
CoRE Working Group M. Tiloca
Internet-Draft R. Hoeglund
Updates: 8613 (if approved) RISE AB
Intended status: Standards Track 12 July 2021
Expires: 13 January 2022

OSCORE-capable Proxies
draft-tiloca-core-oscore-capable-proxies-00

Abstract

 Object Security for Constrained RESTful Environments (OSCORE) can be
 used to protect CoAP messages end-to-end between two endpoints at the
 application layer, also in the presence of intermediaries such as
 proxies. This document defines how OSCORE is used to protect CoAP
 messages also between an origin application endpoint and an
 intermediary, or between two intermediaries. Besides, it defines how
 a CoAP message can be double-protected through "OSCORE-in-OSCORE",
 i.e., both end-to-end between origin application endpoints, as well
 as between an application endpoint and an intermediary or between two
 intermediaries. Thus, this document updates RFC 8613. The same
 approach applies to Group OSCORE, for protecting CoAP messages when
 group communication with intermediaries is used.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the Constrained RESTful
 Environments Working Group mailing list (core@ietf.org), which is
 archived at https://mailarchive.ietf.org/arch/browse/core/.

 Source for this draft and an issue tracker can be found at
https://gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Tiloca & Höglund Expires 13 January 2022 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613
https://mailarchive.ietf.org/arch/browse/core/
https://gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OSCORE-capable Proxies July 2021

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 13 January 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4

2. Use Cases . 5
2.1. UC1 - CoAP Group Communication with Proxies 5
2.2. UC2 - CoAP Observe Notifications over Multicast 5
2.3. UC3 - LwM2M Client and External Application Server . . . 6

3. Possible Configurations 7
3.1. Configurations without End-to-End Security 7
3.2. Configurations with End-to-End Security 8

4. Request Processing . 9
4.1. Protecting the Request at the Client 9
4.2. Verifying the Request at the Proxy 11
4.3. Forwarding the Request to the Server 13
4.4. Verifying the Request at the Server 13

5. Response Processing . 15
5.1. Protecting the Response at the Server 15
5.2. Verifying the Response at the Proxy 17
5.3. Forwarding the Response to the Client 17
5.4. Verifying the Response at the Client 18

6. Response Caching . 20
7. Chain of Intermediaries 20
8. Security Considerations 20
9. IANA Considerations . 20

 Acknowledgments . 20
 References . 20

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Tiloca & Höglund Expires 13 January 2022 [Page 2]

Internet-Draft OSCORE-capable Proxies July 2021

 Normative References . 20
 Informative References . 21
 Authors' Addresses . 22

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] supports the
 presence of intermediaries, such as forward-proxies and reverse-
 proxies, which assist origin clients by performing requests to origin
 servers on their behalf, and forwarding back the related responses.

 CoAP supports also group communication scenarios
 [I-D.ietf-core-groupcomm-bis], where clients can send a one-to-many
 request targeting all the servers in the group, e.g., by using IP
 multicast. Like for one-to-one communication, group settings can
 also rely on intermediaries [I-D.tiloca-core-groupcomm-proxy].

 The protocol Object Security for Constrained RESTful Environments
 (OSCORE) [RFC8613] can be used to protect CoAP messages between two
 endpoints at the application layer, especially achieving end-to-end
 security in the presence of (non-trusted) intermediaries. When CoAP
 group communication is used, the same can be achieved by means of the
 protocol Group OSCORE [I-D.ietf-core-oscore-groupcomm].

 For a number of use cases (see Section 2), it is required and/or
 beneficial that communications are secured also between an
 application endpoint (i.e., a CoAP origin client/server) and an
 intermediary, as well as between two adjacent intermediaries in a
 chain. This especially applies to the communication leg between the
 CoAP origin client and the adjacent intermediary acting as next hop
 towards the origin server.

 In such cases, and especially if the origin client already uses
 OSCORE to achieve end-to-end security with the origin server, it
 would be convenient that OSCORE is used also to secure communications
 between the origin client and its next hop. However, the original
 specification [RFC8613] does not define how OSCORE can be used to
 protect CoAP messages in such communication leg, i.e., by considering
 the intermediary as an "OSCORE endpoint".

 This document fills this gap, and updates [RFC8613] as follows.

 * It defines how OSCORE is used to protect a CoAP message in the
 communication leg between: i) an origin client/server and an
 intermediary; or ii) two adjacent intermediaries in an
 intermediary chain. That is, besides origin clients/servers, it
 allows also intermediaries to be possible "OSCORE endpoints".

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 3]

Internet-Draft OSCORE-capable Proxies July 2021

 * It explicitly admits a CoAP message to be double-protected through
 "OSCORE-in-OSCORE". This is the case when the message is first
 OSCORE-protected end-to-end between the origin client and origin
 server, and then further OSCORE-protected over the leg between the
 current and next hop (e.g., the origin client and the adjacent
 intermediary acting as next hop towards the origin server).

