
Workgroup: CoRE Working Group

Internet-Draft:

draft-tiloca-core-oscore-capable-proxies-01

Updates: 8613 (if approved)

Published: 25 October 2021

Intended Status: Standards Track

Expires: 28 April 2022

Authors: M. Tiloca

RISE AB

R. Höglund

RISE AB

OSCORE-capable Proxies

Abstract

Object Security for Constrained RESTful Environments (OSCORE) can be

used to protect CoAP messages end-to-end between two endpoints at

the application layer, also in the presence of intermediaries such

as proxies. This document defines how OSCORE is used to protect CoAP

messages also between an origin application endpoint and an

intermediary, or between two intermediaries. Besides, it defines how

a CoAP message can be double-protected through "OSCORE-in-OSCORE",

i.e., both end-to-end between origin application endpoints, as well

as between an application endpoint and an intermediary or between

two intermediaries. Thus, this document updates RFC 8613. The same

approach applies to Group OSCORE, for protecting CoAP messages when

group communication with intermediaries is used.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8613
https://mailarchive.ietf.org/arch/browse/core/
https://gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies
https://gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies
https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Use Cases

2.1. CoAP Group Communication with Proxies

2.2. CoAP Observe Notifications over Multicast

2.3. LwM2M Client and External Application Server

2.4. Further Use Cases

3. Message Processing

3.1. General Rules on Protecting Options

3.2. Processing of Outgoing Requests

3.3. Processing of Incoming Requests

3.4. Processing of Outgoing Responses

3.5. Processing of Incoming Responses

4. Caching of Responses

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

The Constrained Application Protocol (CoAP) [RFC7252] supports the

presence of intermediaries, such as forward-proxies and reverse-

proxies, which assist origin clients by performing requests to

¶

¶

¶

¶

https://trustee.ietf.org/license-info

origin servers on their behalf, and forwarding back the related

responses.

CoAP supports also group communication scenarios [I-D.ietf-core-

groupcomm-bis], where clients can send a one-to-many request

targeting all the servers in the group, e.g., by using IP multicast.

Like for one-to-one communication, group settings can also rely on

intermediaries [I-D.tiloca-core-groupcomm-proxy].

The protocol Object Security for Constrained RESTful Environments

(OSCORE) [RFC8613] can be used to protect CoAP messages between two

endpoints at the application layer, especially achieving end-to-end

security in the presence of (non-trusted) intermediaries. When CoAP

group communication is used, the same can be achieved by means of

the protocol Group OSCORE [I-D.ietf-core-oscore-groupcomm].

For a number of use cases (see Section 2), it is required and/or

beneficial that communications are secured also between an

application endpoint (i.e., a CoAP origin client/server) and an

intermediary, as well as between two adjacent intermediaries in a

chain. This especially applies to the communication leg between the

CoAP origin client and the adjacent intermediary acting as next hop

towards the origin server.

In such cases, and especially if the origin client already uses

OSCORE to achieve end-to-end security with the origin server, it

would be convenient that OSCORE is used also to secure

communications between the origin client and its next hop. However,

the original specification [RFC8613] does not define how OSCORE can

be used to protect CoAP messages in such communication leg, i.e., by

considering the intermediary as an "OSCORE endpoint".

This document fills this gap, and updates [RFC8613] as follows.

It defines how OSCORE is used to protect a CoAP message in the

communication leg between: i) an origin client/server and an

intermediary; or ii) two adjacent intermediaries in an

intermediary chain. That is, besides origin clients/servers, it

allows also intermediaries to be possible "OSCORE endpoints".

It admits a CoAP message to be secured by multiple OSCORE

protections applied in sequence, as an "OSCORE-in-OSCORE"

process. For instance, this is the case when the message is

OSCORE-protected end-to-end between the origin client and origin

server, and the result is further OSCORE-protected over the leg

between the current and next hop (e.g., the origin client and the

adjacent intermediary acting as next hop towards the origin

server).

¶

¶

¶

¶

¶

¶

*

¶

*

¶

The approach defined in this document does not specify any new

signaling method to guide the message processing on the different

endpoints. In particular, every endpoint is always able to

understand what steps to take on an incoming message, depending on

the presence of the OSCORE Option, as exclusively included or

instead combined together with CoAP options intended for a proxy.

