |

|                          |                \     |             |

|                          |                 +----------------->|

|                          |                      |             |

|                          | /* t = 0 : P starts  |             |

|                          | accepting responses  |             |

|                          | for this request */  |             |

|                          |                      |             |

|                          |                      |             |

|                          |<---------------------|             |

|                          | Src: S1_ADDR:G_PORT  |             |

|                          | Dst: P_ADDR:P_PORT   |             |

|                          |                      |             |

|                          |                      |             |

|<-------------------------|                      |             |

| Src: P_ADDR:P_PORT       |                      |             |

| Dst: C_ADDR:C_PORT       |                      |             |

| Response-Forwarding {    |                      |             |

|  [1, /*CoAP over UDP*/   |                      |             |

|   #6.260(bstr(S1_ADDR)), |                      |             |

|   null /* G_PORT */      |                      |             |

|  ]                       |                      |             |

| }                        |                      |             |

|                          |<-----------------------------------|

|                          |               Src: S2_ADDR:S2_PORT |

|                          |               Dst: P_ADDR:P_PORT   |

|                          |                      |             |

|                          |                      |             |

|                          |                      |             |

|<-------------------------|                      |             |

| Src: P_ADDR:P_PORT       |                      |             |

| Dst: C_ADDR:C_PORT       |                      |             |

| Response-Forwarding {    |                      |             |

|  [1, /*CoAP over UDP*/   |                      |             |

|   #6.260(bstr(S2_ADDR)), |                      |             |



|   S2_PORT                |                      |             |

|  ]                       |                      |             |

| }                        |                      |             |

|            /* At t = 60, P stops accepting      |             |

|            responses for this request */        |             |

|                          |                      |             |



Figure 3: Workflow example with a forward-proxy

6. Reverse-Proxies

The use of reverse-proxies in group communication scenarios is

defined in Section 3.5.2 of [I-D.ietf-core-groupcomm-bis].

This section clarifies how the Multicast-Timeout Option is effective

also in such a context, in order for:

The proxy to explictly reveal itself as a reverse-proxy to the

client.

The client to indicate to the proxy of being aware that it is

communicating with a reverse-proxy, and for how long it is

willing to receive responses to a proxied group request.

This practically addresses the addional issues compared to the case

with a forward-proxy, as compiled in Section 3.5.2 of [I-D.ietf-

core-groupcomm-bis]. A reverse-proxy may also operate without

support of the Multicast-Timeout Option, as defined in that section.

Appendix A provides examples with a reverse-proxy.

6.1. Processing on the Client Side

If a client sends a CoAP request intended to a group of servers and

is aware of actually communicating with a reverse-proxy, then the

client SHOULD perform the steps defined in Section 5.1.1. In

particular, this results in a request sent to the proxy including a

Multicast-Timeout Option.

An exception is the case where the reverse-proxy has a pre-

configured timeout value T_PROXY, as the default timeout value to

use for when to stop accepting responses from the servers, after the

reception of the original unicast request from the client. In this

case, a client aware of such a configuration MAY omit the Multicast-

Timeout Option in the request sent to the proxy.

The client processes the CoAP responses forwarded back by the proxy

as defined in Section 5.5.

6.2. Processing on the Proxy Side

If the proxy receives a CoAP request and determines that it should

be forwarded to a group of servers over IP multicast, then the proxy

performs the steps defined in Section 5.2.

In particular, when such a request does not include a Multicast-

Timeout Option, the proxy SHOULD explicitly reveal itself as a

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.5.2
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.5.2


reverse-proxy, by sending a 4.00 (Bad Request) response including a

Multicast-Timeout Option with empty (zero-length) value.

An exception is the case where the reverse-proxy has a pre-

configured timeout value T_PROXY, as default timeout value to use

for when to stop accepting responses from the servers, after the

reception of the original unicast request from the client. In this

case, the proxy MAY replace the steps 3 and 4 in Section 5.2.1 with

the following step.

A. The proxy verifies the presence of the Multicast-Timeout Option,

as a confirmation that the client is willing to receive multiple

CoAP responses matching with the same original request. Then, the

proxy performs the following actions.

If the Multicast-Timeout Option is present, the proxy retrieves

the value T' from the Multicast-Timeout Option, and then removes

the option from the client's request. That is, the timeout value

indicated in the option overrides the pre-configured timeout

value T_PROXY.

If the Multicast-Timeout option is not present, the proxy checks

that, according to its local configuration, both the following

conditions hold for the client (which, at this point, has been

successfully authenticated).

COND_1 : The client is aware of the default timeout value

T_PROXY pre-configured at the proxy.

COND_2 : The client is able to process multiple responses to

the same request.

These conditions are expected to hold for clients that are

locally registered at the proxy, successfully authenticated and

allowed-listed to have their requests proxied to CoAP group URIs.

If the proxy is able to successfully assert that both the two

conditions hold, then the proxy considers the value T' as equal

to T_PROXY and proceeds to step 5.

If the proxy is not able to successfully assert that both the two

conditions hold, the proxy MUST stop processing the request and

MUST reply to the client with a 4.00 (Bad Request) response. The

response MUST include a Multicast-Timeout Option with an empty

(zero-length) value, indicating that the Multicast-Timeout Option

was missing and has to be included in the request. As per 

Section 5.9.2 of [RFC7252] The response SHOULD include a

diagnostic payload.

¶

¶

¶

*

¶

*

¶

-

¶

-

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-5.9.2


The proxy processes the CoAP responses forwarded back to the client

as defined in Section 5.4.

7. Caching

A proxy MAY cache responses to a group request, as defined in 

Section 5.7.1 of [RFC7252]. In particular, the same rules apply to

determine the set of request options used as "Cache-Key", and to

determine the max-age values offered for responses served from the

cache.

A cache entry is associated with one server and stores one response

from that server, regardless whether it is a response to a unicast

request or to a group request. The following two types of requests

can produce a hit to a cache entry.

A matching request intended to that server, i.e., to the

corresponding unicast URI.

When the stored response is a response to a unicast request to

the server, the unicast URI of the matching request is the same

target URI used for the original unicast request.

When the stored response is a response to a group request to the

CoAP group, the unicast URI of the matching request is the target

URI obtained by replacing the authority part of the group URI in

the original group request with the transport-layer source

address and port number of the response.

A matching group request intended to the CoAP group, i.e., to the

corresponding group URI.

That is, a matching group request produces a hit to multiple

cache entries, each of which associated with one of the CoAP

servers currently member of the CoAP group.

Note that, as per the freshness model defined in Section 7.1, the

proxy might serve a group request exclusively from its cached

responses only when it knows all the CoAP servers that are

current members of the CoAP group and it has a valid cache entry

for each of them.

When forwarding a GET or FETCH group request to the servers in the

CoAP group, the proxy behaves like a CoAP client as defined in 

Section 3.2 of [I-D.ietf-core-groupcomm-bis], with the following

additions.

As discussed in Section 5.4.1, the proxy can receive multiple

responses to the same group request from a same origin server,

and forwards them back to the origin client "as they come". When

¶

¶

¶

*

¶

¶

¶

*

¶

¶

¶

¶

*

https://rfc-editor.org/rfc/rfc7252#section-5.7.1
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.2


this happens, each of such multiple responses is stored in the

cache entry associated with the server "as it comes", possibly

replacing an already stored response from that server.

As discussed in Section 7.4, when communications in the group are

secured with Group OSCORE [I-D.ietf-core-oscore-groupcomm],

additional means are required to enable cacheability of responses

at the proxy.

The following subsections define the freshness model and validation

model that the proxy uses for cached responses.

7.1. Freshness Model

The proxy relies on the same freshness model defined in 

Section 3.2.1 of [I-D.ietf-core-groupcomm-bis], by taking the role

of a CoAP client with respect to the servers in the CoAP group.

In particular, when receiving a unicast group request from the

client, the proxy MAY serve it by using exclusively cached responses

without forwarding the group request to the servers in the CoAP

group, but only if both the following conditions hold.

The proxy knows all the CoAP servers that are currently members

of the CoAP group for which the group request is intended to.

The proxy's cache currently stores a fresh response for each of

those CoAP servers.

The specific way that the proxy uses to determine the CoAP servers

currently members of the target CoAP group is out of scope for this

document. As possible examples, the proxy can synchronize with a

group manager server; rely on well-known time patterns used in the

application or in the network for the addition of new CoAP group

members; observe group join requests or IGMP/MLD multicast group

join messages, e.g., if embedded in a multicast router.

When forwarding the group request to the servers, the proxy may have

fresh responses stored in its cache for (some of) those servers. In

such a case, the proxy uses (also) those cached responses to serve

the original unicast group request, as defined below.

The request processing in Section 5.2.1 is extended as follows.

After setting the timeout with value T' > 0 in step 6, the proxy

checks whether its cache currently stores fresh responses to the

group request. For each of such responses, the proxy compares the

residual lifetime L of the corresponding cache entry against the

value T'.

¶

*

¶

¶

¶

¶

*

¶

*

¶

¶

¶

* ¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.2.1


If a cached response X is such that L < T', then the proxy

forwards X back to the client at its earliest convenience.

Otherwise, the proxy does not forward X back to the client right

away, and rather waits for approaching the timeout expiration, as

discussed in the next point.

The response processing in Section 5.4.1 is extended as follows.

Before the timeout with original value T' > 0 expires and the

proxy stops accepting responses to the group request, the proxy

checks whether it stores in its cache any fresh response X to the

group request such that both the following conditions hold.

The cache entry E storing X was already existing when the

proxy forwarded the group request.

The proxy has received no response to the forwarded group

request from the server associated with E.