 What defined in this document is applicable also when Group OSCORE is
 used, for protecting CoAP messages in group communication scenarios
 that rely on intermediaries.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with the terms and concepts
 related to CoAP [RFC7252]; OSCORE [RFC8613] and Group OSCORE
 [I-D.ietf-core-oscore-groupcomm]. This document especially builds on
 concepts and mechanics related to intermediaries such as CoAP
 forward-proxies.

 In addition, this document uses to the following terms.

 * Source application endpoint: an origin client producing a request,
 or an origin server producing a response.

 * Destination application endpoint: an origin server intended to
 consume a request, or an origin client intended to consume a
 response.

 * Application endpoint: a source or destination application
 endpoint.

 * Source OSCORE endpoint: an endpoint protecting a message with
 OSCORE or Group OSCORE.

 * Destination OSCORE endpoint: an endpoint unprotecting a message
 with OSCORE or Group OSCORE.

 * OSCORE endpoint: a source/destination OSCORE endpoint. An OSCORE
 endpoint is not necessarily also an application endpoint with
 respect to a certain message.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 4]

Internet-Draft OSCORE-capable Proxies July 2021

 * Proxy-related option: the Proxy-URI Option, the Proxy-Scheme
 Option, or any of the Uri-* Options.

 * OSCORE-in-OSCORE: the process by which a message protected with
 (Group) OSCORE is further protected with (Group) OSCORE. This
 means that, after the first OSCORE decryption/verification, the
 resulting message is again an OSCORE-protected message.

2. Use Cases

 The approach proposed in this document has been motivated by a number
 of use cases, which are summarized below.

2.1. UC1 - CoAP Group Communication with Proxies

 CoAP supports also one-to-many group communication, e.g., over IP
 multicast [I-D.ietf-core-groupcomm-bis], which can be protected end-
 to-end between origin client and origin servers by using Group OSCORE
 [I-D.ietf-core-oscore-groupcomm].

 This communication model can be assisted by intermediaries such as a
 CoAP forward-proxy or reverse-proxy, which relays a group request to
 the origin servers. If Group OSCORE is used, the proxy is
 intentionally not a member of the OSCORE group. Furthermore,
 [I-D.tiloca-core-groupcomm-proxy] defines a signaling protocol
 between origin client and proxy, to ensure that responses from the
 different origin servers are forwarded back to the origin client
 within a time interval set by the client, and that they can be
 distinguished from one another.

 In particular, it is required that the proxy identifies the origin
 client as allowed-listed, before forwarding a group request to the
 servers (see Section 4 of [I-D.tiloca-core-groupcomm-proxy]). This
 requires a security association between the origin client and the
 proxy, which would be convenient to provide with a dedicated OSCORE
 Security Context between the two, since the client is possibly using
 also Group OSCORE with the origin servers.

2.2. UC2 - CoAP Observe Notifications over Multicast

 The Observe extension for CoAP [RFC7641] allows a client to register
 its interest in "observing" a resource at a server. The server can
 then send back notification responses upon changes to the resource
 representation, all matching with the original observation request.

 In some applications, such as pub-sub [I-D.ietf-core-coap-pubsub],
 multiple clients are interested to observe the same resource at the
 same server. Hence, [I-D.ietf-core-observe-multicast-notifications]

https://datatracker.ietf.org/doc/html/rfc7641

Tiloca & Höglund Expires 13 January 2022 [Page 5]

Internet-Draft OSCORE-capable Proxies July 2021

 defines a method that allows the server to send a multicast
 notification to all the observer clients at once, e.g., over IP
 multicast. To this end, the server synchronizes the clients, by
 providing them with a common "phantom observation request".

 In case the clients and the server use Group OSCORE for end-to-end
 security and a proxy is also involved, an additional step is required
 (see Section 10 of [I-D.ietf-core-observe-multicast-notifications]).
 That is, clients are in turn required to provide the proxy with the
 obtained "phantom observation request", thus enabling the proxy to
 receive the multicast notifications from the server.

 Therefore, it is preferable to have a security associations also
 between each client and the proxy, to especially ensure the integrity
 of that information provided to the proxy (see Section 13.1 of
 [I-D.ietf-core-observe-multicast-notifications]). Like for the use
 case UC1 in Section 2.1, this would be conveniently achieved with a
 dedicated OSCORE Security Context between a client and the proxy,
 since the client is also using Group OSCORE with the origin server.

2.3. UC3 - LwM2M Client and External Application Server

 The Lightweight Machine-to-Machine (LwM2M) protocol [LwM2M-Core]
 enables a LwM2M Client device to securely bootstrap and then register
 at a LwM2M Server, with which it will perform most of its following
 communication exchanges. As per the transport bindings specification
 of LwM2M [LwM2M-Transport], the LwM2M Client and LwM2M Server can use
 CoAP and OSCORE to secure their communications at the application
 layer, including during the device registration process.

 Furthermore, Section 5.5.1 of [LwM2M-Transport] specifies that:
 "OSCORE MAY also be used between LwM2M endpoint and non-LwM2M
 endpoint, e.g., between an Application Server and a LwM2M Client via
 a LwM2M server. Both the LwM2M endpoint and non-LwM2M endpoint MUST
 implement OSCORE and be provisioned with an OSCORE Security Context."

