
Workgroup: CoRE Working Group

Internet-Draft:

draft-tiloca-core-oscore-capable-proxies-04

Updates: 8613 (if approved)

Published: 23 September 2022

Intended Status: Standards Track

Expires: 27 March 2023

Authors: M. Tiloca

RISE AB

R. Höglund

RISE AB

OSCORE-capable Proxies

Abstract

Object Security for Constrained RESTful Environments (OSCORE) can be

used to protect CoAP messages end-to-end between two endpoints at

the application layer, also in the presence of intermediaries such

as proxies. This document defines how to use OSCORE for protecting

CoAP messages also between an origin application endpoint and an

intermediary, or between two intermediaries. Also, it defines how to

secure a CoAP message by applying multiple, nested OSCORE

protections, e.g., both end-to-end between origin application

endpoints, as well as between an application endpoint and an

intermediary or between two intermediaries. Thus, this document

updates RFC 8613. The same approach can be seamlessly used with

Group OSCORE, for protecting CoAP messages when group communication

with intermediaries is used.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Constrained RESTful

Environments Working Group mailing list (core@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8613
https://mailarchive.ietf.org/arch/browse/core/
https://gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies
https://gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Use Cases

2.1. CoAP Group Communication with Proxies

2.2. CoAP Observe Notifications over Multicast

2.3. LwM2M Client and External Application Server

2.4. LwM2M Gateway

2.5. Further Use Cases

3. Message Processing

3.1. General Rules on Protecting Options

3.2. Processing an Outgoing Request

3.3. Processing an Incoming Request

3.4. Processing an Outgoing Response

3.5. Processing an Incoming Response

4. Caching of OSCORE-Protected Responses

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Examples

A.1. Example 1

A.2. Example 2

A.3. Example 3

A.4. Example 4

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Appendix B. OSCORE-protected Onion Forwarding

Acknowledgments

Authors' Addresses

1. Introduction

The Constrained Application Protocol (CoAP) [RFC7252] supports the

presence of intermediaries, such as forward-proxies and reverse-

proxies, which assist origin clients by performing requests to

origin servers on their behalf, and forwarding back the related

responses.

CoAP supports also group communication scenarios [I-D.ietf-core-

groupcomm-bis], where clients can send a one-to-many request

targeting all the servers in the group, e.g., by using IP multicast.

Like for one-to-one communication, group settings can also rely on

intermediaries [I-D.tiloca-core-groupcomm-proxy].

The protocol Object Security for Constrained RESTful Environments

(OSCORE) [RFC8613] can be used to protect CoAP messages between two

endpoints at the application layer, especially achieving end-to-end

security in the presence of (non-trusted) intermediaries. When CoAP

group communication is used, the same can be achieved by means of

the protocol Group OSCORE [I-D.ietf-core-oscore-groupcomm].

For a number of use cases (see Section 2), it is required and/or

beneficial that communications are secured also between an

application endpoint (i.e., a CoAP origin client/server) and an

intermediary, as well as between two adjacent intermediaries in a

chain. This especially applies to the communication leg between the

CoAP origin client and the adjacent intermediary acting as next hop

towards the CoAP origin server.

In such cases, and especially if the origin client already uses

OSCORE to achieve end-to-end security with the origin server, it

would be convenient that OSCORE is used also to secure

communications between the origin client and its next hop. However,

the original specification [RFC8613] does not define how OSCORE can

be used to protect CoAP messages in such communication leg, which

would require to consider also the intermediary as an "OSCORE

endpoint".

This document fills this gap, and updates [RFC8613] as follows.

It defines how to use OSCORE for protecting a CoAP message in the

communication leg between: i) an origin client/server and an

intermediary; or ii) two adjacent intermediaries in an

intermediary chain. That is, besides origin clients/servers, it

allows also intermediaries to be possible "OSCORE endpoints".

¶

¶

¶

¶

¶

¶

*

¶

It admits a CoAP message to be secured by multiple, nested OSCORE

protections applied in sequence, as an "OSCORE-in-OSCORE"

process. For instance, this is the case when the message is

OSCORE-protected end-to-end between the origin client and origin

server, and the result is further OSCORE-protected over the leg

between the current and next hop (e.g., the origin client and the

adjacent intermediary acting as next hop towards the origin

server).

This document does not specify any new signaling method to guide the

message processing on the different endpoints. In particular, every

endpoint is always able to understand what steps to take on an

incoming message depending on the presence of the OSCORE Option, as

exclusively included or instead combined together with CoAP options

intended for an intermediary.

The approach defined in this document can be seamlessly adopted also

when Group OSCORE is used, for protecting CoAP messages in group

communication scenarios that rely on intermediaries.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

related to CoAP [RFC7252]; OSCORE [RFC8613] and Group OSCORE [I-

D.ietf-core-oscore-groupcomm]. This document especially builds on

concepts and mechanics related to intermediaries such as CoAP

forward-proxies.

In addition, this document uses the following terms.

Source application endpoint: an origin client producing a

request, or an origin server producing a response.

Destination application endpoint: an origin server intended to

consume a request, or an origin client intended to consume a

response.

Application endpoint: a source or destination application

endpoint.

Source OSCORE endpoint: an endpoint protecting a message with

OSCORE or Group OSCORE.

*

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

Destination OSCORE endpoint: an endpoint unprotecting a message

with OSCORE or Group OSCORE.

OSCORE endpoint: a source/destination OSCORE endpoint. An OSCORE

endpoint is not necessarily also an application endpoint with

respect to a certain message.

Proxy-related options: either of the following (set of) CoAP

options used for proxying a CoAP request.

The Proxy-Uri Option. This is relevant when using a forward-

proxy.

The set of CoAP options comprising the Proxy-Scheme Option

together with any of the Uri-* Options. This is relevant when

using a forward-proxy.

One or more Uri-Path Options, when used not together with the

Proxy-Scheme Option. This is relevant when using a reverse-

proxy.

OSCORE-in-OSCORE: the process by which a message protected with

(Group) OSCORE is further protected with (Group) OSCORE. This

means that, if such a process is used, a successful decryption/

verification of an OSCORE-protected message might yield an

OSCORE-protected message.