What defined in this document is applicable also when Group OSCORE

is used, for protecting CoAP messages in group communication

scenarios that rely on intermediaries.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

related to CoAP [RFC7252]; OSCORE [RFC8613] and Group OSCORE [I-

D.ietf-core-oscore-groupcomm]. This document especially builds on

concepts and mechanics related to intermediaries such as CoAP

forward-proxies.

In addition, this document uses to the following terms.

Source application endpoint: an origin client producing a

request, or an origin server producing a response.

Destination application endpoint: an origin server intended to

consume a request, or an origin client intended to consume a

response.

Application endpoint: a source or destination application

endpoint.

Source OSCORE endpoint: an endpoint protecting a message with

OSCORE or Group OSCORE.

Destination OSCORE endpoint: an endpoint unprotecting a message

with OSCORE or Group OSCORE.

OSCORE endpoint: a source/destination OSCORE endpoint. An OSCORE

endpoint is not necessarily also an application endpoint with

respect to a certain message.

Proxy-related option: the Proxy-URI Option, the Proxy-Scheme

Option, or any of the Uri-* Options.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

OSCORE-in-OSCORE: the process by which a message protected with

(Group) OSCORE is further protected with (Group) OSCORE. This

means that, after performing an OSCORE decryption/verification,

the resulting message is again an OSCORE-protected message.

2. Use Cases

The approach proposed in this document has been motivated by a

number of use cases, which are summarized below.

2.1. CoAP Group Communication with Proxies

CoAP supports also one-to-many group communication, e.g., over IP

multicast [I-D.ietf-core-groupcomm-bis], which can be protected end-

to-end between origin client and origin servers by using Group

OSCORE [I-D.ietf-core-oscore-groupcomm].

This communication model can be assisted by intermediaries such as a

CoAP forward-proxy or reverse-proxy, which relays a group request to

the origin servers. If Group OSCORE is used, the proxy is

intentionally not a member of the OSCORE group. Furthermore, [I-

D.tiloca-core-groupcomm-proxy] defines a signaling protocol between

origin client and proxy, to ensure that responses from the different

origin servers are forwarded back to the origin client within a time

interval set by the client, and that they can be distinguished from

one another.

In particular, it is required that the proxy identifies the origin

client as allowed-listed, before forwarding a group request to the

servers (see Section 4 of [I-D.tiloca-core-groupcomm-proxy]). This

requires a security association between the origin client and the

proxy, which would be convenient to provide with a dedicated OSCORE

Security Context between the two, since the client is possibly using

also Group OSCORE with the origin servers.

2.2. CoAP Observe Notifications over Multicast

The Observe extension for CoAP [RFC7641] allows a client to register

its interest in "observing" a resource at a server. The server can

then send back notification responses upon changes to the resource

representation, all matching with the original observation request.

In some applications, such as pub-sub [I-D.ietf-core-coap-pubsub],

multiple clients are interested to observe the same resource at the

same server. Hence, [I-D.ietf-core-observe-multicast-notifications]

defines a method that allows the server to send a multicast

notification to all the observer clients at once, e.g., over IP

multicast. To this end, the server synchronizes the clients, by

providing them with a common "phantom observation request".

*

¶

¶

¶

¶

¶

¶

¶

In case the clients and the server use Group OSCORE for end-to-end

security and a proxy is also involved, an additional step is

required (see Section 10 of [I-D.ietf-core-observe-multicast-

notifications]). That is, clients are in turn required to provide

the proxy with the obtained "phantom observation request", thus

enabling the proxy to receive the multicast notifications from the

server.

Therefore, it is preferable to have a security associations also

between each client and the proxy, to especially ensure the

integrity of that information provided to the proxy (see

Section 13.3 of [I-D.ietf-core-observe-multicast-notifications]).

Like for the use case in Section 2.1, this would be conveniently

achieved with a dedicated OSCORE Security Context between a client

and the proxy, since the client is also using Group OSCORE with the

origin server.

2.3. LwM2M Client and External Application Server

The Lightweight Machine-to-Machine (LwM2M) protocol [LwM2M-Core]

enables a LwM2M Client device to securely bootstrap and then

register at a LwM2M Server, with which it will perform most of its

following communication exchanges. As per the transport bindings

specification of LwM2M [LwM2M-Transport], the LwM2M Client and LwM2M

Server can use CoAP and OSCORE to secure their communications at the

application layer, including during the device registration process.