 In such a case, the LwM2M Server can practically act as forward-proxy
 between the LwM2M Client and the external Application Server. At the
 same time, the LwM2M Client and LwM2M Server must continue protecting
 communications on their leg using their Security Context. Like for
 the use case UC1 in Section 2.1, this also allows the LwM2M Server to
 identify the LwM2M Client, before forwarding its request outside the
 LwM2M domain and towards the external Application Server.

Tiloca & Höglund Expires 13 January 2022 [Page 6]

Internet-Draft OSCORE-capable Proxies July 2021

3. Possible Configurations

 This section provides an overview of different security
 configurations referred in the document. The configurations differ
 on whether OSCORE is used or not in a certain communication leg.

 For simplicity, only one intermediary is considered, as a CoAP-to-
 CoAP forward-proxy standing between one CoAP client and one CoAP
 server. The same can be extended to cover a chain of intermediaries,
 or a group communication scenario where CoAP requests are intended to
 multiple servers and possibly protected end-to-end with Group OSCORE.

 The used notation denotes the origin client with C, the origin server
 with S and the proxy with P. Each configuration is denoted by CF-x,
 with x a positive integer number expressed by the bits (b2, b1, b0),
 i.e., x = b0 + (2 * b1) + (4 * b2).

 In particular, for each configuration CF-x:

 * C and P use OSCORE between themselves if and only if b0 = 1.

 * P and S use OSCORE between themselves if and only if b1 = 1.

 * C and S use OSCORE between themselves if and only if b2 = 1.

 For convenience, the configurations are split into two sets. That
 is, Section 3.1 overviews those where C and S do not use OSCORE
 between themselves (b2 = 0), while Section 3.2 overviews those where
 C and S use OSCORE between themselves (b2 = 1).

3.1. Configurations without End-to-End Security

 Figure 1 shows the different configurations where OSCORE is not used
 end-to-end by the two application endpoints C and S. That is, none
 of the shown configurations include the leg "C-S", i.e., b2 = 0.

 In the configurations CF-1, CF-2 and CF-3, the proxy uses OSCORE with
 C and/or S, hence the legs "C-P" and/or "P-S" are also included.
 None of these configurations results in using "OSCORE-in-OSCORE".

Tiloca & Höglund Expires 13 January 2022 [Page 7]

Internet-Draft OSCORE-capable Proxies July 2021

 +--------------+-------+-------+-------+-------+
 | Conf. name | CF-0 | CF-1 | CF-2 | CF-3 |
 | (b2, b1, b0) | (000) | (001) | (010) | (011) |
 +--------------+-------+-------+-------+-------+
 | Comm. legs | | | | |
 | using OSCORE | | C-P | | C-P |
 | | | | P-S | P-S |
 +--------------+-------+-------+-------+-------+
 C=Client, P=Proxy, S=Server

 Figure 1: Configurations without end-to-end security.

 Note that:

 * CF-0 is the canonical case defined in [RFC7252] with no security
 at the application layer.

 * CF-1 is relevant for the use cases UC1 and UC3 in Section 2, where
 end-to-end security is not provided between client and server(s).
 Instead, it is not relevant for UC2, since that use case would
 require secure communication between clients and proxy only when
 Group OSCORE is also used for end-to-security between the observer
 clients and the server (see Section 2.2).

 * CF-2 can be seen as the canonical case of [RFC8613], with P acting
 as client with S.

 * CF-3 can be seen as the canonical case of [RFC8613], applied
 separately to the two legs "C-P" (with P acting as server) and
 "P-S" (with P acting as client).

3.2. Configurations with End-to-End Security

 Figure 2 shows the different configurations where OSCORE is used end-
 to-end by the two application endpoints C and S. That is, all the
 shown configurations include the leg "C-S", i.e., b2 = 1.

 In the configurations CF-5, CF-6 and CF-7, the proxy uses OSCORE with
 C and/or S, hence the legs "C-P" and/or "P-S" are also included.
 Therefore, these configurations result in double-protecting the CoAP
 messages originated at C and S, and are thus marked with "(*)" to
 indicate the use of "OSCORE-in-OSCORE".

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 8]

Internet-Draft OSCORE-capable Proxies July 2021

 +--------------+---------+---------+---------+---------+
 | Conf. name | CF-4 | CF-5 | CF-6 | CF-7 |
 | (b2, b1, b0) | (100) | (101) | (110) | (111) |
 +--------------+---------+---------+---------+---------+
 | Comm. legs | C-S | C-S | C-S | C-S |
 | using OSCORE | | C-P (*) | | C-P (*) |
 | | | | P-S (*) | P-S (*) |
 +--------------+---------+---------+---------+---------+
 C=Client, P=Proxy, S=Server
 (*) OSCORE-in-OSCORE

 Figure 2: Configurations with end-to-end security.

 Note that:

 * CF-4 is the canonical case defined in [RFC8613].