2. Use Cases

The approach defined in this document has been motivated by a number

of use cases, which are summarized below.

2.1. CoAP Group Communication with Proxies

CoAP supports also one-to-many group communication, e.g., over IP

multicast [I-D.ietf-core-groupcomm-bis], which can be protected end-

to-end between origin client and origin servers by using Group

OSCORE [I-D.ietf-core-oscore-groupcomm].

This communication model can be assisted by intermediaries such as a

CoAP forward-proxy or reverse-proxy, which relays a group request to

the origin servers. If Group OSCORE is used, the proxy is

intentionally not a member of the OSCORE group. Furthermore, [I-

D.tiloca-core-groupcomm-proxy] defines a signaling protocol between

origin client and proxy, to ensure that responses from the different

origin servers are forwarded back to the origin client within a time

interval set by the client, and that they can be distinguished from

one another.

*

¶

*

¶

*

¶

-

¶

-

¶

-

¶

*

¶

¶

¶

¶

In particular, it is required that the proxy identifies the origin

client as allowed-listed, before forwarding a group request to the

servers (see Section 4 of [I-D.tiloca-core-groupcomm-proxy]). This

requires a security association between the origin client and the

proxy, which would be convenient to provide with a dedicated OSCORE

Security Context between the two, since the client is possibly using

also Group OSCORE with the origin servers.

2.2. CoAP Observe Notifications over Multicast

The Observe extension for CoAP [RFC7641] allows a client to register

its interest in "observing" a resource at a server. The server can

then send back notification responses upon changes to the resource

representation, all matching with the original observation request.

In some applications, such as pub-sub [I-D.ietf-core-coap-pubsub],

multiple clients are interested to observe the same resource at the

same server. Hence, [I-D.ietf-core-observe-multicast-notifications]

defines a method that allows the server to send a multicast

notification to all the observer clients at once, e.g., over IP

multicast. To this end, the server synchronizes the clients by

providing them with a common "phantom observation request", against

which the following multicast notifications will match.

In case the clients and the server use Group OSCORE for end-to-end

security and a proxy is also involved, an additional step is

required (see Section 12 of [I-D.ietf-core-observe-multicast-

notifications]). That is, clients are in turn required to provide

the proxy with the obtained "phantom observation request", thus

enabling the proxy to receive the multicast notifications from the

server.

Therefore, it is preferable to have a security association also

between each client and the proxy, to especially ensure the

integrity of that information provided to the proxy (see

Section 15.3 of [I-D.ietf-core-observe-multicast-notifications]).

Like for the use case in Section 2.1, this would be conveniently

achieved with a dedicated OSCORE Security Context between a client

and the proxy, since the client is also using Group OSCORE with the

origin server.

2.3. LwM2M Client and External Application Server

The Lightweight Machine-to-Machine (LwM2M) protocol [LwM2M-Core]

enables a LwM2M Client device to securely bootstrap and then

register at a LwM2M Server, with which it will perform most of its

following communication exchanges. As per the transport bindings

specification of LwM2M [LwM2M-Transport], the LwM2M Client and LwM2M

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-tiloca-core-groupcomm-proxy-07#section-4
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-04#section-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-multicast-notifications-04#section-15.3

Server can use CoAP and OSCORE to secure their communications at the

application layer, including during the device registration process.

Furthermore, Section 5.5.1 of [LwM2M-Transport] specifies that:

"OSCORE MAY also be used between LwM2M endpoint and non-LwM2M

endpoint, e.g., between an Application Server and a LwM2M Client via

a LwM2M server. Both the LwM2M endpoint and non-LwM2M endpoint MUST

implement OSCORE and be provisioned with an OSCORE Security

Context."

In such a case, the LwM2M Server can practically act as forward-

proxy between the LwM2M Client and the external Application Server.

At the same time, the LwM2M Client and LwM2M Server must continue

protecting communications on their leg using their Security Context.

Like for the use case in Section 2.1, this also allows the LwM2M

Server to identify the LwM2M Client, before forwarding its request

outside the LwM2M domain and towards the external Application

Server.

2.4. LwM2M Gateway

The specification [LwM2M-Gateway] extends the LwM2M architecture by

defining the LwM2M Gateway functionality. That is, a LwM2M Server

can manage end IoT devices "behind" the LwM2M Gateway. While it is

outside the scope of such specification, it is possible for the

LwM2M Gateway to use any suitable protocol with its connected end

IoT devices, as well as to carry out any required protocol

translation.

Practically, the LwM2M Server can send a request to the LwM2M

Gateway, asking to forward it to an end IoT device. With particular

reference to the CoAP protocol and the related transport binding

specified in [LwM2M-Transport], the LwM2M Server acting as CoAP

client sends its request to the LwM2M Gateway acting as CoAP server.

If CoAP is used in the communication leg between the LwM2M Gateway

and the end IoT devices, then the LwM2M Gateway fundamentally acts

as a reverse-proxy (see Section 5.7.3 of [RFC7252]). That is, in

addition to its own resources, the LwM2M Gateway serves the

resources of each end IoT device behind itself, as exposed under a

dedicated URI-Path. As per [LwM2M-Gateway], the first URI-Path

segment is used as "prefix" to identify the specific IoT device,

while the remaining URI-Path segments specify the target resource at

the IoT device.

As per Section 7 of [LwM2M-Gateway], message exchanges between the

LwM2M Server and the L2M2M Gateway are secured using the LwM2M-

defined technologies, while the LwM2M protocol does not provide end-

to-end security between the LwM2M Server and the end IoT devices.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-5.7.3

However, the approach defined in this document makes it possible to

achieve both goals, by allowing the LwM2M Server to use OSCORE for

protecting a message both end-to-end for the targeted end IoT device

as well as for the LwM2M Gateway acting as reverse-proxy.

2.5. Further Use Cases

The approach defined in this document can be useful also in the

following use cases relying on a proxy.

A server aware of a suitable cross proxy can rely on it as a

third-party service, in order to indicate transports for CoAP

available to that server (see Section 4 of [I-D.ietf-core-

transport-indication]).