Then, the proxy sends back to the client each response X stored

in its cache and selected as above, before the timeout expires.

Note that, from the forwarding of the group request until the

timeout expiration, the proxy still forwards responses to the

group request back to the client "as they come" (see Section

5.4.1). Also, such responses possibly refresh older responses

from the same servers that the proxy has stored in its cache, as

defined earlier in Section 7.

7.2. Validation Model

This section defines the revalidation of responses, separately

between the proxy and the origin servers, as well as between the

origin client and the proxy.

7.2.1. Proxy-Servers Revalidation with Unicast Requests

The proxy MAY revalidate a cached response by making a GET or FETCH

request on the related unicast request URI, i.e., by taking the role

of a CoAP client with respect to a server in the CoAP group.

As discussed in Section 7.4, this is however not possible for the

proxy if communications in the group are secured end-to-end between

origin client and origin servers by using Group OSCORE [I-D.ietf-

core-oscore-groupcomm].

[ TODO

¶

* ¶

¶

-

¶

-

¶

¶

¶

¶

¶

¶

¶



It can be actually possible to enable revalidation of responses

between proxy and server, also in this case where Group OSCORE is

used end-to-end between client and origin servers.

Fundamentally, this requires to define the possible use of the ETag

option also as an outer option for OSCORE. Thus, in addition to the

normal inner ETag, a server can add also an outer ETag option

intended to the proxy.

Since validation of responses assumes that cacheability of responses

is possible in the first place, it would be convenient to define the

use of ETag as outer option in [I-D.amsuess-core-cachable-oscore].

In case OSCORE is also used between the proxy and an individual

origin server as per [I-D.tiloca-core-oscore-capable-proxies], then

the outer ETag option would be seamlessly protected with the OSCORE

Security Context shared between the proxy and the origin server.

The following text can be used to replace the last paragraph above.

As discussed in Section 7.4, the following applies when Group

OSCORE [I-D.ietf-core-oscore-groupcomm] is used to secure

communications end-to-end between the origin client and the origin

servers in the group.

Additional means are required to enable cacheability of responses

at the proxy (see Section 7.4.1).

If a cached response included an outer ETag option intended to

the proxy, then the proxy can perform revalidatation of the

cached response, by making a request to the unicast URI targeting

the server, and including outer ETag Option(s).

This is possible also in case the proxy and the origin server use

OSCORE to further protect the exchanged request and response, as

defined in [I-D.tiloca-core-oscore-capable-proxies]. In such a

case, the originally outer ETag option is protected with the

OSCORE Security Context shared between the proxy and the origin

server, before transferring the message over the communication

leg between the proxy and origin server.

]

7.2.2. Proxy-Servers Revalidation with Group Requests

When forwarding a group request to the servers in the CoAP group,

the proxy MAY revalidate one or more stored responses that it has

cached.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶



To this end, the proxy relies on the same validation model defined

in Section 3.2.2 of [I-D.ietf-core-groupcomm-bis] and using the ETag

Option, by taking the role of a CoAP client with respect to the

servers in the CoAP group.

As discussed in Section 7.4, this is however not possible for the

proxy if communications in the group are secured end-to-end between

origin client and origin servers by using Group OSCORE [I-D.ietf-

core-oscore-groupcomm].

[ TODO

See the notes in Section 7.2.1.

The following text can be used to replace the last paragraph above.

As discussed in Section 7.4, the following applies when Group

OSCORE [I-D.ietf-core-oscore-groupcomm] is used to secure

communications end-to-end between the origin client and the origin

servers in the group.

Additional means are required to enable cacheability of responses

at the proxy (see Section 7.4.1).

If a cached response included an outer ETag option intended to

the proxy, then the proxy can perform revalidatation of the

cached response, by making a request to the group URI targeting

the CoAP group, and including outer ETag Option(s).

This is possible also in case the proxy and the origin servers

use Group OSCORE to further protect the exchanged request and

response, as defined in [I-D.tiloca-core-oscore-capable-proxies].

In such a case, the originally outer ETag option is protected

with the Group OSCORE Security Context shared between the proxy

and the origin server, before transferring the message over the

communication leg between the proxy and origin server.

]

7.3. Client-Proxy Revalidation with Group Requests

A client MAY revalidate the full set of responses to a group request

by leveraging the corresponding cache entries at the proxy. To this

end, this document defines the new Group-ETag Option.

The Group-ETag Option has the properties summarized in Figure 4,

which extends Table 4 of [RFC7252]. The Group-ETag Option is

elective, safe to forward, part of the cache key, and repeatable.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.2.2


The option is intended for group requests sent to a proxy to be

forwarded to the servers in a CoAP group, as well as for the

associated responses.

Figure 4: The Group-ETag Option.

The Group-ETag Option has the same properties of the ETag Option

defined in Section 5.10.6 of [RFC7252].

The Group-ETag Option is of class U in terms of OSCORE processing

(see Section 4.1 of [RFC8613]).

A proxy MUST NOT provide this form of validation if it is not in a

position to serve a group request by using exclusively cached

responses, i.e., without sending the group request to the servers in

the CoAP group (see Section 7.1).

If the proxy supports this form of response revalidation, the

following applies.

The proxy defines J as a joint set including all the cache

entries currently storing fresh responses that satisfy a group

request. A set J is "complete" if it includes a valid cache entry

for each of the CoAP servers currently members of the CoAP group.

When the set J becomes "complete", the proxy assigns it an

entity-tag value. The proxy MUST update the current entity-tag

value, when J is "complete" and one of its cache entry is

updated.

When forwarding to the client a 2.05 (Content) response to a GET

or FETCH group request, the proxy MAY include one Group-ETag

Option, in case the set J is "complete". Such a response MUST NOT

include more than one Group-ETag Option. The option value

specifies the entity-tag value currently associated with the set

J.

When sending to the proxy a GET or FETCH request to be forwarded to

the servers in the CoAP group, the client MAY include one or more

Group-ETag Options. Each option specifies one entity-tag value,

¶

+------+---+---+---+---+------------+--------+--------+---------+

| No.  | C | U | N | R | Name       | Format | Length | Default |

+------+---+---+---+---+------------+--------+--------+---------+

|      |   |   |   |   |            |        |        |         |

| TBD3 |   |   |   | x | Group-ETag | opaque |  1-8   | (none)  |

|      |   |   |   |   |            |        |        |         |

+------+---+---+---+---+------------+--------+--------+---------+

           C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

¶

¶

¶

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc7252#section-5.10.6
https://rfc-editor.org/rfc/rfc8613#section-4.1


applicable to the set J of cache entries that can be hit by the

group request.

The proxy MAY perform the following actions, in case the group

request produces a hit to the cache entry of each CoAP server

currently member of the CoAP group, i.e., the set J associated with

the group request is "complete".

The proxy checks whether the current entity-tag value of the set

J matches with one of the entity-tag values specified in the

Group-ETag Options of the unicast group request from the client.

In case of positive match, the proxy replies with a single 2.03

(Valid) response. This response has no payload and MUST include

one Group-ETag Option, specifying the current entity-tag value of

the set J.

That is, the 2.03 (Valid) response from the proxy indicates to the

client that the stored responses idenfied by the entity-tag given in

the response's Group-ETag Option can be reused, after updating each

of them as described in Section 5.9.1.3 of [RFC7252]. In effect, the

client can determine if any of the stored representations from the

respective cache entries at the proxy is current, without needing to

transfer any of them again.

7.4. Caching of End-To-End Protected Responses at Proxies

When using Group OSCORE [I-D.ietf-core-oscore-groupcomm] to protect

communications end-to-end between a client and multiple servers in

the group, it is normally not possible for an intermediary proxy to

cache protected responses.

In fact, when starting from the same plain CoAP message, different

clients generate different protected requests to send on the wire.

This prevents different clients to generate potential cache hits,

and thus makes response caching at the proxy pointless.

7.4.1. Deterministic Requests to Achieve Cacheability

For application scenarios that use secure group communication, it is

still possible to achieve cacheability of responses at proxies, by

using the approach defined in [I-D.amsuess-core-cachable-oscore]

which is based on Deterministic Requests protected with the pairwise

mode of Group OSCORE. This approach is limited to group requests

that are safe (in the RESTful sense) to process and do not yield

side effects at the server. As for any protected group request, it

requires the clients and all the servers in the CoAP group to have

already joined the correct OSCORE group.

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-5.9.1.3


Starting from the same plain CoAP request, this allows different

clients in the OSCORE group to deterministically generate a same

request protected with Group OSCORE, which is sent to the proxy for

being forwarded to the CoAP group. The proxy can now effectively

cache the resulting responses from the servers in the CoAP group,

since the same plain CoAP request will result again in the same

Deterministic Request and thus will produce a cache hit.

When caching of Group OSCORE secured responses is enabled at the

proxy, the same as defined in Section 7 applies, with respect to

cache entries and their lifetimes.

Note that different Deterministic Requests result in different cache

entries at the proxy. This includes the case where different plain

group requests differ only in their set of ETag Options, as defined

in Section 3.2.2 of [I-D.ietf-core-groupcomm-bis].

That is, even though the servers would produce the same plain CoAP

responses in reply to two different Deterministic Requests, those

will result in different protected responses to each respective

Deterministic Request, hence in different cache entries at the

proxy.

Thus, given a plain group request, a client needs to reuse the same

set of ETag Options, in order to send that group request as a

Deterministic Request that can actually produce a cache hit at the

proxy. However, while this would prevent the caching at the proxy to

be inefficient and unnecessarily redundant, it would also limit the

flexibility of end-to-end response revalidation for a client.