Furthermore, Section 5.5.1 of [LwM2M-Transport] specifies that:

"OSCORE MAY also be used between LwM2M endpoint and non-LwM2M

endpoint, e.g., between an Application Server and a LwM2M Client via

a LwM2M server. Both the LwM2M endpoint and non-LwM2M endpoint MUST

implement OSCORE and be provisioned with an OSCORE Security

Context."

In such a case, the LwM2M Server can practically act as forward-

proxy between the LwM2M Client and the external Application Server.

At the same time, the LwM2M Client and LwM2M Server must continue

protecting communications on their leg using their Security Context.

Like for the use case in Section 2.1, this also allows the LwM2M

Server to identify the LwM2M Client, before forwarding its request

outside the LwM2M domain and towards the external Application

Server.

2.4. Further Use Cases

The approach proposed in this document can be useful also in the

following use cases relying on a proxy.

A server aware of a suitable cross proxy can rely on it as a

third-party service, in order to indicate transports for CoAP

¶

¶

¶

¶

¶

¶

*

https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-02#section-10
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-02#section-13.3

available to that server (see see Section 4 of [I-D.amsuess-core-

transport-indication]).

From a security point of view, it would be convenient if the

proxy could provide suitable credentials to the client, as a

general trusted proxy for the system. However, in order for

OSCORE to be an applicable security mechanism for this, it has to

be terminated at the proxy. That is, a dedicated OSCORE Security

Context between the client and the proxy would be required.

A proxy may be deployed to act as an entry point to a firewalled

network, which only authenticated clients can join. In

particular, authentication can rely on the used secure

communication association between a client and the proxy. If the

proxy could share a dedicated OSCORE Security Context with each

client, the proxy can rely on it to identify the client, before

forwarding its messages to any other member of the firewalled

network.

The approach proposed in this document does not pose a limit in

the number of OSCORE protections applied to the same CoAP

message. This enables more privacy-oriented scenarios based on

proxy chains, where the origin endpoint protects a message using

each of the OSCORE Security Contexts shared with the different

chain hops. Once received at a chain hop, a message would be

stripped of the protection layer associated to that hop before

being forwarded to the next one.

3. Message Processing

As mentioned in Section 1, this document introduces two main

deviations from the original OSCORE specification [RFC8613].

An "OSCORE endpoint", i.e., a producer/consumer of an OSCORE

option can be not only an application endpoint (i.e., an origin

client and server), but also an intermediary such as a proxy.

Hence, OSCORE can also be used between an origin client/server

and a proxy, as well as between two proxies in an intermediary

chain.

A CoAP message can be protected by multiple OSCORE layers

applied in sequence. Therefore, the final result is a message

with nested OSCORE layer, as the output of an "OSCORE-in-

OSCORE" process. That is, following a decryption, the resulting

message may include an OSCORE option, and thus have in turn to

be decrypted.

The most common case is expected to consider a message

protected with up to two OSCORE layers, i.e.: i) an inner

¶

¶

*

¶

*

¶

¶

1.

¶

¶

2.

¶

layer, protecting the message end-to-end between the origin

client and the origin server acting as application endpoints;

and ii) an outer layer, protecting the message between a

certain OSCORE endpoint and the other OSCORE endpoint adjacent

in the intermediary chain.

However, a message can also be protected with a higher

arbitrary number of nested OSCORE layers, e.g., in scenarios

relying on a longer chain of intermediaries. For instance, the

origin client can sequentially apply multiple OSCORE layers to

a request, each of which to be consumed and removed by one of

the intermediaries in the chain, until the origin server is

reached and it consumes the innermost OSCORE layer.

3.1. General Rules on Protecting Options

When a sender endpoint protects an outgoing message by applying the

i-th OSCORE layer in the sequence, the following CoAP options are

also protected, in addition to the ones already defined to be of

class I or class E.

An OSCORE Option which is present as the result of the j-th

OSCORE layer immediately previously applied, i.e., j = (i-1).

Such an OSCORE option is protected like an option of class E.