From a security point of view, it would be convenient if the

proxy could provide suitable credentials to the client, as a

general trusted proxy for the system. At the same time, it can be

desirable to limit the use of such a proxy to a set of clients

which have permission to use it, and that the proxy can identify

through a secure communication association.

However, in order for OSCORE to be an applicable security

mechanism for this, it has to be terminated at the proxy. That

is, it would be required for a client and the proxy to share a

dedicated OSCORE Security Context and to use it for protecting

their communication leg.

A proxy may be deployed to act as an entry point to a firewalled

network, which only authenticated clients can join. In

particular, authentication can rely on the used secure

communication association between a client and the proxy. If the

proxy could share a dedicated OSCORE Security Context with each

client, the proxy can rely on it to identify the client, before

forwarding its messages to any other member of the firewalled

network.

The approach defined in this document does not pose a limit to

the number of OSCORE protections applied to the same CoAP

message. This enables more privacy-oriented scenarios based on

proxy chains, where the origin client protects a CoAP request

using first the OSCORE Security Context shared with the origin

server, and then the dedicated OSCORE Security Context shared

with each of the different chain hops. Once received at a chain

hop, the request would be stripped of the OSCORE protection

associated with that hop before being forwarded to the next one.

¶

¶

*

¶

¶

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-transport-indication-01#section-4

3. Message Processing

As mentioned in Section 1, this document introduces the following

two main deviations from the original OSCORE specification

[RFC8613].

An "OSCORE endpoint", i.e., a producer/consumer of an OSCORE

Option can be not only an application endpoint (i.e., an origin

client or server), but also an intermediary such as a proxy.

Hence, OSCORE can also be used between an origin client/server

and a proxy, as well as between two proxies in an intermediary

chain.

A CoAP message can be secured by multiple OSCORE protections

applied in sequence. Therefore, the final result is a message

with nested OSCORE protections, as the output of an "OSCORE-in-

OSCORE" process. Hence, following a decryption, the resulting

message might legitimately include an OSCORE Option, and thus

have in turn to be decrypted.

The most common case is expected to consider a message

protected with up to two OSCORE layers, i.e.: i) an inner

layer, protecting the message end-to-end between the origin

client and the origin server acting as application endpoints;

and ii) an outer layer, protecting the message between a

certain OSCORE endpoint and the other OSCORE endpoint adjacent

in the intermediary chain.

However, a message can also be protected with a higher

arbitrary number of nested OSCORE layers, e.g., in scenarios

relying on a longer chain of intermediaries. For instance, the

origin client can sequentially apply multiple OSCORE layers to

a request, each of which to be consumed and removed by one of

the intermediaries in the chain, until the origin server is

reached and it consumes the innermost OSCORE layer.

Appendix A provides a number of examples where the approach defined

in this document is used to protect message exchanges.

3.1. General Rules on Protecting Options

Let us consider a sender endpoint that, when protecting an outgoing

message, applies the i-th OSCORE layer in sequence, by using the

OSCORE Security Context shared with another OSCORE endpoint X.

In addition to the CoAP options already specified as class E in

[RFC8613] or in the document defining them, the sender endpoint MUST

encrypt and integrity-protect the following CoAP options, even

though they are originally specified as class U or class I for

¶

1.

¶

¶

2.

¶

¶

¶

¶

¶

OSCORE. That is, such options are processed like if they were

specified as class E for OSCORE.

An OSCORE Option, which is present as the result of the j-th

OSCORE layer immediately previously applied, i.e., j = (i-1).

The EDHOC Option defined in [I-D.ietf-core-oscore-edhoc], only if

it is not intended to be consumed by the other OSCORE endpoint X.

That is, the EDHOC Option is not protected when actually intended

to be consumed by the other OSCORE endpoint X. In such a case,

the EDHOC Option will still correctly signal to the other

endpoint X to extract part of the message payload, and to use it

for completing an ongoing execution of the EDHOC key

establishment protocol [I-D.ietf-lake-edhoc], before proceeding

with the removal of the i-th OSCORE layer.

Any CoAP option such that both the following conditions hold,

thus ensuring that as many options as possible are protected.

The option is intended to be consumed by the other OSCORE

endpoint X.

At the other OSCORE endpoint X, the option does not play a

role in processing the message before having removed the i-

th OSCORE layer or in removing the i-th OSCORE layer

altogether.

Examples of such CoAP options are:

The Proxy-Uri, Proxy-Scheme, Uri-Host and Uri-Port Options

defined in [RFC7252].

The Listen-To-Multicast-Notifications Option defined in [I-

D.ietf-core-observe-multicast-notifications].

The Multicast-Timeout, Response-Forwarding and Group-ETag

Options defined in [I-D.tiloca-core-groupcomm-proxy].

3.2. Processing an Outgoing Request

The rules from Section 3.1 apply when processing an outgoing request

message, with the following addition.

When an application endpoint applies multiple OSCORE layers in

sequence to protect an outgoing request, and it uses an OSCORE

Security Context shared with the other application endpoint, then

the first OSCORE layer MUST be applied by using that Security

Context.

¶

*

¶

*

¶

¶

*

¶

1.

¶

2.

¶

¶

-

¶

-

¶

-

¶

¶

¶

3.3. Processing an Incoming Request

Upon receiving a request REQ, the recipient endpoint performs the

actions described in the following steps.

If REQ includes proxy-related options, the endpoint moves to

step 2. Otherwise, the endpoint moves to step 3.

The endpoint proceeds as defined below, depending on which of

the following conditions holds.

REQ includes either the Proxy-Uri Option, or the Proxy-

Scheme Option together with any of the Uri-* Options.

If the endpoint is not configured to be a forward-proxy, it

MUST stop processing the request and MUST respond with a

5.05 (Proxying Not Supported) error response to (the

previous hop towards) the origin client, as per

Section 5.10.2 of [RFC7252]. This may result in protecting

the error response over that communication leg, as per

Section 3.4.

Otherwise, the endpoint consumes the proxy-related options

as per Section 5.7.2 of [RFC7252], and forwards REQ to (the

next hop towards) the origin server. This may result in

(further) protecting REQ over that communication leg, as per

Section 3.2.