7.4.2. Validation of Responses

Response revalidation remains possible end-to-end between the client

and the servers in the group, by means of including inner ETag

Option(s) as defined in Sections 3.2 and 3.2.2 of [I-D.ietf-core-

groupcomm-bis].

Furthermore, it remains possible for a client to attempt

revalidating responses to a group request from a "complete" set of

cache entries at the proxy, by using the Group-ETag Option as

defined in Section 7.3.

When directly interacting with the servers in the CoAP group to

refresh its cache entries, the proxy cannot rely on response

revalidation anymore. This applies to both the case where the

request is addressed to a single server and sent to the related

unicast URI (see Section 7.2.1) or instead is a group request

addressed to the CoAP group and sent to the related group URI (see 

Section 7.2.2).

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.2.2
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-07#section-3.2.2


[ TODO

See the notes in Section 7.2.1.

The following text can be used to replace the last paragraph above.

When directly interacting with the servers in the CoAP group to

refresh its cache entries, the proxy also remains able to perform

response revalidation. That is, if a cached response included an

outer ETag option intended to the proxy, then the proxy can perform

revalidatation of the cached response, by making a request to the

unicast URI addressed to a single server and sent to the related

unicast URI (see Section 7.2.1) or a group request addressed to the

CoAP group and sent to the related group URI (see Section 7.2.2).

]

8. Chain of Proxies

A client may be interested to access a resource at a group of origin

servers which is reached through a chain of two or more proxies.

That is, these proxies are configured into a chain, where each non-

last proxy is configured to forward (group) requests to the next hop

towards the origin servers. Also, each non-first proxy is configured

to forward back responses to (the previous hop proxy towards) the

origin client.

This section specifies how the signaling protocol defined in Section

5 is used in that setting. Except for the last proxy before the

origin servers, every other proxy in the chain takes the role of

client with respect to the next hop towards the origin servers.

Also, every proxy in the chain except the first takes the role of

server towards the previous proxy closer to the origin client.

Accordingly, possible caching of responses at each proxy works as

defined in Section 7 and Section 7.4. Also, possible revalidation of

responses cached ad each proxy and based on the Group-ETag option

works as defined in Section 7.3 and Section 7.4.2.

The requirements REQ1 and REQ2 defined in Section 4 MUST be

fulfilled for each proxy in the chain. That is, every proxy in the

chain has to be explicitly configured (allow-list) to allow proxied

group requests from specific senders, and MUST identify those

senders upon receiving their group request. For the first proxy in

the chain, that sender is the origin client. For each other proxy in

the chain, that sender is the previous hop proxy closer to the

origin client. In either case, a proxy can identify the sender of a

group request by the same means mentioned in Section 4.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



8.1. Request Processing at the Proxy

Upon receiving a group request to be forwarded to a CoAP group URIs,

a proxy proceed as follows.

If the proxy is the last one in the chain, i.e., it is the last hop

before the origin servers, the proxy performs the steps defined in 

Section 5.2, with no modifications.

Otherwise, the proxy performs the steps defined in Section 5.2, with

the following differences.

At steps 1-3, "client" refers to the origin client for the first

proxy in the chain; or to the previous hop proxy closer to the

origin client, otherwise.

At step 4, the proxy rather performs the following actions.

The proxy retrieves the value T' from the Multicast-Timeout

Option, and does not remove the option.

In case T' > 0, the proxy picks an amount of time T it is

fine to wait for before freeing up its local Token value to

use with the next hop towards the origin servers. To this

end, the proxy MUST follow what is defined at step 2 of 

Section 5.1.1 for the origin client, with the following

differences.

T MUST be greater than the retrieved value T', i.e., T' <

T.

The worst-case message processing time takes into account

all the next hops towards the origin servers, as well as

the origin servers themselves.

The worst-case round-trip delay takes into account all

the legs between the proxy and the origin servers.

In case T' > 0, the proxy replaces the value of the

Multicast-Timeout Option with a new value T'', such that:

T'' < T. The difference (T - T'') should be at least the

expected worst-case round-trip time between the proxy and

the next hop towards the origin servers.

T'' < T'. The difference (T' - T'') should be at least

the expected worst-case round-trip time between the proxy

and the (previous hop proxy closer to the) origin client.

¶

¶

¶

*

¶

* ¶

1. 

¶

2. 

¶

-

¶

-

¶

-

¶

3. 

¶

-

¶

-

¶



If the proxy is not able to determine a value T'' that

fulfills both the requirements above, the proxy MUST stop

processing the request and MUST respond with a 5.05

(Proxying Not Supported) error response to the previous hop

proxy closer to the origin client. The proxy SHOULD include

a Multicast-Timeout Option, set to the minimum value T' that

would be acceptable in the Multicast-Timeout Option of a

group request to forward.

Upon receiving such an error response, any proxy in the

chain MAY send an updated group request to the next hop

towards the origin servers, specifying in the Multicast-

Timeout Option a value T' greater than in the previous

request. If this does not happen, the proxy receiving the

error response MUST also send a 5.05 (Proxying Not

Supported) error response to the previous hop proxy closer

to the origin client. Like the received one, also this error

response SHOULD include a Multicast-Timeout Option, set to

the minimum value T' acceptable by the proxy sending the

error response.

At step 5, the proxy forwards the request to the next hop towards

the origin servers.

At step 6, the proxy sets a timeout with the value T' retrieved

from the Multicast-Timeout Option of the request received from

the (previous hop proxy closer to the) origin client.

In case T' > 0, the proxy will ignore responses to the forwarded

group request coming from the (next hop towards the) origin

servers, if received after the timeout expiration, with the

exception of Observe notifications (see Section 5.4).

In case T' = 0, the proxy will ignore all responses to the

forwarded group request coming from the (next hop towards the)

origin servers.

8.1.1. Supporting Observe

When using CoAP Observe [RFC7641], what is defined in Section 5.2.2

applies for the last proxy in the chain, i.e., the last hop before

the origin servers.

Any other proxy in the chain acts as a client and registers its own

interest to observe the target resource with the next hop towards

the origin servers, as per Section 5 of [RFC7641].

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7641#section-5


8.2. Response Processing at the Proxy

Upon receiving a response matching with the group request before the

amount of time T' has elapsed, the proxy proceeds as follows.

If the proxy is the last one in the chain, i.e., it is the last hop

before the origin servers, the proxy performs the steps defined in 

Section 5.4, with no modifications.

Otherwise, the proxy performs the steps defined in Section 5.4, with

the following differences.

The proxy skips step 1. In particular, the proxy MUST NOT remove,

alter or replace the Response-Forwarding Option.

At step 2, "client" refers to the origin client for the first

proxy in the chain; or to the previous hop proxy closer to the

origin client, otherwise.

As to the possible reception of multiple responses to the same group

request from the same (next hop proxy towards the) origin server,

the same as defined in Section 5.4.1 applies. That is, as long as

the proxy forwards responses to a group request back to the

(previous hop proxy closer to the) origin client, the proxy MUST

follow the steps above and forward also such multiple responses "as

they come".

Upon timeout expiration, i.e., T seconds after having forwarded the

group request to the next hop towards the origin servers, the proxy

frees up its local Token value associated with that request. Thus,

following late responses to the same group request will be discarded

and not forwarded back to the (previous hop proxy closer to the)

origin client.

8.2.1. Supporting Observe

When using CoAP Observe [RFC7641], what is defined in Section 5.4.2

applies for the last proxy in the chain, i.e., the last hop before

the origin servers.

As to any other proxy in the chain, the following applies.

The proxy acts as a client registered with the next hop towards

the origin servers, as described earlier in Section 8.1.1.

The proxy takes the role of a server when forwarding

notifications from the next hop to the origin servers back to the

(previous hop proxy closer to the) origin client, as per 

Section 5 of [RFC7641].

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc7641#section-5


The proxy frees up its Token value used for a group observation

only if, after the timeout expiration, no 2.xx (Success)

responses matching with the group request and also including an

Observe option have been received from the next hop towards the

origin servers. After that, as long as the observation for the

target resource of the group request is active with the next hop

towards the origin servers in the group, notifications from that

hop are forwarded back to the (previous hop proxy closer to the)

origin client, as defined in Section 8.2.

The proxy SHOULD regularly verify that the (previous hop proxy

closer to the) origin client is still interested in receiving

observe notifications for a group observation. To this end, the

proxy can rely on the same approach defined in Section 4.5 of

[RFC7641].

9. HTTP-CoAP Proxies

This section defines the components needed to use the signaling

protocol specified in this document, when an HTTP client wishes to

send a group request to the servers of a CoAP group, via an HTTP-

CoAP cross-proxy.

The following builds on the mapping of the CoAP request/response

model to HTTP and vice versa as defined in Section 10 of [RFC7252],

as well as on the additional details about the HTTP-CoAP mapping

defined in [RFC8075].

Furthermore, the components defined in Section 11 of [RFC8613] are

also used to map and transport OSCORE-protected messages over HTTP.

This allows an HTTP client to use Group OSCORE end-to-end with the

servers in the CoAP group.

9.1. The HTTP Multicast-Timeout Header Field

The HTTP Multicast-Timeout header field (see Section 11.3) is used

for carrying the content otherwise specified in the CoAP Multicast-

Timeout Option defined in Section 2.

Using the Augmented Backus-Naur Form (ABNF) notation of [RFC5234]

and including the core ABNF syntax rule DIGIT (decimal digits)

defined by that specification, the HTTP Multicast-Timeout header

field value is as follows.