Any option intended to be protected for and consumed by the other

OSCORE endpoint sharing the OSCORE Security Context used for

applying the i-th OSCORE layer. These options especially include:

The proxy-related options Proxy-Uri, Proxy-Scheme and Uri-*.

Listen-To-Multicast-Notifications defined in [I-D.ietf-core-

observe-multicast-notifications].

Multicast-Signaling, Response-Forwarding and Group-ETag

defined in [I-D.tiloca-core-groupcomm-proxy].

3.2. Processing of Outgoing Requests

The rules from Section 3.1 apply when processing an outgoing request

message, with the following addition.

When an application endpoint applies multiple OSCORE layers in

sequence to protect an outgoing request, and it uses an OSCORE

Security Context shared with the other application endpoint, then

the first OSCORE layer MUST be applied by using that Security

Context.

¶

¶

¶

*

¶

*

¶

- ¶

-

¶

-

¶

¶

¶

3.3. Processing of Incoming Requests

The recipient endpoint performs the following actions on the

received request REQ, depending on which of the following three

conditions apply.

A - REQ includes visible proxy-related options.

If the endpoint is not configured to be a proxy, it returns an

error.

Otherwise, the endpoint consumes the proxy-related options and

forwards REQ to (the next hop towards) the origin server. This

may involve a protection of REQ over that communication leg, as

per Section 3.2.

B - REQ does not include proxy-related options and does not

include an OSCORE option.

If the endpoint does not have an application to handle REQ, it

returns an error.

Otherwise, the endpoint delivers REQ to the application.

C - REQ does not include proxy-related options and includes an

OSCORE option.

The endpoint decrypts REQ using the OSCORE Security Context

indicated by the OSCORE option, i.e. REQ* = dec(REQ). After that,

the possible presence of an OSCORE option in the decrypted

request REQ* is not treated as an error situation.

If the OSCORE processing results in an error, the endpoint stops

and proceeds with producing an error response, as per Section

3.4.

Otherwise, REQ takes REQ*, and the endpoint evaluates which of

the three conditions (A, B, C) applies to REQ, thus performing

again the algorithm defined in this section.

3.4. Processing of Outgoing Responses

The rules from Section 3.1 apply when processing an outgoing

response message, with the following additions.

When an application endpoint applies multiple OSCORE layers in

sequence to protect an outgoing response, and it uses an OSCORE

Security Context shared with the other application endpoint, then

the first OSCORE layer MUST be applied by using that Security

Context.

¶

* ¶

¶

¶

*

¶

¶

¶

*

¶

¶

¶

¶

¶

¶

[I-D.ietf-core-oscore-groupcomm]

[RFC2119]

The sender endpoint protects the response by applying the same

OSCORE layers that it removed from the corresponding incoming

request, but in the reverse order than the one they were removed.

In case the response is an error response, the sender endpoint

protects it by applying the same OSCORE layers that it successfully

removed from the corresponding incoming request, but in the reverse

order than the one they were removed.

3.5. Processing of Incoming Responses

The recipient endpoint removes the same OSCORE layers that it added

when protecting the corresponding outgoing request, but in the

reverse order than the one they were removed.

When doing so, the possible presence of an OSCORE option in the

decrypted response following the removal of an OSCORE layer is not

treated as an error situation, unless it occurs after having removed

as many OSCORE layers as were added in the outgoing request.

4. Caching of Responses

TBD

5. Security Considerations

TBD

6. IANA Considerations

This document has no actions for IANA.

7. References

7.1. Normative References

Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,

and J. Park, "Group OSCORE - Secure Group Communication

for CoAP", Work in Progress, Internet-Draft, draft-ietf-

core-oscore-groupcomm-13, 25 October 2021, <https://

www.ietf.org/archive/id/draft-ietf-core-oscore-

groupcomm-13.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-13.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-13.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-13.txt

[RFC7252]

[RFC8174]

[RFC8613]

[I-D.amsuess-core-transport-indication]

[I-D.ietf-core-coap-pubsub]

[I-D.ietf-core-groupcomm-bis]

[I-D.ietf-core-observe-multicast-notifications]

[I-D.tiloca-core-groupcomm-proxy]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

7.2. Informative References

Amsüss, C., "CoAP Protocol Indication", Work in Progress,

Internet-Draft, draft-amsuess-core-transport-

indication-01, 10 July 2021, <https://www.ietf.org/

archive/id/draft-amsuess-core-transport-

indication-01.txt>.