In either case, the endpoint does not take any further

action.

REQ includes one or more Uri-Path Options but not the Proxy-

Scheme Option.

If the endpoint is not configured to be a reverse-proxy or

its resource targeted by the Uri-Path Options is not

intended to support reverse-proxy functionalities, then the

endpoint proceeds to step 3.

Otherwise, the endpoint consumes the Uri-Path options as per

Section 5.7.3 of [RFC7252], and forwards REQ to (the next

hop towards) the origin server. This may result in (further)

protecting REQ over that communication leg, as per Section

3.2.

After that, the endpoint does not take any further action.

Note that, when forwarding REQ, the endpoint might not

remove all the Uri-Path Options originally present, e.g., in

¶

1.

¶

2.

¶

*

¶

¶

¶

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-5.10.2
https://rfc-editor.org/rfc/rfc7252#section-5.7.2
https://rfc-editor.org/rfc/rfc7252#section-5.7.3

case the next hop towards the origin server is a further

reverse-proxy.

The endpoint proceeds as defined below, depending on which of

the following conditions holds.

REQ does not include an OSCORE Option.

If the endpoint does not have an application to handle REQ,

it MUST stop processing the request and MAY respond with a

4.00 (Bad Request) error response to (the previous hop

towards) the origin client. This may result in protecting

the error response over that communication leg, as per

Section 3.4.

Otherwise, the endpoint delivers REQ to the application.

REQ includes an OSCORE Option.

If REQ includes any URI-Path Options, the endpoint MUST stop

processing the request and MAY respond with a 4.00 (Bad

Request) error response to (the previous hop towards) the

origin client. This may result in protecting the error

response over that communication leg, as per Section 3.4.

The endpoint decrypts REQ using the OSCORE Security Context

indicated by the OSCORE Option, i.e., REQ* = dec(REQ). After

that, the possible presence of an OSCORE Option in the

decrypted request REQ* is not treated as an error situation.

If the OSCORE processing results in an error, the endpoint

MUST stop processing the request and performs error handling

as per Section 8.2 of [RFC8613] or Sections 8.2 and 9.4 of

[I-D.ietf-core-oscore-groupcomm], in case OSCORE or Group

OSCORE is used, respectively. In case the endpoint sends an

error response to (the previous hop towards) the origin

client, this may result in protecting the error response

over that communication leg, as per Section 3.4.

Otherwise, REQ takes REQ*, and the endpoint moves to step 1.

3.4. Processing an Outgoing Response

The rules from Section 3.1 apply when processing an outgoing

response message, with the following additions.

When an application endpoint applies multiple OSCORE layers in

sequence to protect an outgoing response, and it uses an OSCORE

Security Context shared with the other application endpoint, then

¶

3.

¶

* ¶

¶

¶

* ¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-8.2
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-15#section-8.2
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-15#section-9.4

the first OSCORE layer MUST be applied by using that Security

Context.

The sender endpoint protects the response by applying the same

OSCORE layers that it removed from the corresponding incoming

request, but in the reverse order than the one they were removed.

In case the response is an error response, the sender endpoint

protects it by applying the same OSCORE layers that it successfully

removed from the corresponding incoming request, but in the reverse

order than the one they were removed.

3.5. Processing an Incoming Response

The recipient endpoint removes the same OSCORE layers that it added

when protecting the corresponding outgoing request, but in the

reverse order than the one they were removed.

When doing so, the possible presence of an OSCORE Option in the

decrypted response following the removal of an OSCORE layer is not

treated as an error situation, unless it occurs after having removed

as many OSCORE layers as were added in the outgoing request. In such

a case, the endpoint MUST stop processing the response.

4. Caching of OSCORE-Protected Responses

Although not possible as per the original OSCORE specification

[RFC8613], cacheability of OSCORE-protected responses at proxies can

be achieved. To this end, the approach defined in [I-D.amsuess-core-

cachable-oscore] can be used, as based on Deterministic Requests

protected with the pairwise mode of Group OSCORE [I-D.ietf-core-

oscore-groupcomm] used end-to-end between an origin client and an

origin server. The applicability of this approach is limited to

requests that are safe (in the RESTful sense) to process and do not

yield side effects at the origin server.

In particular, both the origin client and the origin server are

required to have already joined the correct OSCORE group. Then,

starting from the same plain CoAP request, different clients in the

OSCORE group are able to deterministically generate a same request

protected with Group OSCORE, which is sent to a proxy for being

forwarded to the origin server. The proxy can now effectively cache

the resulting OSCORE-protected response from the server, since the

same plain CoAP request will result again in the same Deterministic

Request and thus will produce a cache hit.

If the approach defined in [I-D.amsuess-core-cachable-oscore] is

used, the following also applies in addition to what is defined in

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-core-oscore-groupcomm]

[RFC2119]

Section 3, when processing incoming messages at a proxy that

implements caching of responses.

Upon receiving a request from (the previous hop towards) the

origin client, the proxy checks if specifically the message

available during the execution of step 2 in Section 3.3 produces

a cache hit.

That is, such a message: i) is exactly the one to be forwarded to

(the next hop towards) the origin server if no cache hit has

occurred; and ii) is the result of an OSCORE decryption at the

proxy, if OSCORE is used on the communication leg between the

proxy and (the previous hop towards) the origin client.

Upon receiving a response from (the next hop towards) the origin

server, the proxy first removes the same OSCORE layers that it

added when protecting the corresponding outgoing request, as

defined in Section 3.5.

Then, the proxy stores specifically that resulting response

message in its cache. That is, such a message is exactly the one

to be forwarded to (the previous hop towards) the origin client.

The specific rules about serving a request with a cached response

are defined in Section 5.6 of [RFC7252], as well as in Section 7 of

[I-D.tiloca-core-groupcomm-proxy] for group communication scenarios.

5. Security Considerations

TODO

6. IANA Considerations

This document has no actions for IANA.