Multicast-Timeout = *DIGIT

When translating a CoAP message into an HTTP message, the HTTP

Multicast-Timeout header field is set with the content of the CoAP

Multicast-Timeout Option, or is left empty in case the option is

empty.

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7641#section-4.5
https://rfc-editor.org/rfc/rfc7252#section-10
https://rfc-editor.org/rfc/rfc8613#section-11


The same applies in the opposite direction, when translating an HTTP

message into a CoAP message.

9.2. The HTTP Response-Forwarding Header Field

The HTTP Response-Forwarding header field (see Section 11.3) is used

for carrying the content otherwise specified in the CoAP Response-

Forwarding Option defined in Section 3.

Using the Uniform Resource Identifier (URI) syntax components

defined in [RFC3986], the HTTP Response-Forwarding header field

value is as follows.

scheme = <scheme, see Section 3.1 of [RFC3986]>

authority = <authority, see Section 3.2 of [RFC3986]>

Response-Forwarding = scheme "://" authority

In particular:

The scheme component indicates the URI scheme otherwise specified

in the CoAP Response-Forwarding Option, as per the 'tp_id'

element of the 'tp_info' array (see Section 3). That is, the

'tp_id' element with integer value 1 results in the scheme

"coap".

The authority component indicates the URI authority otherwise

specified in the CoAP Response-Forwarding Option, as per the

'srv_host' and 'srv_port' elements of the 'tp_info' array (see 

Section 3).

When translating a CoAP message into an HTTP message, the HTTP

Response-Forwarding header field is set to the URI specified in the

CoAP Response-Forwarding Option, as per the rules defined above. In

particular, consistently with what is defined in Section 3:

If the 'srv_port' element of the 'tp_info' array is present and

specifies the CBOR simple value "null" (0xf6), the URI authority

of the header field includes the same port number that was

specified in the group URI where the group request was forwarded.

If the 'srv_port' element of the 'tp_info' array is not present,

the URI authority of the header field includes the default port

number for the transport protocol specified by the 'tp_id'

element of the 'tp_info' array, as per Section 3.2.

When translating an HTTP message into a CoAP message, the CoAP

Response-Forwarding Option is set to the URI specified by the HTTP

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc3986#section-3.1
https://rfc-editor.org/rfc/rfc3986#section-3.2


Response-Forwarding header field. In particular, the URI is encoded

according to the format specified in Section 3.

9.3. The HTTP Group-ETag Header Field

The HTTP Group-ETag header field (see Section 11.3) is used for

carrying the content otherwise specified in the CoAP Group-ETag

Option defined in Section 7.3.

Using the Augmented Backus-Naur Form (ABNF) notation of [RFC5234]

and including the following core ABNF syntax rules defined by that

specification: ALPHA (letters) and DIGIT (decimal digits), the HTTP

Group-ETag header field value is as follows.

group-etag-char = ALPHA / DIGIT / "-" / "_"

Group-ETag = 2*group-etag-char

When translating a CoAP message into an HTTP message, the HTTP

Group-ETag header field is set to the value of the CoAP Group-ETag

Option in base64url (see Section 5 of [RFC4648]) encoding without

padding. Implementation notes for this encoding are given in 

Appendix C of [RFC7515].

When translating an HTTP message into a CoAP message, the CoAP

Group-ETag Option is set to the value of the HTTP Group-ETag header

field decoded from base64url (see Section 5 of [RFC4648]) without

padding. Implementation notes for this encoding are given in 

Appendix C of [RFC7515].

9.4. Request Sending at the Client

The client proceeds according to the following steps.

The client prepares an HTTP request to send to the proxy via IP

unicast, and to be forwarded by the proxy to the targeted group

of CoAP servers over IP multicast. With reference to Section 5

of [RFC8075], the request is addressed to a Hosting HTTP URI,

such that the proxy can extract the Target CoAP URI as the

group URI where to forward the request.

The client determines the amount of time T that it is fine to

wait for a response to the request from the proxy. Then, the

client determines the amount of time T' < T, where the

difference (T - T') should be at least the expected worst-case

round-trip time between the client and the proxy.

If Group OSCORE is used end-to-end between the client and the

servers, the client translates the HTTP request into a CoAP

request, as per [RFC8075]. Then, the client protects the

¶

¶

¶

¶

¶

¶

¶

¶

1. 

¶

2. 

¶

3. 

https://rfc-editor.org/rfc/rfc4648#section-5
https://rfc-editor.org/rfc/rfc7515#appendix-C
https://rfc-editor.org/rfc/rfc4648#section-5
https://rfc-editor.org/rfc/rfc7515#appendix-C
https://rfc-editor.org/rfc/rfc8075#section-5


resulting CoAP request by using Group OSCORE, as defined in [I-

D.ietf-core-oscore-groupcomm]. Finally, the protected CoAP

request is mapped to HTTP as defined in Section 11.2 of

[RFC8613]. Later on, the resulting HTTP request MUST be sent in

compliance with the rules in Section 11.1 of [RFC8613].

The client includes the HTTP Multicast-Timeout header field in

the request, specifying T' as its value. The client can specify

T' = 0, thus indicating to be not interested in receiving

responses from the origin servers through the proxy.

If the client wishes to revalidate responses to a previous

group request from the corresponding cache entries at the proxy

(see Section 7.3), the client includes one or multiple HTTP

Group-ETag header fields in the request (see Section 9.3), each

specifying an entity-tag value like they would in a

corresponding CoAP Group E-Tag option.

The client sends the request to the proxy, as a unicast HTTP

message. In particular, the client protects the request

according to the security association it has with the proxy.

9.5. Request Processing at the Proxy

The proxy translates the HTTP request to a CoAP request, as per 

[RFC8075]. The additional rules for HTTP messages with the HTTP

Multicast-Timeout header field and HTTP Group-ETag header field are

defined in Section 9.1 and Section 9.3, respectively.

Once translated the HTTP request into a CoAP request, the proxy MUST

perform the steps defined in Section 5.2. If the proxy supports

caching of responses, it can serve the unicast request also by using

cached responses as per Section 7, considering the CoAP request

above as the potentially matching request.

In addition, in case the HTTP Multicast-Timeout header field had

value 0, the proxy replies to the client with an HTTP response with

status code 204 (No Content), right after forwarding the group

request to the group of servers.

9.6. Response Processing at the Proxy

Upon receiving a CoAP response matching with the group request

before the amount of time T' > 0 has elapsed, the proxy includes the

Response-Forwarding Option in the response, as per step 1 of Section

5.4.1. Then, the proxy translates the CoAP response to an HTTP

response, as per Section 10.1 of [RFC7252] and [RFC8075], as well

as Section 11.2 of [RFC8613] if Group OSCORE is used end-to-end

between the client and servers. The additional rules for CoAP

¶

4. 

¶

5. 

¶

6. 

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-11.2
https://rfc-editor.org/rfc/rfc8613#section-11.1
https://rfc-editor.org/rfc/rfc7252#section-10.1
https://rfc-editor.org/rfc/rfc8613#section-11.2


messages specifying the Response-Forwarding Option are defined in 

Section 9.2.

After that, the proxy stores the resulting HTTP response until the

timeout with original value T' > 0 expires. If, before then, the

proxy receives another response to the same group request from the

same CoAP server, the proxy performs the steps above, and stores the

resulting HTTP response by superseding the currently stored one from

that server.

When the timout expires, if no responses have been received from the

servers, the proxy replies to the client's original unicast group

request with an HTTP response with status code 204 (No Content).

Otherwise, the proxy relays to the client all the collected and

stored HTTP responses to the group request, according to the

following steps.

The proxy prepares a single HTTP batch response, which MUST

have 200 (OK) status code and MUST have its HTTP Content-Type

header field with value multipart/mixed [RFC2046].

For each stored individual HTTP response RESP, the proxy

prepares a corresponding batch part to include in the HTTP

batch response, such that:

The batch part has its own HTTP Content-Type header field

with value application/http [RFC9112].

The body of the batch part is the individual HTTP response

RESP, including its status code, headers and body.

The proxy includes each batch part prepared at step 2 in the

HTTP batch response.

The proxy replies to the client's original unicast group

request, by sending the HTTP batch response. When doing so, the

proxy protects the response according to the security

association it has with the client.

9.7. Response Processing at the Client

When it receives an HTTP response as a reply to the original unicast

group request, the client proceeds as follows.

The client decrypts the response, according to the security

association it has with the proxy.

From the resulting HTTP batch response, the client extracts the

different batch parts.

¶

¶

¶

¶

1. 

¶

2. 

¶

*

¶

*

¶

3. 

¶

4. 

¶

¶

1. 

¶

2. 

¶



From each of the extracted batch parts, the client extracts the

body as one of the individual HTTP response RESP.

For each individual HTTP response RESP, the client performs the

following steps.

If Group OSCORE is used end-to-end between the client and

servers, the client translates the HTTP response RESP into a

CoAP response, as per Section 11.3 of [RFC8613]. Then, the

client decrypts the resulting CoAP response by using Group

OSCORE, as defined in [I-D.ietf-core-oscore-groupcomm].

Finally, the decrypted CoAP response is mapped to HTTP as

per Section 10.2 of [RFC7252] as well as [RFC8075]. The

additional rules for HTTP messages with the HTTP Response-

Forwarding header field are defined in Section 9.2.

The client delivers to the application the individual HTTP

response.

Similarly to step 3 in Section 5.5.1, the client identifies the

origin server that originated the CoAP response correspoding to

the HTTP response RESP, by means of its addressing information

specified as value of the HTTP Response-Forwarding header

field. This allows the client to distinguish different

individual HTTP responses as corresponding to different CoAP

responses from the servers in the CoAP group.