 * CF-5 is relevant for the use cases UC1, UC2 and UC3 in Section 2.

 * CF-7 is relevant for the use cases UC2 and UC3 in Section 2.
 Instead, it is not relevant for UC1, since that would imply that P
 is also a member of the OSCORE group including the servers, which
 is not desirable (see Section 2.1).

4. Request Processing

 This section extends the actions performed to protect an outgoing
 request, with respect to [RFC8613] or
 [I-D.ietf-core-oscore-groupcomm] when OSCORE or Group OSCORE is used,
 respectively. Throughout the text, the configurations defined in

Section 3 are also recalled by means of the bits (b2, b1, b0), to
 indicate the communication leg(s) using OSCORE.

 The following assumes the presence of a single intermediary acting as
 CoAP-to-CoAP Forward-Proxy between the origin CoAP client and a
 single origin CoAP server.

4.1. Protecting the Request at the Client

 The client performs the following steps.

 1. The client prepares the CoAP request REQ for the origin server,
 which is the intended destination application endpoint.

 2. Since the client knows that a proxy is involved as next hop, the
 client adds the appropriate proxy-related options to the request.

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 9]

Internet-Draft OSCORE-capable Proxies July 2021

 3. If the client uses (Group) OSCORE with the origin server (b2 =
 1), it performs the following actions. Otherwise, it moves to
 step 4.

 * The client protects the request REQ as it normally happens
 with OSCORE or Group OSCORE, using the Security Context shared
 with the server.

 * The result is a protected request REQ* including an OSCORE
 option. The intended destination OSCORE endpoint is the
 origin server.

 * REQ takes REQ*, and the client moves to step 4.

 4. If the client uses (Group) OSCORE with the proxy (b0 = 1), it
 performs the following actions. Otherwise, it moves to step 5.

 * The client protects the request REQ with (Group) OSCORE, using
 the Security Context shared with the Proxy. Note that the
 Proxy-Uri option, if present at this point in time (b2 = 0 and
 b0 = 1), is first decomposed as per Section 4.1.3.3 of
 [RFC8613].

 Unlike in [RFC8613], the following options are processed as
 Class E, if present.

 - Proxy-Scheme, Uri-Host, Uri-Port, Uri-Path and Uri-Query.

 - OSCORE, which is present if (Group) OSCORE is used between
 the origin client and the origin server (i.e., b2 = 1 and
 b0 = 1, hence step 3 above was performed). This is
 "OSCORE-in-OSCORE" and deviates from [RFC8613].

 - Multicast-Signaling Option, defined in
 [I-D.tiloca-core-groupcomm-proxy].

 - Listen-To-Multicast-Responses Option, defined in
 [I-D.ietf-core-observe-multicast-notifications].

 - Any other option that is intended to be accessed and
 consumed by the proxy.

 * The result is a protected request REQ** including its own
 outer OSCORE option, i.e., REQ** = Enc(REQ). The intended
 destination OSCORE endpoint is the proxy.

 * REQ takes REQ**, and the client moves to step 5.

https://datatracker.ietf.org/doc/html/rfc8613#section-4.1.3.3
https://datatracker.ietf.org/doc/html/rfc8613#section-4.1.3.3
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 10]

Internet-Draft OSCORE-capable Proxies July 2021

 5. The client sends the request REQ to the proxy.

4.2. Verifying the Request at the Proxy

 The proxy performs the following steps.

 1. The proxy receives the request REQ from the origin client.

 2. The proxy assesses which alternative it is.

 * Alt 2.1 - The request REQ includes proxy-related options as
 already visible to the proxy (b0 = 0). Hence, the request has
 to be forwarded to the origin server.

 In this case, the proxy moves to step 4.

 Note that:

 - The request REQ includes an OSCORE option if the proxy is
 neither the destination application endpoint nor the
 destination OSCORE endpoint (b2 = 1 and b0 = 0).

 - The request REQ does not include an OSCORE option if the
 proxy is not the destination application endpoint and no
 OSCORE is involved (b2 = 0 and b0 = 0).

 * Alt 2.2 - The request REQ does not include proxy-related
 options but it includes an OSCORE option, as visible to the
 proxy (b0 = 1). Hence, the proxy is the destination OSCORE
 endpoint.

 In this case, the proxy moves to step 3.

 Note that, at this point in time, the proxy does not know yet
 if it is going to act as proxy by forwarding the request, or
 if it is instead the actual destination application endpoint.

 * Alt 2.3 - The request REQ does not include proxy-related
 options and it does not include an OSCORE option, as visible
 to the proxy (b2 = 0 and b0 = 0). Hence, the proxy is the
 destination application endpoint with no OSCORE is involved.

 In this case, the proxy delivers the request REQ to the
 application for processing.

 3. Coming from alternative 2.2 of step 2, the proxy unprotects the
 request REQ using the OSCORE Security Context shared with the
 origin client.