7. References

7.1. Normative References

Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,

and J. Park, "Group OSCORE - Secure Group Communication

for CoAP", Work in Progress, Internet-Draft, draft-ietf-

core-oscore-groupcomm-15, 5 September 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-oscore-

groupcomm-15.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

*

¶

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-5.6
https://datatracker.ietf.org/doc/html/draft-tiloca-core-groupcomm-proxy-07#section-7
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-15.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-15.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-15.txt

[RFC7252]

[RFC8174]

[RFC8613]

[I-D.amsuess-core-cachable-oscore]

[I-D.ietf-core-coap-pubsub]

[I-D.ietf-core-groupcomm-bis]

[I-D.ietf-core-observe-multicast-notifications]

[I-D.ietf-core-oscore-edhoc]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

7.2. Informative References

Amsüss, C. and M. Tiloca,

"Cacheable OSCORE", Work in Progress, Internet-Draft,

draft-amsuess-core-cachable-oscore-05, 11 July 2022,

<https://www.ietf.org/archive/id/draft-amsuess-core-

cachable-oscore-05.txt>.

Koster, M., Keränen, A., and J. Jimenez,

"Publish-Subscribe Broker for the Constrained Application

Protocol (CoAP)", Work in Progress, Internet-Draft,

draft-ietf-core-coap-pubsub-10, 4 May 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-coap-

pubsub-10.txt>.

Dijk, E., Wang, C., and M. Tiloca,

"Group Communication for the Constrained Application

Protocol (CoAP)", Work in Progress, Internet-Draft,

draft-ietf-core-groupcomm-bis-07, 11 July 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-groupcomm-

bis-07.txt>.

Tiloca, M., Höglund, R., Amsüss, C., and F. Palombini,

"Observe Notifications as CoAP Multicast Responses", Work

in Progress, Internet-Draft, draft-ietf-core-observe-

multicast-notifications-04, 11 July 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-observe-

multicast-notifications-04.txt>.

Palombini, F., Tiloca, M., Höglund, R.,

Hristozov, S., and G. Selander, "Profiling EDHOC for CoAP

and OSCORE", Work in Progress, Internet-Draft, draft-

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8613
https://www.ietf.org/archive/id/draft-amsuess-core-cachable-oscore-05.txt
https://www.ietf.org/archive/id/draft-amsuess-core-cachable-oscore-05.txt
https://www.ietf.org/archive/id/draft-ietf-core-coap-pubsub-10.txt
https://www.ietf.org/archive/id/draft-ietf-core-coap-pubsub-10.txt
https://www.ietf.org/archive/id/draft-ietf-core-coap-pubsub-10.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-07.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-07.txt
https://www.ietf.org/archive/id/draft-ietf-core-groupcomm-bis-07.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-04.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-04.txt
https://www.ietf.org/archive/id/draft-ietf-core-observe-multicast-notifications-04.txt

[I-D.ietf-core-transport-indication]

[I-D.ietf-lake-edhoc]

[I-D.tiloca-core-groupcomm-proxy]

[LwM2M-Core]

[LwM2M-Gateway]

[LwM2M-Transport]

[RFC7641]

ietf-core-oscore-edhoc-04, 11 July 2022, <https://

www.ietf.org/archive/id/draft-ietf-core-oscore-

edhoc-04.txt>.

Amsüss, C., "CoAP Protocol Indication", Work in Progress,

Internet-Draft, draft-ietf-core-transport-indication-01,

11 July 2022, <https://www.ietf.org/archive/id/draft-

ietf-core-transport-indication-01.txt>.

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

edhoc-15, 10 July 2022, <https://www.ietf.org/archive/id/

draft-ietf-lake-edhoc-15.txt>.

Tiloca, M. and E. Dijk, "Proxy

Operations for CoAP Group Communication", Work in

Progress, Internet-Draft, draft-tiloca-core-groupcomm-

proxy-07, 5 September 2022, <https://www.ietf.org/

archive/id/draft-tiloca-core-groupcomm-proxy-07.txt>.

Open Mobile Alliance, "Lightweight Machine to Machine

Technical Specification - Core, Approved Version 1.2,

OMA-TS-LightweightM2M_Core-V1_2-20201110-A", November

2020, <http://www.openmobilealliance.org/release/

LightweightM2M/V1_2-20201110-A/OMA-TS-

LightweightM2M_Core-V1_2-20201110-A.pdf>.

Open Mobile Alliance, "Lightweight Machine to

Machine Gateway Technical Specification - Approved

Version 1.1, OMA-TS-LWM2M_Gateway-V1_1-20210518-A", May

2021, <https://www.openmobilealliance.org/release/

LwM2M_Gateway/V1_1-20210518-A/OMA-TS-LWM2M_Gateway-

V1_1-20210518-A.pdf>.

Open Mobile Alliance, "Lightweight Machine to

Machine Technical Specification - Transport Bindings,

Approved Version 1.2, OMA-TS-LightweightM2M_Transport-

V1_2-20201110-A", November 2020, <http://

www.openmobilealliance.org/release/LightweightM2M/

V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-

V1_2-20201110-A.pdf>.

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

https://www.ietf.org/archive/id/draft-ietf-core-oscore-edhoc-04.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-edhoc-04.txt
https://www.ietf.org/archive/id/draft-ietf-core-oscore-edhoc-04.txt
https://www.ietf.org/archive/id/draft-ietf-core-transport-indication-01.txt
https://www.ietf.org/archive/id/draft-ietf-core-transport-indication-01.txt
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-15.txt
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-15.txt
https://www.ietf.org/archive/id/draft-tiloca-core-groupcomm-proxy-07.txt
https://www.ietf.org/archive/id/draft-tiloca-core-groupcomm-proxy-07.txt
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
https://www.openmobilealliance.org/release/LwM2M_Gateway/V1_1-20210518-A/OMA-TS-LWM2M_Gateway-V1_1-20210518-A.pdf
https://www.openmobilealliance.org/release/LwM2M_Gateway/V1_1-20210518-A/OMA-TS-LWM2M_Gateway-V1_1-20210518-A.pdf
https://www.openmobilealliance.org/release/LwM2M_Gateway/V1_1-20210518-A/OMA-TS-LWM2M_Gateway-V1_1-20210518-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-V1_2-20201110-A.pdf

[RFC8742]

RFC7641, September 2015, <https://www.rfc-editor.org/

info/rfc7641>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/info/rfc8742>.