9.8. Example

The examples in this section build on Section 5.6, with the

difference that the origin client C is an HTTP client and the proxy

P is an HTTP-CoAP cross-proxy. The examples are simply illustrative

and are not to be intended as a test vector.

The following is an example of unicast group request sent by C to P.

The URI mapping and notation are based on the "Simple Form" defined

in Section 5.4.1 of [RFC8075].

The following is an example of HTTP batch response sent by P to C,

as a reply to the client's original unicast group request.

3. 

¶

4. 

¶

*

¶

*

¶

¶

¶

¶

POST https://proxy.url/hc/?target_uri=coap://G_ADDR:G_PORT/ HTTP/1.1

Content-Length: <REQUEST_TOTAL_CONTENT_LENGTH>

Content-Type: text/plain

Multicast-Timeout: 60

Body: Do that!

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-11.3
https://rfc-editor.org/rfc/rfc7252#section-10.2
https://rfc-editor.org/rfc/rfc8075#section-5.4.1


9.9. Streamed Delivery of Responses to the Client

[ TODO

The proxy might still be able to forward back individual responses

to the client in a streamed fashion.

Individual responses can be forwarded back one by one as they come

(like a CoAP-to-CoAP proxy does), or as soon as a certain amount of

them have been received from the servers.

This can be achieved by combining the Content-Type multipart/mixed

used in the previous sections with the Transfer-Coding "chunked"

specified in RFC 9112.

The above applies to HTTP 1.1, while HTTP/2 has its own mechanisms

for data streaming.

]

9.10. Reverse-Proxies

In case an HTTP-to-CoAP proxy acts specifically as a reverse-proxy,

the same principles defined in Section 6 applies, as specified

below.

HTTP/1.1 200 OK

Content-Length: <BATCH_RESPONSE_TOTAL_CONTENT_LENGTH>

Content-Type: multipart/mixed; boundary=batch_foo_bar

--batch_foo_bar

Content-Type: application/http

HTTP/1.1 200 OK

Content-Type: text/plain

Content-Length: <INDIVIDUAL_RESPONSE_1_CONTENT_LENGTH>

Response-Forwarding: coap://S1_ADDR:G_PORT

Body: Done!

--batch_foo_bar

Content-Type: application/http

HTTP/1.1 200 OK

Content-Type: text/plain

Content-Length: <INDIVIDUAL_RESPONSE_2_CONTENT_LENGTH>

Response-Forwarding: coap://S2_ADDR:S2_PORT

Body: More than done!

--batch_foo_bar--

¶

¶

¶

¶

¶

¶

¶

¶



9.10.1. Processing on the Client Side

If an HTTP client sends a request intended to a group of servers and

is aware of actually communicating with a reverse-proxy, then the

client SHOULD perform the steps defined in Section 9.4. In

particular, this results in a request sent to the proxy including a

Multicast-Timeout header field.

An exception is the case where the reverse-proxy has a pre-

configured timeout value T_PROXY, as the default timeout value to

use for when to stop accepting responses from the servers, after the

reception of the original unicast request from the client. In this

case, a client aware of such a configuration MAY omit the Multicast-

Timeout header field in the request sent to the proxy.

The client processes the HTTP response forwarded back by the proxy

as defined in Section 9.7.

9.10.2. Processing on the Proxy Side

If the proxy receives a request and determines that it should be

forwarded to a group of servers over IP multicast, then the same as

defined in Section 9.5 applies, with the following difference.

Once translated the HTTP request into a CoAP request, the proxy

performs what is defined in Section 6.2. Note that, in this case,

the condition COND_2 always holds, since the proxy is going to send

to the client at most one response, i.e., the HTTP batch response

(see Section 9.6).

The proxy processes the HTTP response sent to the client as defined

in Section 9.6.

10. Security Considerations

The security considerations from [RFC7252][I-D.ietf-core-groupcomm-

bis][RFC8613][I-D.ietf-core-oscore-groupcomm] hold for this

document.

When a chain of proxies is used (see Section 8), the secure

communication between any two adjacent hops is independent.

When Group OSCORE is used for end-to-end secure group communication

between the origin client and the origin servers, this security

association is unaffected by the possible presence of a proxy or a

chain of proxies.

Furthermore, the following additional considerations hold.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



10.1. Client Authentication

As per the requirement REQ2 (see Section 4), the client has to

authenticate to the proxy when sending a group request to forward.

This leverages an established security association between the

client and the proxy, that the client uses to protect the group

request, before sending it to the proxy.

If the group request is (also) protected end-to-end between the

client and the servers using the group mode of Group OSCORE, the

proxy can act as external signature checker (see Section 8.5 of [I-

D.ietf-core-oscore-groupcomm]) and authenticate the client by

successfully verifying the signature embedded in the group request.

However, this requires that, for each client to authenticate, the

proxy stores the authentication credential and public key included

therin used by that client in the OSCORE group. This in turn would

require a form of active synchronization between the proxy and the

Group Manager for that group [I-D.ietf-core-oscore-groupcomm].

Nevertheless, the client and the proxy SHOULD still rely on a full-

fledged pairwise secure association. In addition to ensuring the

integrity of group requests sent to the proxy (see Section 10.2, 

Section 10.3 and Section 10.4), this prevents the proxy from

forwarding replayed group requests with a valid signature, as

possibly injected by an active, on-path adversary.

The same considerations apply when a chain of proxies is used (see 

Section 8), with each proxy but the last one in the chain acting as

client with the next hop towards the origin servers.

10.2. Multicast-Timeout Option

The Multicast-Timeout Option is of class U for OSCORE [RFC8613].

Hence, also when Group OSCORE is used between the client and the

servers [I-D.ietf-core-oscore-groupcomm], a proxy is able to access

the option value and retrieve the timeout value T', as well as to

remove the option altogether before forwarding the group request to

the servers. When a chain of proxies is used (see Section 8), this

also allows each proxy but the last one in the chain to update the

option value, as an indication for the next hop towards the origin

servers (see Section 8.1).

The security association between the client and the proxy MUST

provide message integrity, so that further intermediaries between

the two as well as on-path active adversaries are not able to remove

the option or alter its content, before the group request reaches

the proxy. Removing the option would otherwise result in not

forwarding the group request to the servers. Instead, altering the

option content would result in the proxy accepting and forwarding

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14#section-8.5


back responses for an amount of time different than the one actually

indicated by the client.

The security association between the client and the proxy SHOULD

also provide message confidentiality. Otherwise, any further

intermediaries between the two as well as any on-path passive

adversaries would be able to simply access the option content, and

thus learn for how long the client is willing to receive responses

from the servers in the group via the proxy. This may in turn be

used to perform a more efficient, selective suppression of responses

from the servers.

When the client protects the unicast request sent to the proxy using

OSCORE (see [I-D.tiloca-core-oscore-capable-proxies]) and/or (D)TLS,

both message integrity and message confidentiality are achieved in

the leg between the client and the proxy.

The same considerations above about security associations apply when

a chain of proxies is used (see Section 8), with each proxy but the

last one in the chain acting as client with the next hop towards the

origin servers.

10.3. Response-Forwarding Option

The Response-Forwarding Option is of class U for OSCORE [RFC8613].

Hence, also when Group OSCORE is used between the client and the

servers [I-D.ietf-core-oscore-groupcomm], the proxy that has

forwarded the group request to the servers is able to include the

option into a server response, before forwarding this response back

to the (previous hop proxy closer to the) origin client.

Since the security association between the client and the proxy

provides message integrity, any further intermediaries between the

two as well as any on-path active adversaries are not able to

undetectably remove the Response-Forwarding Option from a forwarded

server response. This ensures that the client can correctly

distinguish the different responses and identify their corresponding

origin server.

When the proxy protects the response forwarded back to the client

using OSCORE (see [I-D.tiloca-core-oscore-capable-proxies]) and/or

(D)TLS, message integrity is achieved in the leg between the client

and the proxy.

The same considerations above about security associations apply when

a chain of proxies is used (see Section 8), with each proxy but the

last one in the chain acting as client with the next hop towards the

origin servers.

¶

¶

¶

¶

¶

¶

¶

¶



10.4. Group-ETag Option

The Group-ETag Option is of class U for OSCORE [RFC8613]. Hence,

also when Group OSCORE is used between the client and the servers 

[I-D.ietf-core-oscore-groupcomm], a proxy is able to access the

option value and use it to possibly perform response revalidation at

its cache entries associated with the servers in the CoAP group, as

well as to remove the option altogether before forwarding the group

request to the servers. When a chain of proxies is used (see Section

8), this also allows each proxy but the last one in the chain to

update the option value, to possibly ask the next hop towards the

origin servers to perform response revalidation at its cache

entries.

The security association between the client and the proxy MUST

provide message integrity, so that further intermediaries between

the two as well as on-path active adversaries are not able to remove

the option or alter its content, before the group request reaches

the proxy. Removing the option would otherwise result in the proxy

not performing response revalidation at its cache entries associated

with the servers in the CoAP group, even though that was what the

client asked for.

Altering the option content in a group request would result in the

proxy replying with 2.05 (Content) responses conveying the full

resource representations from its cache entries, rather than with a

single 2.03 (Valid) response. Instead, altering the option content

in a 2.03 (Valid) or 2.05 (Content) response would result in the

client wrongly believing that the already stored or the just

received representation, respectively, is also the current one, as

per the entity value of the tampered Group-ETag Option.

The security association between the client and the proxy SHOULD

also provide message confidentiality. Otherwise, any further

intermediaries between the two as well as any on-path passive

adversaries would be able to simply access the option content, and

thus learn the rate and pattern according to which the group

resource in question changes over time, as inferable from the entity

values read over time.