Tiloca & Höglund Expires 13 January 2022 [Page 11]

Internet-Draft OSCORE-capable Proxies July 2021

 In case of an OSCORE-related error, the proxy responds to the
 client with an unprotected error response. Following a
 successful processing, i.e. REQ* = Dec(REQ), three alternatives
 are possible.

 * Alt 3.1 - The decrypted request REQ* includes proxy-related
 options. Hence, the request has to be forwarded to the origin
 server.

 In this case, REQ takes REQ*, and the proxy moves to step 4.

 Note that:

 - If the decrypted request REQ* includes an OSCORE option as
 well as proxy-related options, then the proxy is not the
 destination application endpoint, and OSCORE is used end-
 to-end between the origin client and origin server (b2 = 1
 and b0 = 1). This is "OSCORE-in-OSCORE" and deviates from
 [RFC8613], i.e., under this specific outcome, it is fine
 for the proxy to find an OSCORE option in the decrypted
 request REQ*, and the message is not rejected.

 - If the decrypted request REQ* does not include an OSCORE
 option, but it includes proxy-related options, then the
 proxy is not the destination application endpoint, and
 OSCORE is not used end-to-end between the origin client and
 origin server (b2 = 0 and b0 = 1).

 * Alt 3.2 - The decrypted request REQ* does not include an
 OSCORE option, and it does not include any proxy-related
 option. Hence, the proxy is the actual destination
 application endpoint.

 In this case, the proxy delivers the decrypted request REQ* to
 the application for processing. The possible following
 response to the client occurs as per [RFC8613].

 * Alt 3.3 - The decrypted request REQ* includes an OSCORE
 option, but it does not include any proxy-related option.

 This alternative is not valid, and the proxy MUST respond to
 the client with an error response. This response MUST be
 protected with the (Group) OSCORE Security Context shared with
 the client.

 4. The proxy proceeds with the forwarding of the request REQ to the
 origin server (see Section 4.3).

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 12]

Internet-Draft OSCORE-capable Proxies July 2021

4.3. Forwarding the Request to the Server

 The proxy performs the following steps.

 1. The proxy sets the Request URI in the request REQ, by consuming
 the Proxy-Uri or the Proxy-Scheme option as per Section 5.7.2 of
 [RFC7252].

 2. If the proxy uses OSCORE with the origin server (b1 = 1), the
 proxy performs the following actions. Otherwise, the proxy moves
 to step 3.

 * The proxy protects the request REQ with OSCORE, i.e. REQ* =
 Enc(REQ), using the Security Context shared with the origin
 server.

 Unlike in [RFC8613], the OSCORE option, if present in the
 request REQ to protect, is processed as Class E. This is the
 case if (Group) OSCORE is used between the origin client and
 the origin server (b2 = 1 and b1 = 1). This is "OSCORE-in-
 OSCORE" and deviates from [RFC8613].

 * The result is a protected request REQ* including an OSCORE
 option. The intended destination OSCORE endpoint is the
 origin server.

 * REQ takes REQ*, and the proxy moves to step 3.

 3. The proxy forwards the request REQ to the origin server.

4.4. Verifying the Request at the Server

 The server performs the following steps.

 1. The server receives the request REQ from the proxy.

 In the considered scenario, the server is the actual origin
 server, hence it never encounters proxy-related options when
 processing the request (i.e., neither as outer nor as inner
 options). This means that the server is the destination OSCORE
 endpoint with respect to any OSCORE option it encounters when
 processing the request.

 2. The server assesses which alternative it is.

 * Alt 2.1 - The request REQ does not include an OSCORE option
 (b2 = 0 and b1 = 0).

https://datatracker.ietf.org/doc/html/rfc7252#section-5.7.2
https://datatracker.ietf.org/doc/html/rfc7252#section-5.7.2
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 13]

Internet-Draft OSCORE-capable Proxies July 2021

 If proxy-related options are found at this point in time, this
 endpoint is not the actual destination application endpoint,
 and it should follow what described in Section 4.2, if it
 supports acting as proxy.

 Otherwise, the server is the destination application endpoint.
 Hence, the server moves to step 5.

 * Alt 2.2 - The request REQ includes an OSCORE option (b2 = 1 or
 b1 = 1).

 In this case, the server is the destination OSCORE endpoint.
 Hence, the server moves to step 3.

 3. Coming from alternative 2.2 of step 2, the server unprotects the
 request REQ using the OSCORE Security Context pointed by the
 OSCORE option, i.e. REQ* = Dec(REQ).

 In case of an OSCORE-related error, the server responds to the
 proxy with an unprotected error response. Instead, following a
 successful processing, the two valid alternatives below are
 possible.

 If proxy-related options are found at this point in time, this
 endpoint is not the actual destination application endpoint.
 Hence, it should rather follow what described in Section 4.2, if
 it supports acting as proxy.

 * Alt 3.1 - The decrypted request REQ* does not include an
 OSCORE option (b2 XOR b1 = 1). Hence, the server is the
 destination application endpoint.

 In this case, REQ takes REQ*, and the server moves to step 5.