Appendix A. Examples

This section provides a number of examples where the approach

defined in this document is used to protect message exchanges.

A.1. Example 1

The example in Figure 1 builds on the example from Appendix A.1 of

[RFC8613], and illustrates an origin client requesting the alarm

status from an origin server, through a forward-proxy.

The message exchanges are protected with OSCORE over the following

legs.

End-to-end, between the client and the server. The client uses

the OSCORE Sender ID 0x5f when using OSCORE with the server.

Between the client and the proxy. The client uses the OSCORE

Sender ID 0x20 when using OSCORE with the proxy.

¶

¶

¶

*

¶

*

¶

https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc8742
https://rfc-editor.org/rfc/rfc8613#appendix-A.1

Figure 1: Use of OSCORE between Client-Server and Client-Proxy

A.2. Example 2

The example in Figure 2 builds on the example from Appendix A.1 of

[RFC8613], and illustrates an origin client requesting the alarm

status from an origin server, through a forward-proxy.

Client Proxy Server

 | | |

 +------>| | Code: 0.02 (POST)

 | POST | | Token: 0x8c

 | | | OSCORE: [kid: 20, Partial IV: 31]

 | | | 0xff

 | | | Payload: {Code: 0.02,

 | | | OSCORE: [kid: 5f, Partial IV: 42],

 | | | Uri-Host: example.com,

 | | | Proxy-Scheme: coap,

 | | | 0xff,

 | | | {Code: 0.01, Uri-Path:"alarm_status"}}

 | | |

 | +------>| Code: 0.02 (POST)

 | | POST | Token: 0x7b

 | | | OSCORE: [kid: 5f, Partial IV: 42]

 | | | 0xff

 | | | Payload: {Code: 0.01, Uri-Path:"alarm_status"}

 | | |

 | |<------+ Code: 2.04 (Changed)

 | | 2.04 | Token: 0x7b

 | | | OSCORE: -

 | | | 0xff

 | | | Payload: {Code: 2.05, 0xff, "0"}

 | | |

 |<------+ | Code: 2.04 (Changed)

 | 2.04 | | Token: 0x8c

 | | | OSCORE: -

 | | | 0xff

 | | | Payload: {Code: 2.04,

 | | | OSCORE: -,

 | | | 0xff,

 | | | {Code: 2.05, 0xff, "0"}}

 | | |

Square brackets [...] indicate content of compressed COSE object.

Curly brackets { ... } indicate encrypted data.

¶

https://rfc-editor.org/rfc/rfc8613#appendix-A.1

The message exchanges are protected with OSCORE over the following

legs.

End-to-end between the client and the server. The client uses the

OSCORE Sender ID 0x5f when using OSCORE with the server.

Between the proxy and the server. The proxy uses the OSCORE

Sender ID 0xd4 when using OSCORE with the server.

¶

*

¶

*

¶

Client Proxy Server

 | | |

 +------>| | Code: 0.02 (POST)

 | POST | | Token: 0x8c

 | | | Uri-Host: example.com

 | | | Proxy-Scheme: coap

 | | | OSCORE: [kid: 5f, Partial IV: 42]

 | | | 0xff

 | | | Payload: {Code: 0.01,

 | | | Uri-Path:"alarm_status"}

 | | |

 | +------>| Code: 0.02 (POST)

 | | POST | Token: 0x7b

 | | | OSCORE: [kid: d4, Partial IV: 31]

 | | | 0xff

 | | | Payload: {Code: 0.02,

 | | | OSCORE: [kid: 5f, Partial IV: 42],

 | | | 0xff,

 | | | {Code: 0.01,

 | | | Uri-Path:"alarm_status"}}

 | | |

 | |<------+ Code: 2.04 (Changed)

 | | 2.04 | Token: 0x7b

 | | | OSCORE: -

 | | | 0xff

 | | | Payload: {Code: 2.04,

 | | | OSCORE: -,

 | | | 0xff,

 | | | {Code: 2.05, 0xff, "0"}}

 | | |

 |<------+ | Code: 2.04 (Changed)

 | 2.04 | | Token: 0x8c

 | | | OSCORE: -

 | | | 0xff

 | | | Payload: {Code: 2.05, 0xff, "0"}

 | | |

Square brackets [...] indicate content of compressed COSE object.

Curly brackets { ... } indicate encrypted data.

Figure 2: Use of OSCORE between Client-Server and Proxy-Server

A.3. Example 3

The example in Figure 3 builds on the example from Appendix A.1 of

[RFC8613], and illustrates an origin client requesting the alarm

status from an origin server, through a forward-proxy.

The message exchanges are protected with OSCORE over the following

legs.

End-to-end between the client and the server. The client uses the

OSCORE Sender ID 0x5f when using OSCORE with the server.

Between the client and the proxy. The client uses the OSCORE

Sender ID 0x20 when using OSCORE with the proxy.

Between the proxy and the server. The proxy uses the OSCORE

Sender ID 0xd4 when using OSCORE with the server.

¶

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc8613#appendix-A.1

Figure 3: Use of OSCORE between Client-Server, Client-Proxy and Proxy-

Server

Client Proxy Server

 | | |

 +------>| | Code: 0.02 (POST)

 | POST | | Token: 0x8c

 | | | OSCORE: [kid: 20, Partial IV: 31]

 | | | 0xff

 | | | Payload: {Code: 0.02,

 | | | OSCORE: [kid: 5f, Partial IV: 42],

 | | | Uri-Host: example.com,

 | | | Proxy-Scheme: coap,

 | | | 0xff,

 | | | {Code: 0.01, Uri-Path:"alarm_status"}}

 | | |

 | +------>| Code: 0.02 (POST)

 | | POST | Token: 0x7b

 | | | OSCORE: [kid: d4, Partial IV: 31]

 | | | 0xff

 | | | Payload: {Code: 0.02,

 | | | OSCORE: [kid: 5f, Partial IV: 42],

 | | | 0xff,

 | | | {Code: 0.01, Uri-Path:"alarm_status"}}

 | | |

 | |<------+ Code: 2.04 (Changed)

 | | 2.04 | Token: 0x7b

 | | | OSCORE: -

 | | | 0xff

 | | | Payload: {Code: 2.04,

 | | | OSCORE: -,

 | | | 0xff,

 | | | {Code: 2.05, 0xff, "0"}}

 | | |

 |<------+ | Code: 2.04 (Changed)

 | 2.04 | | Token: 0x8c

 | | | OSCORE: -

 | | | 0xff

 | | | Payload: {Code:2.04,

 | | | OSCORE: -,

 | | | 0xff,

 | | | {Code: 2.05, 0xff, "0"}}

 | | |

Square brackets [...] indicate content of compressed COSE object.