When the client protects the unicast request sent to the proxy using

OSCORE (see [I-D.tiloca-core-oscore-capable-proxies]) and/or (D)TLS,

both message integrity and message confidentiality are achieved in

the leg between the client and the proxy.

The same considerations above about security associations apply when

a chain of proxies is used (see Section 8), with each proxy but the

last one in the chain acting as client with the next hop towards the

origin servers.

¶

¶

¶

¶

¶

¶



When caching of Group OSCORE secured responses is enabled at the

proxy, the same as defined in Section 7 applies, with respect to

cache entries and the way they are maintained.

10.5. HTTP-to-CoAP Proxies

Consistently with what is discussed in Section 10.1, an HTTP client

has to authenticate to the HTTP-to-CoAP proxy, and they SHOULD rely

on a full-fledged pairwise secure association. This can rely on a

TLS [RFC8446] channel as also recommended in Section 12.1 of

[RFC8613] for when OSCORE is used with HTTP, or on a pairwise OSCORE 

[RFC8613] Security Context between the client and the proxy as

defined in [I-D.tiloca-core-oscore-capable-proxies].

[ TODO

Revisit security considerations from [RFC8075]

]

11. IANA Considerations

This document has the following actions for IANA.

11.1. CoAP Option Numbers Registry

IANA is asked to enter the following option numbers to the "CoAP

Option Numbers" registry within the "CoRE Parameters" registry

group.

11.2. CoAP Transport Information Registry

IANA is asked to add the following entries to the "CoAP Transport

Information" registry defined in Section 16.5 of [I-D.ietf-core-

observe-multicast-notifications].

¶

¶

¶

¶

¶

¶

¶

+--------+---------------------+-------------------+

| Number |        Name         |     Reference     |

+--------+---------------------+-------------------+

|  TBD1  | Multicast-Timeout   | [[this document]] |

+--------+---------------------+-------------------+

|  TBD2  | Response-Forwarding | [[this document]] |

+--------+---------------------+-------------------+

|  TBD3  |     Group-ETag      | [[this document]] |

+--------+---------------------+-------------------+

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-12.1
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-04#section-16.5


11.3. Header Field Registrations

IANA is asked to enter the following HTTP header fields to the

"Message Headers" registry.

12. References

12.1. Normative References

+------------+-------------+-------+----------+-----------+-----------+

| Transport  | Description | Value | Srv Addr | Req Info  | Reference |

| Protocol   |             |       |          |           |           |

+------------+-------------+-------+----------+-----------+-----------+

| UDP        | UDP with    | 2     | tp_id    |  token    | [This     |

| secured    | DTLS is     |       | srv_host |  cli_host | document] |

| with DTLS  | used as per |       | srv_port | ?cli_port |           |

|            | RFC8323     |       |          |           |           |

+------------+-------------+-------+----------+-----------+-----------+

| TCP        | TCP is used | 3     | tp_id    |  token    | [This     |

|            | as per      |       | srv_host |  cli_host | document] |

|            | RFC8323     |       | srv_port | ?cli_port |           |

+------------+-------------+-------+----------+-----------+-----------+

| TCP        | TCP with    | 4     | tp_id    |  token    | [This     |

| secured    | TLS is      |       | srv_host |  cli_host | document] |

| with TLS   | used as per |       | srv_port | ?cli_port |           |

|            | RFC8323     |       |          |           |           |

+------------+-------------+-------+----------+-----------+-----------+

| WebSockets | WebSockets  | 5     | tp_id    |  token    | [This     |

|            | are used as |       | srv_host |  cli_host | document] |

|            | per RFC8323 |       | srv_port | ?cli_port |           |

+------------+-------------+-------+----------+-----------+-----------+

| WebSockets | WebSockets  | 6     | tp_id    |  token    | [This     |

| secured    | with TLS    |       | srv_host |  cli_host | document] |

| with TLS   | are used as |       | srv_port | ?cli_port |           |

|            | per RFC8323 |       |          |           |           |

+------------+-------------+-------+----------+-----------+-----------+

¶

¶

+---------------------+----------+----------+-----------+

| Header Field Name   | Protocol | Status   | Reference |

+---------------------+----------+----------+-----------+

| Multicast-Timeout   | http     | standard | [This     |

|                     |          |          | document] |

+---------------------+----------+----------+-----------+

| Response-Forwarding | http     | standard | [This     |

|                     |          |          | document] |

+---------------------+----------+----------+-----------+

| Group-ETag          | http     | standard | [This     |

|                     |          |          | document] |

+---------------------+----------+----------+-----------+

¶



[I-D.ietf-core-groupcomm-bis]

[I-D.ietf-core-observe-multicast-notifications]

[I-D.ietf-core-oscore-groupcomm]

[RFC2046]

[RFC2119]

[RFC3986]

[RFC4648]

[RFC5234]

[RFC7252]

Dijk, E., Wang, C., and M. Tiloca, 

"Group Communication for the Constrained Application

Protocol (CoAP)", Work in Progress, Internet-Draft,

draft-ietf-core-groupcomm-bis-07, 11 July 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-groupcomm-

bis-07.txt>. 

Tiloca, M., Höglund, R., Amsüss, C., and F. Palombini, 

"Observe Notifications as CoAP Multicast Responses", Work

in Progress, Internet-Draft, draft-ietf-core-observe-

multicast-notifications-04, 11 July 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-observe-

multicast-notifications-04.txt>. 

Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,

and J. Park, "Group OSCORE - Secure Group Communication

for CoAP", Work in Progress, Internet-Draft, draft-ietf-

core-oscore-groupcomm-14, 7 March 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-oscore-

groupcomm-14.txt>. 

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>. 

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>. 

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>. 

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-07.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-07.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-07.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-04.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-04.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-04.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-14.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-14.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-14.txt
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234


[RFC7641]

[RFC8075]

[RFC8174]

[RFC8323]

[RFC8610]

[RFC8613]

[RFC8949]

[RFC9112]

[I-D.amsuess-core-cachable-oscore]

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>. 

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

RFC7641, September 2015, <https://www.rfc-editor.org/

info/rfc7641>. 

Castellani, A., Loreto, S., Rahman, A., Fossati, T., and 

E. Dijk, "Guidelines for Mapping Implementations: HTTP to

the Constrained Application Protocol (CoAP)", RFC 8075, 

DOI 10.17487/RFC8075, February 2017, <https://www.rfc-

editor.org/info/rfc8075>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., 

Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained

Application Protocol) over TCP, TLS, and WebSockets", RFC

8323, DOI 10.17487/RFC8323, February 2018, <https://

www.rfc-editor.org/info/rfc8323>. 

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610, 

June 2019, <https://www.rfc-editor.org/info/rfc8610>. 

Selander, G., Mattsson, J., Palombini, F., and L. Seitz, 

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019, 

<https://www.rfc-editor.org/info/rfc8613>. 

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>. 

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112, 

June 2022, <https://www.rfc-editor.org/info/rfc9112>. 

12.2. Informative References

Amsüss, C. and M. Tiloca, 

"Cacheable OSCORE", Work in Progress, Internet-Draft,

draft-amsuess-core-cachable-oscore-05, 11 July 2022, 

https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc8075
https://www.rfc-editor.org/info/rfc8075
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9112


[I-D.bormann-coap-misc]

[I-D.ietf-ace-key-groupcomm-oscore]

[I-D.tiloca-core-oscore-capable-proxies]

[I-D.tiloca-core-oscore-discovery]

[RFC6347]

[RFC7515]

[RFC7967]

[RFC8446]

[RFC9147]

<https://www.ietf.org/archive/id/draft-amsuess-core-

cachable-oscore-05.txt>. 

Bormann, C. and K. Hartke, "Miscellaneous

additions to CoAP", Work in Progress, Internet-Draft,

draft-bormann-coap-misc-27, 14 November 2014, <https://

www.ietf.org/archive/id/draft-bormann-coap-misc-27.txt>. 

Tiloca, M., Park, J., and F.

Palombini, "Key Management for OSCORE Groups in ACE", 

Work in Progress, Internet-Draft, draft-ietf-ace-key-

groupcomm-oscore-14, 28 April 2022, <https://

www.ietf.org/archive/id/draft-ietf-ace-key-groupcomm-

oscore-14.txt>. 

Tiloca, M. and R. Höglund, 

"OSCORE-capable Proxies", Work in Progress, Internet-

Draft, draft-tiloca-core-oscore-capable-proxies-03, 11

July 2022, <https://www.ietf.org/archive/id/draft-tiloca-

core-oscore-capable-proxies-03.txt>. 

Tiloca, M., Amsuess, C., and P.

V. D. Stok, "Discovery of OSCORE Groups with the CoRE

Resource Directory", Work in Progress, Internet-Draft,

draft-tiloca-core-oscore-discovery-11, 7 March 2022, 

<https://www.ietf.org/archive/id/draft-tiloca-core-

oscore-discovery-11.txt>. 

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347, 

January 2012, <https://www.rfc-editor.org/info/rfc6347>. 

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>. 

Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.

Bose, "Constrained Application Protocol (CoAP) Option for

No Server Response", RFC 7967, DOI 10.17487/RFC7967, 

August 2016, <https://www.rfc-editor.org/info/rfc7967>. 

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, 

August 2018, <https://www.rfc-editor.org/info/rfc8446>. 