 * Alt 3.2 - The decrypted request REQ* includes an OSCORE option
 (b2 = 1 and b1 = 1). Hence, since the decrypted request REQ*
 does not include any proxy-related option, the server is the
 destination application endpoint, but it has to perform the
 actual end-to-end OSCORE decryption first.

 In this case, the server moves to step 4.

 Note that, this is "OSCORE-in-OSCORE" and deviates from
 [RFC8613], i.e., under this specific outcome, it is fine for
 the server to find an OSCORE option in the decrypted message,
 and the message is not rejected.

https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 14]

Internet-Draft OSCORE-capable Proxies July 2021

 4. Coming from alternative 3.2 of step 3, the server unprotects the
 inner request REQ* using the OSCORE Security Context pointed by
 the OSCORE option in REQ*, i.e. REQ** = Dec(REQ*).

 If any of the following cases occurs, the server MUST discard the
 request and MUST reply with an error response, which MUST be
 protected using the OSCORE Security Context shared with the
 proxy.

 * An OSCORE-related error occurred when unprotecting REQ*, i.e.
 when using the OSCORE Security Context shared with the client.

 * The decrypted request REQ** includes any proxy-related option.
 That is, proxy-related options cannot appear after having
 performed OSCORE decryption twice.

 * The decrypted request REQ** includes an OSCORE option. That
 is, at most two layers of OSCORE protection are admitted, i.e.
 one with the other application endpoint and one with the
 adjacent transport hop.

 Otherwise, REQ takes REQ**, and the server moves to step 5.

 5. The server delivers the request REQ to the application for
 processing. The possible following response to the proxy will
 happen as per [RFC7252], and possibly [RFC8613] or
 [I-D.ietf-core-oscore-groupcomm].

5. Response Processing

 Following up on the process in Section 4, this section extends the
 actions performed to protect an outgoing response, with respect to
 [RFC8613] or [I-D.ietf-core-oscore-groupcomm] when OSCORE or Group
 OSCORE is used, respectively. Throughout the text, the
 configurations defined in Section 3 are also recalled by means of the
 bits (b2, b1, b0), to indicate the communication leg(s) using OSCORE.

 The following assumes the presence of a single intermediary acting as
 CoAP-to-CoAP Forward-Proxy between the origin CoAP client and a
 single origin CoAP server.

5.1. Protecting the Response at the Server

 The server performs the following steps.

 1. The server possibly prepares a CoAP response RESP to send to the
 proxy, to be forwarded to the origin client as intended
 destination application endpoint.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 15]

Internet-Draft OSCORE-capable Proxies July 2021

 2. The server proceeds as follows.

 * If the server performed only one OSCORE processing when
 receiving the request (b2 XOR b1 = 1), it moves to step 3.

 * If the server performed two OSCORE processings when receiving
 the request (b2 = 1 and b1 = 1), it moves to step 4.

 * If the server performed no OSCORE processing when receiving
 the request (b2 = 0 and b1 = 0), it moves to step 5.

 3. The server protects the response RESP using the same OSCORE
 Security Context used to unprotect the request REQ. The result
 is a protected response including an OSCORE option, i.e. RESP* =
 Enc(RESP).

 Then, RESP takes RESP*, and the server moves to step 5.

 4. The server proceeds as follows.

 * 4.1. The server protects the response RESP using the same
 OSCORE Security Context used for the second and last
 processing of the request, i.e. the one shared with the origin
 client.

 The result is a protected response including an OSCORE option,
 i.e. RESP* = Enc(RESP).

 * 4.2. The server protects the encrypted response RESP* using
 the same OSCORE Security Context used for the first processing
 of the request, i.e. the one shared with the proxy as adjacent
 transport hop.

 The OSCORE option in the encrypted response RESP* is processed
 as class E. If present, any other option that is intended to
 be accessed and consumed by the proxy is also processed as
 Class E. This is "OSCORE-in-OSCORE" and deviates from
 [RFC8613].

 The result is a protected response including its own outer
 OSCORE option, i.e. RESP** = Enc(RESP*).

 4.3. RESP takes RESP**, and the server moves to step 5.

 5. The server sends the response RESP to the proxy.

https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 16]

Internet-Draft OSCORE-capable Proxies July 2021

5.2. Verifying the Response at the Proxy

 The proxy performs the following steps.

 1. The proxy receives the response RESP from the origin server.

 2. The proxy proceeds as follows.

 * If the proxy protected the request forwarded to the server by
 using OSCORE (b1 = 1), it moves to step 3.

 * If the proxy did not protect the request forwarded to the
 server by using OSCORE (b1 = 0), it moves to step 4.

 3. The proxy proceeds as follows.

 If the received response RESP is unprotected, the proxy
 interprets it as an OSCORE-related error at the server. This
 concerns the OSCORE association between proxy and server, and it
 is up to the proxy to handle this issue.

 Otherwise, i.e., the received response RESP includes an outer
 OSCORE option, the proxy unprotects the response RESP, with the
 OSCORE Security Context shared with the server. This results in
 a decrypted response RESP* = Dec(RESP).