Curly brackets { ... } indicate encrypted data.

A.4. Example 4

The example in Figure 4 builds on the example from Appendix A.1 of

[RFC8613], and illustrates an origin client requesting the alarm

status from an origin server, through a forward-proxy.

The message exchanges are protected over the following legs.

End-to-end, between the client and the server. The client uses

the OSCORE Sender ID 0x5f when using OSCORE with the server.

Between the client and the proxy. The client uses the OSCORE

Sender ID 0x20 when using OSCORE with the proxy.

The example also shows how the client establishes an OSCORE Security

Context with the proxy and with the server, by using the key

establishment protocol EDHOC [I-D.ietf-lake-edhoc].

¶

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc8613#appendix-A.1

Client Proxy Server

 | | |

 +------>| | Code: 0.02 (POST)

 | POST | | Token: 0xf3

 | | | Uri-Path: .well-known

 | | | Uri-Path: edhoc

 | | | 0xff

 | | | Payload: (true, EDHOC message_1)

 | | |

 |<------+ | Code: 2.04 (Changed)

 | 2.04 | | Token: 0xf3

 | | | 0xff

 | | | Payload: EDHOC message_2

 | | |

Est. | |

CTX_P | |

with P | |

 | | |

 +------>| | Code: 0.02 (POST)

 | POST | | Token: 0x82

 | | | Uri-Path: .well-known

 | | | Uri-Path: edhoc

 | | | 0xff

 | | | Payload: (C_R, EDHOC message_3)

 | | |

 | Est. |

 | CTX_P |

 | with C |

 | | |

 |<------+ |

 | ACK | |

 | | |

 +------>| | Code: 0.02 (POST)

 | POST | | Token: 0xbe

 | | | OSCORE: [kid: 20, Partial IV: 00]

 | | | 0xff

 | | | Payload: {Code: 0.02,

 | | | Uri-Host: example.com,

 | | | Uri-Path: .well-known,

 | | | Uri-Path: edhoc,

 | | | Proxy-Scheme: coap,

 | | | 0xff,

 | | | (true, EDHOC message_1)}

 | | |

 | +------>| Code: 0.02 (POST)

 | | POST | Token: 0xa5

 | | | Uri-Path: .well-known

 | | | Uri-Path: edhoc

 | | | 0xff

 | | | Payload: (true, EDHOC message_1)

 | | |

 | |<------+ Code: 2.04 (Changed)

 | | 2.04 | Token: 0xa5

 | | | 0xff

 | | | Payload: EDHOC message_2

 | | |

 |<------+ | Code: 2.04 (Changed)

 | 2.04 | | Token: 0xbe

 | | | OSCORE: -

 | | | 0xff

 | | | Payload: {Code: 2.04,

 | | | 0xff,

 | | | EDHOC message_2}

 | | |

Est. | |

CTX_S | |

with S | |

 | | |

 +------>| | Code: 0.02 (POST)

 | POST | | Token: 0xb9

 | | | OSCORE: [kid: 20, Partial IV: 01]

 | | | 0xff

 | | | Payload: {Code: 0.02,

 | | | Uri-Host: example.com,

 | | | Uri-Path: .well-known,

 | | | Uri-Path: edhoc,

 | | | Proxy-Scheme: coap,

 | | | 0xff,

 | | | (C_R, EDHOC message_3)}

 | | |

 | +------>| Code: 0.02 (POST)

 | | POST | Token: 0xdd

 | | | Uri-Path: .well-known

 | | | Uri-Path: edhoc

 | | | 0xff

 | | | Payload: (C_R, EDHOC message_3)

 | | |

 | | Est.

 | | CTX_S

 | | with C

 | | |

 | |<------+

 | | ACK |

 | | |

 |<------+ |

 | ACK | |

 | | |

 +------>| | Code: 0.02 (POST)

 | POST | | Token: 0x8c

 | | | OSCORE: [kid: 20, Partial IV: 02]

 | | | 0xff

 | | | Payload: {Code: 0.02,

 | | | OSCORE: [kid: 5f, Partial IV: 00],

 | | | Uri-Host: example.com,

 | | | Proxy-Scheme: coap,

 | | | 0xff,

 | | | {Code: 0.01, Uri-Path:"alarm_status"}}

 | | |

 | +------>| Code: 0.02 (POST)

 | | POST | Token: 0x7b

 | | | OSCORE: [kid: 5f, Partial IV: 00]

 | | | 0xff

 | | | Payload: {Code: 0.01, Uri-Path:"alarm_status"}

 | | |

 | |<------+ Code: 2.04 (Changed)

 | | 2.04 | Token: 0x7b

 | | | OSCORE: -

 | | | 0xff

 | | | Payload: {Code: 2.05, 0xff, "0"}

 | | |

 |<------+ | Code: 2.04 (Changed)

 | 2.04 | | Token: 0x8c

 | | | OSCORE: -

 | | | 0xff

 | | | Payload: {Code: 2.04,

 | | | OSCORE: -,

 | | | 0xff,

 | | | {Code: 2.05, 0xff, "0"}}

 | | |

Square brackets [...] indicate content of compressed COSE object.

Curly brackets { ... } indicate encrypted data.

Round brackets (...) indicate a CBOR sequence [RFC 8742].

Figure 4: Use of OSCORE between Client-Server and Proxy-Server, with

OSCORE Security Contexts established through EDHOC

Appendix B. OSCORE-protected Onion Forwarding

TODO: better elaborate on the listed points below.