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022, 

<https://www.rfc-editor.org/info/rfc9147>. 

https://www.ietf.org/archive/id/draft-amsuess-core-cachable-oscore-05.txt
https://www.ietf.org/archive/id/draft-amsuess-core-cachable-oscore-05.txt
https://www.ietf.org/archive/id/draft-bormann-coap-misc-27.txt
https://www.ietf.org/archive/id/draft-bormann-coap-misc-27.txt
https://www.ietf.org/archive/id/draft-ietf-ace-key-groupcomm-oscore-14.txt
https://www.ietf.org/archive/id/draft-ietf-ace-key-groupcomm-oscore-14.txt
https://www.ietf.org/archive/id/draft-ietf-ace-key-groupcomm-oscore-14.txt
https://www.ietf.org/archive/id/draft-tiloca-core-oscore-capable-proxies-03.txt
https://www.ietf.org/archive/id/draft-tiloca-core-oscore-capable-proxies-03.txt
https://www.ietf.org/archive/id/draft-tiloca-core-oscore-discovery-11.txt
https://www.ietf.org/archive/id/draft-tiloca-core-oscore-discovery-11.txt
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7967
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9147


Appendix A. Examples with Reverse-Proxy

The examples in this section refer to the following actors.

One origin client C, with address C_ADDR and port number C_PORT.

One proxy P, with address P_ADDR and server port number P_PORT.

Two origin servers S1 and S2, where the server Sx has address

Sx_ADDR and port number Sx_PORT.

The origin servers are members of a CoAP group with IP multicast

address G_ADDR and port number G_PORT. Also, the origin servers are

members of a same application group, and share the same resource /r.

The communication between C and P is based on CoAP over TCP, as per 

[RFC8323]. The group communication between P and the origin servers

is based on CoAP over UDP and IP multicast, as per [I-D.ietf-core-

groupcomm-bis].

Finally, 'bstr(X)' denotes a CBOR byte string where its value is the

byte serialization of X.

A.1. Example 1

The example shown in Figure 5 considers a reverse-proxy P that

provides access to both the whole group of servers {S1,S2} and also

to each of those servers individually. The client C may not have a

way to reach the servers directly (e.g., P is acting as a firewall).

After the client C has received two responses to its group request

sent via the proxy, it selects one server (S1) and requests another

resource from it in unicast, again via the proxy.

In particular:

The client C encodes the group URI 'coap://group1.com/r' within

the URI path of its request to P. This encoding follows the

"default mapping" defined in Section 5.3 of [RFC8075] for HTTP-

to-CoAP proxies, but now applied to a CoAP-to-CoAP proxy. The

proxy P decodes the embedded group URI from the request.

The client's request URI path starts with '/cp', which is the

resource on P that provides the CoAP proxy function. Since C in

this example constructs the URI in its request including this

resource '/cp', it is aware that is requesting to a proxy.

Because the embedded group URI omits the CoAP port, P infers

G_PORT to be the default port 5683 for the 'coap' scheme.

¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc8075#section-5.3


The hostname 'p.example.com' resolves to the proxy's unicast IPv6

address P_ADDR.

The hostname 'group1.com' resolves to the IPv6 multicast address

G_ADDR. The proxy P performs this resolution upon receiving the

request from C. P constructs the group request and sends it to

the CoAP group at G_ADDR:G_PORT.

Typically S1_PORT and S2_PORT will be equal to G_PORT, but a

server Sx is allowed to reply to the multicast request from

another port number not equal to G_PORT. For this reason, the

notation Sx_PORT is used.

Note that this type of reverse-proxy only requires one unicast IP

address (P_ADDR) for the proxy, so it is well scalable to a large

number of servers Sx. The type of reverse-proxy in the example in 

Appendix A.2 requires an additional IP address for each server Sx

and also for each CoAP group that it supports.

*

¶

*

¶

*

¶

¶



C                              P                      S1           S2

|                              |                      |             |

|----------------------------->| /* C embeds the      |             |

| Src: C_ADDR:C_PORT           | group URI into its   |             |

| Dst: p.example.com:P_PORT    | request to the       |             |

| Uri-Path:                    | proxy */             |             |

|     /cp/coap://group1.com/r  |                      |             |

| Multicast-Timeout: 60        |                      |             |

|                              |                      |             |

|                              | Src: P_ADDR:P_PORT   |             |

|                              | Dst: G_ADDR:G_PORT   |             |

|                              | Uri-Path: /r         |             |

|                              |---------------+----->|             |

|                              |                \     |             |

|                              |                 +----------------->|

|                              |                      |             |

|                              |                      |             |

|                              | /* t = 0 : P starts  |             |

|                              | accepting responses  |             |

|                              | for this request */  |             |

|                              |                      |             |

|                              |                      |             |

|                              |<---------------------|             |

|                              | Src: S1_ADDR:S1_PORT |             |

|                              | Dst: P_ADDR:P_PORT   |             |

|                              |                      |             |

|                              |                      |             |

|<-----------------------------|                      |             |

| Src: p.example.com:P_PORT    |                      |             |

| Dst: C_ADDR:C_PORT           |                      |             |

| Response-Forwarding {        |                      |             |

|  [3, /*CoAP over TCP*/       |                      |             |

|   #6.260(bstr(S1_ADDR)),     |                      |             |

|   S1_PORT                    |                      |             |

|  ]                           |                      |             |

| }                            |                      |             |

|                              |                      |             |

|                              |                      |             |

|                              |<-----------------------------------|

|                              |               Src: S2_ADDR:S2_PORT |

|                              |               Dst: P_ADDR:P_PORT   |

|                              |                      |             |

|<-----------------------------|                      |             |

| Src: p.example.com:P_PORT    |                      |             |

| Dst: C_ADDR:C_PORT           |                      |             |

| Response-Forwarding {        |                      |             |

|  [3, /*CoAP over TCP*/       |                      |             |

|   #6.260(bstr(S2_ADDR)),     |                      |             |

|   S2_PORT                    |                      |             |



|  ]                           |                      |             |

| }                            |                      |             |

|                              |                      |             |

|                /* At t = 60, P stops accepting      |             |

|                responses for this request */        |             |

|                              |                      |             |

|                              |                      |             |

|----------------------------->| /* Request intended  |             |

| Src: C_ADDR:C_PORT           | only to S1, via      |             |

| Dst: p.example.com:P_PORT    | proxy P */           |             |

| Uri-Path: /cp/coap://        |                      |             |

|         [S1_ADDR]:S1_PORT/r2 |                      |             |

|                              |                      |             |

|                              | Src: P_ADDR:P_PORT   |             |

|                              | Dst: S1_ADDR:S1_PORT |             |

|                              | Uri-Path: /r2        |             |

|                              |--------------------->|             |

|                              |                      |             |

|                              |                      |             |

|                              |<---------------------|             |

|                              | Src: S1_ADDR:S1_PORT |             |

|                              | Dst: P_ADDR:P_PORT   |             |

|                              |                      |             |

|<-----------------------------|                      |             |

|          Src: P_ADDR:P_PORT  |                      |             |

|          Dst: C_ADDR:C_PORT  |                      |             |

|                              |                      |             |



Figure 5: Workflow example with reverse-proxy that processes an

embedded group URI in a client's request

A.2. Example 2

The example shown in Figure 6 considers a reverse-proxy that stands

in for both the whole group of servers {S1,S2} and for each of those

servers Sx. The client C may not have a way to reach the servers

directly (e.g., P is acting as a firewall). After the client C has

received two responses to its group request sent via the proxy, it

selects one server (S1) and requests at a later time the same

resource from it in unicast, again via the proxy.

In particular:

The hostname 'group1.com' resolves to the unicast address P_ADDR.

The proxy forwards an incoming request to that address, for any

resource i.e., URI path, towards the CoAP group at G_ADDR:G_PORT

leaving the URI path unchanged.

The address Dx_ADDR and port number Dx_PORT are used by the

proxy, which forwards an incoming request to that address towards

the server at Sx_ADDR:Sx_PORT. The different Dx_ADDR are

effectively 'proxy IP addresses' used to provide access to the

servers.

Note that this type of reverse-proxy implementation requires the

proxy to use (potentially) a large number of distinct IP addresses,

hence it is not very scalable. Instead, the type of reverse-proxy

shown in the example in Appendix A.1 uses only one IPv6 unicast

address to provide access to all servers and all CoAP groups.