Koster, M., Keranen, A., and J. Jimenez,

"Publish-Subscribe Broker for the Constrained Application

Protocol (CoAP)", Work in Progress, Internet-Draft,

draft-ietf-core-coap-pubsub-09, 30 September 2019,

<https://www.ietf.org/archive/id/draft-ietf-core-coap-

pubsub-09.txt>.

Dijk, E., Wang, C., and M. Tiloca,

"Group Communication for the Constrained Application

Protocol (CoAP)", Work in Progress, Internet-Draft,

draft-ietf-core-groupcomm-bis-05, 25 October 2021,

<https://www.ietf.org/archive/id/draft-ietf-core-

groupcomm-bis-05.txt>.

Tiloca, M., Höglund, R., Amsüss, C., and F. Palombini,

"Observe Notifications as CoAP Multicast Responses", Work

in Progress, Internet-Draft, draft-ietf-core-observe-

multicast-notifications-02, 25 October 2021, <https://

www.ietf.org/archive/id/draft-ietf-core-observe-

multicast-notifications-02.txt>.

Tiloca, M. and E. Dijk, "Proxy

Operations for CoAP Group Communication", Work in

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8613
https://www.ietf.org/archive/id/draft-amsuess-core-transport-indication-01.txt
https://www.ietf.org/archive/id/draft-amsuess-core-transport-indication-01.txt
https://www.ietf.org/archive/id/draft-amsuess-core-transport-indication-01.txt
https://www.ietf.org/archive/id/draft-ietf-core-coap-pubsub-09.txt
https://www.ietf.org/archive/id/draft-ietf-core-coap-pubsub-09.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-05.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-05.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-02.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-02.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-02.txt

[LwM2M-Core]

[LwM2M-Transport]

[RFC7641]

Progress, Internet-Draft, draft-tiloca-core-groupcomm-

proxy-05, 25 October 2021, <https://www.ietf.org/archive/

id/draft-tiloca-core-groupcomm-proxy-05.txt>.

Open Mobile Alliance, "Lightweight Machine to Machine

Technical Specification - Core, Approved Version 1.2,

OMA-TS-LightweightM2M_Core-V1_2-20201110-A", November

2020, <http://www.openmobilealliance.org/release/

LightweightM2M/V1_2-20201110-A/OMA-TS-

LightweightM2M_Core-V1_2-20201110-A.pdf>.

Open Mobile Alliance, "Lightweight Machine to

Machine Technical Specification - Transport Bindings,

Approved Version 1.2, OMA-TS-LightweightM2M_Transport-

V1_2-20201110-A", November 2020, <http://

www.openmobilealliance.org/release/LightweightM2M/

V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-

V1_2-20201110-A.pdf>.

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

RFC7641, September 2015, <https://www.rfc-editor.org/

info/rfc7641>.

Acknowledgments

The authors sincerely thank Christian Amsuess, Peter Blomqvist and

Goeran Selander for their comments and feedback.

The work on this document has been partly supported by VINNOVA and

the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-

Home (Grant agreement 952652).

Authors' Addresses

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-16440 Kista

Sweden

Email: marco.tiloca@ri.se

Rikard Höglund

RISE AB

Isafjordsgatan 22

SE-16440 Kista

Sweden

Email: rikard.hoglund@ri.se

¶

¶

https://www.ietf.org/archive/id/draft-tiloca-core-groupcomm-proxy-05.txt
https://www.ietf.org/archive/id/draft-tiloca-core-groupcomm-proxy-05.txt
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
mailto:marco.tiloca@ri.se
mailto:rikard.hoglund@ri.se

	OSCORE-capable Proxies
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Use Cases
	2.1. CoAP Group Communication with Proxies
	2.2. CoAP Observe Notifications over Multicast
	2.3. LwM2M Client and External Application Server
	2.4. Further Use Cases

	3. Message Processing
	3.1. General Rules on Protecting Options
	3.2. Processing of Outgoing Requests
	3.3. Processing of Incoming Requests
	3.4. Processing of Outgoing Responses
	3.5. Processing of Incoming Responses

	4. Caching of Responses
	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Authors' Addresses