The client can hide its position in the network from the origin

server, while still possibly protecting communications end-to-end

with OSCORE.

Use the method defined in Section 3 to achieve OSCORE-protected

onion forwarding, through a chain of proxies (at least three are

expected). Every message generated by or intended to the origin

client must traverse the whole chain of proxies until the

intended other endpoint (typically, the origin server). The chain

of proxies has to be known in advance by the client, i.e., the

exact proxies and their order in the chain.

The typical case addressed in this document considers an origin

client that, at most, shares one OSCORE Security Context with the

origin server and one OSCORE Security Context with the first

proxy in the chain.

If onion forwarding is used, the origin client shares an OSCORE

Security Context with the origin server, and a dedicated OSCORE

Security Context with each of the proxies in the chain.

The origin client protects a request by applying first the OSCORE

layer intended to the origin server, then the OSCORE layer

intended to the last proxy in the chain, then the OSCORE layer

intended to the second from last proxy in the chain and so on,

until it applies the OSCORE layer intended to the first proxy in

the chain.

Before protecting a request with the OSCORE layer to be consumed

by a certain proxy in the chain, the origin client also adds

proxy-related options intended to that proxy, as indications to

forward the request to (the next hop towards) the origin server.

Other than the actions above from the client, there should be no

difference from the basic approach defined in Section 3. Each

proxy in the chain would process and remove one OSCORE layer from

the received request and then forward it to (the next hop

towards) the origin server.

The exact way used by the client to establish OSCORE Security

Contexts with the proxies and the origin server is out of scope.

¶

*

¶

*

¶

*

¶

¶

*

¶

¶

¶

*

¶

If the EDHOC key establishment protocol is used (see [I-D.ietf-

lake-edhoc]), it is most convenient for the client to run it with

the first proxy in the chain, then with the second proxy in the

chain through the first one and so on, and finally with the

origin server by traversing the whole chain of proxies.

Then, it is especially convenient to use the optimized workflow

defined in [I-D.ietf-core-oscore-edhoc] and based on the EDHOC +

OSCORE request. This would basically allow the client to complete

the EDHOC execution with an endpoint and start the EDHOC

execution with the next endpoint in the chain, by means of a

single message sent on the wire.

Hop-by-hop security has to also be achieved between each pair of

proxies in the chain. To this end, two adjacent proxies would

better use TLS over TCP than OSCORE between one another (this

should be acceptable for non-constrained proxies). This takes

advantage of the TCP packet aggregation policies, and thus:

As request forwarding occurs in MTU-size bundles, the length

of the origin request can be hidden as well.

Requests and responses traversing the proxy chain cannot be

correlated, e.g., by externally monitoring the timing of

message forwarding (which would jeopardize the client's wish

to hide itself from anything but the first proxy in the

chain).

Cacheability of responses can still happen, as per Section 4 and

using the approach defined in [I-D.amsuess-core-cachable-oscore].

The last proxy in the chain would be the only proxy actually

seeing the Deterministic Request originated by the client and

then caching the corresponding responses from the origin server.

It is good that other proxies are not able to do the same, thus

preventing what might lead to request-response correlation, again

opening for localization of the origin client.

Possible optimizations along the proxy chains

In particular settings involving additional configuration on

the client, some proxy in the chain might be a reverse-proxy.

Then, such a proxy can be configured to map on one hand the

OSCORE Security Context shared with the origin client (and

used to remove a corresponding OSCORE layer from a received

request to forward) and, on the other hand, the addressing

information of the next hop in the chain where to forward the

received request to. This would spare the origin client to add

a set of proxy-related options for every single proxy in the

chain.

¶

¶

*

¶

-

¶

-

¶

*

¶

¶

* ¶

-

¶

It is mentioned above to additionally use TLS over TCP hop-by-

hop between every two adjacent proxies in the chain. That

said:

The OSCORE protection of the request has certainly to rely

on authenticated encryption algorithms (as usual), when

applying the OSCORE layer intended to the origin server

(the first one applied by the origin client) and the OSCORE

layer intended to the first proxy in the chain (the last

one applied by the origin client).

For any other OSCORE layer applied by the origin client

(i.e., intended for any proxy in the chain but the first

one), the OSCORE protection can better rely on an

encryption-only algorithm not providing an authentication

tag (as admitted in the group mode of Group OSCORE [I-

D.ietf-core-oscore-groupcomm] and assuming the registration

of such algorithms in COSE).

This would be secure to do, since every pair of adjacent

proxies in the chain relies on its TLS connection for the

respective hop-by-hop communication anyway. The benefit is

that it avoids transmitting several unneeded authentication

tags from OSCORE.

Acknowledgments

The authors sincerely thank Christian Amsüss, Peter Blomqvist, David

Navarro and Göran Selander for their comments and feedback.

The work on this document has been partly supported by VINNOVA and

the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-

Home (Grant agreement 952652).

Authors' Addresses

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-16440 Kista

Sweden

Email: marco.tiloca@ri.se

Rikard Höglund

RISE AB

Isafjordsgatan 22

SE-16440 Kista

Sweden

-

¶

o

¶

o

¶

o

¶

¶

¶

mailto:marco.tiloca@ri.se

Email: rikard.hoglund@ri.se

mailto:rikard.hoglund@ri.se

	OSCORE-capable Proxies
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Use Cases
	2.1. CoAP Group Communication with Proxies
	2.2. CoAP Observe Notifications over Multicast
	2.3. LwM2M Client and External Application Server
	2.4. LwM2M Gateway
	2.5. Further Use Cases

	3. Message Processing
	3.1. General Rules on Protecting Options
	3.2. Processing an Outgoing Request
	3.3. Processing an Incoming Request
	3.4. Processing an Outgoing Response
	3.5. Processing an Incoming Response

	4. Caching of OSCORE-Protected Responses
	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Examples
	A.1. Example 1
	A.2. Example 2
	A.3. Example 3
	A.4. Example 4

	Appendix B. OSCORE-protected Onion Forwarding
	Acknowledgments
	Authors' Addresses