¶

¶

*

¶

*

¶

¶



C                              P                      S1           S2

|                              |                      |             |

|----------------------------->| /* C is not aware    |             |

| Src: C_ADDR:C_PORT           | that P is in fact    |             |

| Dst: group1.com:P_PORT       | a reverse-proxy */   |             |

| Uri-Path: /r                 |                      |             |

|                              |                      |             |

|<-----------------------------|                      |             |

| Src: group1.com:P_PORT       |                      |             |

| Dst: C_ADDR:C_PORT           |                      |             |

| 4.00 Bad Request             |                      |             |

| Multicast-Timeout: (empty)   |                      |             |

| Payload: "Please use         |                      |             |

|     Multicast-Timeout"       |                      |             |

|                              |                      |             |

|----------------------------->|                      |             |

| Src: C_ADDR:C_PORT           |                      |             |

| Dst: group1.com:P_PORT       |                      |             |

| Multicast-Timeout: 60        |                      |             |

| Uri-Path: /r                 |                      |             |

|                              |                      |             |

|                              |                      |             |

|                              | Src: P_ADDR:P_PORT   |             |

|                              | Dst: G_ADDR:G_PORT   |             |

|                              | Uri-Path: /r         |             |

|                              |---------------+----->|             |

|                              |                \     |             |

|                              |                 +----------------->|

|                              |                      |             |

|                              |                      |             |

|                              | /* t = 0 : P starts  |             |

|                              | accepting responses  |             |

|                              | for this request */  |             |

|                              |                      |             |

|                              |                      |             |

|                              |<---------------------|             |

|                              | Src: S1_ADDR:S1_PORT |             |

|                              | Dst: P_ADDR:P_PORT   |             |

|                              |                      |             |

|                              |                      |             |

|<-----------------------------|                      |             |

| Src: group1.com:P_PORT       |                      |             |

| Dst: C_ADDR:C_PORT           |                      |             |

| Response-Forwarding {        |                      |             |

|  [3, /*CoAP over TCP*/       |                      |             |

|   #6.260(bstr(D1_ADDR)),     |                      |             |

|   D1_PORT                    |                      |             |

|  ]                           |                      |             |

| }                            |                      |             |



|                              |                      |             |

|                              |<-----------------------------------|

|                              |               Src: S2_ADDR:S2_PORT |

|                              |               Dst: P_ADDR:P_PORT   |

|                              |                      |             |

|<-----------------------------|                      |             |

| Src: group1.com:P_PORT       |                      |             |

| Dst: C_ADDR:C_PORT           |                      |             |

| Response-Forwarding {        |                      |             |

|  [3, /*CoAP over TCP*/       |                      |             |

|   #6.260(bstr(D2_ADDR)),     |                      |             |

|   D2_PORT                    |                      |             |

|  ]                           |                      |             |

| }                            |                      |             |

|                              |                      |             |

|                /* At t = 60, P stops accepting      |             |

|                responses for this request */        |             |

|                              |                      |             |

...                           ... /* time passes */  ...          ...

|                              |                      |             |

|----------------------------->| /* Request intended  |             |

| Src: C_ADDR:C_PORT           | only to S1 for same  |             |

| Dst: D1_ADDR:D1_PORT         | resource /r */       |             |

| Uri-Path: /r                 |                      |             |

|                              |                      |             |

|                              | Src: P_ADDR:P_PORT   |             |

|                              | Dst: S1_ADDR:S1_PORT |             |

|                              | Uri-Path: /r         |             |

|                              |--------------------->|             |

|                              |                      |             |

|                              |                      |             |

|                              |<---------------------|             |

|                              | Src: S1_ADDR:S1_PORT |             |

|                              | Dst: P_ADDR:P_PORT   |             |

|                              |                      |             |

|<-----------------------------|                      |             |

|         Src: D1_ADDR:D1_PORT |                      |             |

|         Dst: C_ADDR:C_PORT   |                      |             |

|                              |                      |             |



Figure 6: Workflow example with reverse-proxy standing in for both the

whole group of servers and each individual server

A.3. Example 3

The example shown in Figure 7 builds on the example in Appendix A.2.

However, it considers a reverse-proxy that stands in for only the

whole group of servers, but not for each individual server Sx.

The final exchange between C and S1 occurs with CoAP over UDP.

¶

¶

¶



C                              P                      S1           S2

|                              |                      |             |

|----------------------------->| /* C is not aware    |             |

| Src: C_ADDR:C_PORT           | that P is in fact    |             |

| Dst: group1.com:P_PORT       | a reverse-proxy */   |             |

| Uri-Path: /r                 |                      |             |

|                              |                      |             |

|<-----------------------------|                      |             |

| Src: group1.com:P_PORT       |                      |             |

| Dst: C_ADDR:C_PORT           |                      |             |

| 4.00 Bad Request             |                      |             |

| Multicast-Timeout: (empty)   |                      |             |

| Payload: "Please use         |                      |             |

|     Multicast-Timeout"       |                      |             |

|                              |                      |             |

|                              |                      |             |

|----------------------------->|                      |             |

| Src: C_ADDR:C_PORT           |                      |             |

| Dst: group1.com:P_PORT       |                      |             |

| Multicast-Timeout: 60        |                      |             |

| Uri-Path: /r                 |                      |             |

|                              |                      |             |

|                              | Src: P_ADDR:P_PORT   |             |

|                              | Dst: G_ADDR:G_PORT   |             |

|                              | Uri-Path: /r         |             |

|                              |---------------+----->|             |

|                              |                \     |             |

|                              |                 +----------------->|

|                              |                      |             |

|                              |                      |             |

|                              | /* t = 0 : P starts  |             |

|                              | accepting responses  |             |

|                              | for this request */  |             |

|                              |                      |             |

|                              |                      |             |

|                              |<---------------------|             |

|                              | Src: S1_ADDR:S1_PORT |             |

|                              | Dst: P_ADDR:P_PORT   |             |

|                              |                      |             |

|<-----------------------------|                      |             |

| Dst: group1.com:P_PORT       |                      |             |

| Dst: C_ADDR:C_PORT           |                      |             |

| Response-Forwarding {        |                      |             |

|  [1, /*CoAP over UDP*/       |                      |             |

|   #6.260(bstr(S1_ADDR)),     |                      |             |

|   S1_PORT                    |                      |             |

|  ]                           |                      |             |

| }                            |                      |             |

|                              |                      |             |



|                              |<-----------------------------------|

|                              |               Src: S2_ADDR:S2_PORT |

|                              |               Dst: P_ADDR:P_PORT   |

|                              |                      |             |

|<-----------------------------|                      |             |

| Dst: group1.com:P_PORT       |                      |             |

| Dst: C_ADDR:C_PORT           |                      |             |

| Response-Forwarding {        |                      |             |

|  [1, /*CoAP over UDP*/       |                      |             |

|   #6.260(bstr(S2_ADDR)),     |                      |             |

|   S2_PORT                    |                      |             |

|  ]                           |                      |             |

| }                            |                      |             |

|                              |                      |             |

|                              |                      |             |

|                /* At t = 60, P stops accepting      |             |

|                responses for this request */        |             |

|                              |                      |             |

...         ...        /* time passes */             ...          ...

|                              |                      |             |

|---------------------------------------------------->|             |

| Src: C_ADDR:C_PORT           | /* Request intended  |             |

| Dst: S1.ADDR:S1_PORT         | only to S1 for same  |             |

| Uri-Path: /r                 | resource /r */       |             |

|                              |                      |             |

|<----------------------------------------------------|             |

|         Src: S1.ADDR:S1_PORT |                      |             |

|         Dst: C_ADDR:C_PORT   |                      |             |

|                              |                      |             |



Figure 7: Workflow example with reverse-proxy standing in for only the

whole group of servers, but not for each individual server

Acknowledgments

The authors sincerely thank Christian Amsuess, Jim Schaad and Goeran

Selander for their comments and feedback.

The work on this document has been partly supported by VINNOVA and

the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-

Home (Grant agreement 952652).

Authors' Addresses

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-16440 Stockholm Kista

Sweden

Email: marco.tiloca@ri.se

Esko Dijk

IoTconsultancy.nl

\________________\

Utrecht

Email: esko.dijk@iotconsultancy.nl

¶

¶

mailto:marco.tiloca@ri.se
mailto:esko.dijk@iotconsultancy.nl

	Proxy Operations for CoAP Group Communication
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. The Multicast-Timeout Option
	3. The Response-Forwarding Option
	3.1. Encoding of Server Address
	3.2. Default Values of the Server Port Number

	4. Requirements and Objectives
	5. Protocol Description
	5.1. Request Sending at the Client
	5.1.1. Request Sending
	5.1.2. Supporting Observe

	5.2. Request Processing at the Proxy
	5.2.1. Request Processing
	5.2.2. Supporting Observe

	5.3. Request and Response Processing at the Server
	5.3.1. Request and Response Processing
	5.3.2. Supporting Observe

	5.4. Response Processing at the Proxy
	5.4.1. Response Processing
	5.4.2. Supporting Observe

	5.5. Response Processing at the Client
	5.5.1. Response Processing
	5.5.2. Supporting Observe

	5.6. Example

	6. Reverse-Proxies
	6.1. Processing on the Client Side
	6.2. Processing on the Proxy Side

	7. Caching
	7.1. Freshness Model
	7.2. Validation Model
	7.2.1. Proxy-Servers Revalidation with Unicast Requests
	7.2.2. Proxy-Servers Revalidation with Group Requests

	7.3. Client-Proxy Revalidation with Group Requests
	7.4. Caching of End-To-End Protected Responses at Proxies
	7.4.1. Deterministic Requests to Achieve Cacheability
	7.4.2. Validation of Responses


	8. Chain of Proxies
	8.1. Request Processing at the Proxy
	8.1.1. Supporting Observe

	8.2. Response Processing at the Proxy
	8.2.1. Supporting Observe


	9. HTTP-CoAP Proxies
	9.1. The HTTP Multicast-Timeout Header Field
	9.2. The HTTP Response-Forwarding Header Field
	9.3. The HTTP Group-ETag Header Field
	9.4. Request Sending at the Client
	9.5. Request Processing at the Proxy
	9.6. Response Processing at the Proxy
	9.7. Response Processing at the Client
	9.8. Example
	9.9. Streamed Delivery of Responses to the Client
	9.10. Reverse-Proxies
	9.10.1. Processing on the Client Side
	9.10.2. Processing on the Proxy Side


	10. Security Considerations
	10.1. Client Authentication
	10.2. Multicast-Timeout Option
	10.3. Response-Forwarding Option
	10.4. Group-ETag Option
	10.5. HTTP-to-CoAP Proxies

	11. IANA Considerations
	11.1. CoAP Option Numbers Registry
	11.2. CoAP Transport Information Registry
	11.3. Header Field Registrations

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Examples with Reverse-Proxy
	A.1. Example 1
	A.2. Example 2
	A.3. Example 3

	Acknowledgments
	Authors' Addresses