 If the OSCORE protection of the request performed by the proxy
 did not result in "OSCORE-in-OSCORE" (b2 = 0 and b1 = 1) --- see
 step 2 of Section 4.3 --- and the decrypted response RESP*
 includes an OSCORE option, then the proxy MUST discard the
 response.

 In any other case, RESP takes RESP*, and the proxy moves to step
 4.

 4. The proxy forwards the response RESP back to the origin client
 (see Section 5.3).

5.3. Forwarding the Response to the Client

 The proxy performs the following steps.

 1. The proxy adds possible options to the response RESP to be
 forwarded.

Tiloca & Höglund Expires 13 January 2022 [Page 17]

Internet-Draft OSCORE-capable Proxies July 2021

 2. If the proxy uses (Group) OSCORE with the client, and the
 originally received request was protected with the OSCORE
 Security Context shared with the client (b0 = 1), then the proxy
 proceeds as follows.

 * The proxy protects the response RESP with OSCORE, i.e. RESP* =
 Enc(RESP), using the Security Context shared with the origin
 client. The following options, if present in the response
 RESP to protect, are processed as class E:

 - The OSCORE option. This is the case if (Group) OSCORE is
 used between the origin client and the origin server (b2 =
 1 and b0 = 1). This is "OSCORE-in-OSCORE", which deviates
 from [RFC8613].

 - Any other option that has been added by the proxy, e.g. the
 Response-Forwarding Option defined in
 [I-D.tiloca-core-groupcomm-proxy].

 * The result is a protected response RESP* including an OSCORE
 option. The intended destination OSCORE endpoint is the
 origin client.

 * RESP takes RESP*, and the proxy moves to step 3.

 3. The proxy forwards the response RESP back to the origin client.

5.4. Verifying the Response at the Client

 The client performs the following steps.

 1. The client receives the response RESP from the proxy.

 2. The client proceeds as follows.

 * If the client protected the request with (Group) OSCORE using
 an OSCORE Security Context shared with the proxy (b0 = 1), it
 moves to step 3.

 * If the client did not protect the request with (Group) OSCORE
 using an OSCORE Security Context shared with the proxy (b0 =
 0), it moves to step 4.

 3. The client proceeds as follows.

 If the received response RESP is an unprotected 4.00/4.01/4.02,
 the client interprets it as an OSCORE-related error at the proxy.
 This concerns the OSCORE association between client and proxy,

https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 18]

Internet-Draft OSCORE-capable Proxies July 2021

 and it is up to the client to handle this issue. Information
 specified in the diagnostic payload, if present, might result in
 the client taking alternative, more appropriate actions.

 Otherwise, i.e. the received response RESP includes an outer
 OSCORE option, the client unprotects the response RESP, with the
 OSCORE Security Context shared with the proxy. This results in a
 decrypted response RESP* = Dec(RESP).

 If the OSCORE protection of the request performed by the client
 did not result in "OSCORE-in-OSCORE" (b2 = 0 and b0 = 1) --- see
 step 4 of Section 4.1 --- and the decrypted response RESP*
 includes an OSCORE option, then the client MUST discard the
 message and does not perform any further processing.

 If the OSCORE protection of the request performed by the client
 resulted in "OSCORE-in-OSCORE" (b2 = 1 and b0 = 1) --- see step 4
 of Section 4.1 --- then the decrypted response RESP* may include
 an OSCORE option. This is "OSCORE-in-OSCORE" and deviates from
 [RFC8613], i.e., under this specific outcome, it is fine for the
 client to find an OSCORE option in the decrypted messages, and
 the message is not rejected.

 Finally, RESP takes RESP*, and the client moves to step 4.

 4. The client proceeds as follows.

 * If the client did not protect the original CoAP request with
 (Group) OSCORE using an OSCORE Security Context shared with
 the origin server (b2 = 0), the client moves to step 5.

 * If the client protected the original CoAP request with (Group)
 OSCORE using an OSCORE Security Context shared with the origin
 server (b2 = 1), the client proceeds as follows.

 If the response RESP is an unprotected 4.00/4.01/4.02, the
 client interprets it as an OSCORE-related error at the origin
 server. This concerns the OSCORE association between client
 and server, and it is up to the client to handle this issue.
 Information specified in the diagnostic payload, if present,
 might result in the client taking alternative, more
 appropriate actions.

 Otherwise, i.e. the response RESP includes an OSCORE option,
 the client unprotects the response RESP, with the OSCORE
 Security Context shared with the origin server. This results
 in a decrypted response RESP* = Dec(RESP).

https://datatracker.ietf.org/doc/html/rfc8613

Tiloca & Höglund Expires 13 January 2022 [Page 19]

Internet-Draft OSCORE-capable Proxies July 2021

 The client MUST discard the decrypted response RESP*, in case
 RESP* is the result of two OSCORE decryptions in a row (b2 = 1
 and b0 = 1) and includes an OSCORE option. That is, at most
 two layers of OSCORE protection are admitted, i.e. one with
 the other application endpoint and one with the adjacent
 transport hop.

 Otherwise, RESP takes RESP*, and the client moves to step 5.

 5. The client delivers the response RESP to the application for
 processing.

6. Response Caching

 TBD

7. Chain of Intermediaries

 TBD

8. Security Considerations

 TBD

9. IANA Considerations

 This document has no actions for IANA.

Acknowledgments

 The authors sincerely thank Christian Amsuess, Peter Blomqvist and
 Goeran Selander for the initial discussions that allowed shaping this
 document.

 The work on this document has been partly supported by VINNOVA and
 the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-Home
 (Grant agreement 952652).

References

Normative References

Tiloca & Höglund Expires 13 January 2022 [Page 20]

Internet-Draft OSCORE-capable Proxies July 2021

 [I-D.ietf-core-oscore-groupcomm]
 Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,
 and J. Park, "Group OSCORE - Secure Group Communication
 for CoAP", Work in Progress, Internet-Draft, draft-ietf-

core-oscore-groupcomm-12, 12 July 2021,
 <https://www.ietf.org/archive/id/draft-ietf-core-oscore-

groupcomm-12.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

Informative References

 [I-D.ietf-core-coap-pubsub]
 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe Broker for the Constrained Application Protocol
 (CoAP)", Work in Progress, Internet-Draft, draft-ietf-

core-coap-pubsub-09, 30 September 2019,
 <https://www.ietf.org/archive/id/draft-ietf-core-coap-

pubsub-09.txt>.

 [I-D.ietf-core-groupcomm-bis]
 Dijk, E., Wang, C., and M. Tiloca, "Group Communication
 for the Constrained Application Protocol (CoAP)", Work in
 Progress, Internet-Draft, draft-ietf-core-groupcomm-bis-

04, 12 July 2021, <https://www.ietf.org/archive/id/
draft-ietf-core-groupcomm-bis-04.txt>.

 [I-D.ietf-core-observe-multicast-notifications]
 Tiloca, M., Hoeglund, R., Amsuess, C., and F. Palombini,
 "Observe Notifications as CoAP Multicast Responses", Work
 in Progress, Internet-Draft, draft-ietf-core-observe-

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-12
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-12.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-12.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8613
https://www.rfc-editor.org/info/rfc8613
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-09
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-09
https://www.ietf.org/archive/id/draft-ietf-core-coap-pubsub-09.txt
https://www.ietf.org/archive/id/draft-ietf-core-coap-pubsub-09.txt
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-04
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-04
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-04.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe

Tiloca & Höglund Expires 13 January 2022 [Page 21]

Internet-Draft OSCORE-capable Proxies July 2021

 multicast-notifications-01, 12 July 2021,
 <https://www.ietf.org/archive/id/draft-ietf-core-observe-

multicast-notifications-01.txt>.

 [I-D.tiloca-core-groupcomm-proxy]
 Tiloca, M. and E. Dijk, "Proxy Operations for CoAP Group
 Communication", Work in Progress, Internet-Draft, draft-

tiloca-core-groupcomm-proxy-04, 12 July 2021,
 <https://www.ietf.org/archive/id/draft-tiloca-core-

groupcomm-proxy-04.txt>.

 [LwM2M-Core]
 Open Mobile Alliance, "Lightweight Machine to Machine
 Technical Specification - Core, Approved Version 1.2, OMA-
 TS-LightweightM2M_Core-V1_2-20201110-A", November 2020,
 <http://www.openmobilealliance.org/release/LightweightM2M/

V1_2-20201110-A/OMA-TS-LightweightM2M_Core-
V1_2-20201110-A.pdf>.

 [LwM2M-Transport]
 Open Mobile Alliance, "Lightweight Machine to Machine
 Technical Specification - Transport Bindings, Approved
 Version 1.2, OMA-TS-LightweightM2M_Transport-
 V1_2-20201110-A", November 2020,
 <http://www.openmobilealliance.org/release/LightweightM2M/

V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-
V1_2-20201110-A.pdf>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

Authors' Addresses

 Marco Tiloca
 RISE AB
 Isafjordsgatan 22
 SE-16440 Kista
 Sweden

 Email: marco.tiloca@ri.se

https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-01.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-01.txt
https://datatracker.ietf.org/doc/html/draft-tiloca-core-groupcomm-proxy-04
https://datatracker.ietf.org/doc/html/draft-tiloca-core-groupcomm-proxy-04
https://www.ietf.org/archive/id/draft-tiloca-core-groupcomm-proxy-04.txt
https://www.ietf.org/archive/id/draft-tiloca-core-groupcomm-proxy-04.txt
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
https://datatracker.ietf.org/doc/html/rfc7641
https://www.rfc-editor.org/info/rfc7641

Tiloca & Höglund Expires 13 January 2022 [Page 22]

Internet-Draft OSCORE-capable Proxies July 2021

 Rikard Hoeglund
 RISE AB
 Isafjordsgatan 22
 SE-16440 Kista
 Sweden

 Email: rikard.hoglund@ri.se

Tiloca & Höglund Expires 13 January 2022 [Page 23]

