
Workgroup: SCHC Working Group

Internet-Draft:

draft-tiloca-schc-8824-update-00

Updates: 8824 (if approved)

Published: 3 April 2023

Intended Status: Standards Track

Expires: 5 October 2023

Authors: M. Tiloca

RISE AB

L. Toutain

IMT Atlantique

I. Martinez

IMT Atlantique

Clarifications and Updates on using Static Context Header Compression

(SCHC) for the Constrained Application Protocol (CoAP)

Abstract

This document clarifies, updates and extends the method specified in

RFC 8824 for compressing Constrained Application Protocol (CoAP)

headers using the Static Context Header Compression and

fragmentation (SCHC) framework. In particular, it considers recently

defined CoAP options and specifies how CoAP headers are compressed

in the presence of intermediaries. Therefore, this document updates

RFC 8824.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Static Context Header

Compression Working Group mailing list (schc@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/schc/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/crimson84/draft-tiloca-schc-8824-update.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 October 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8824
https://mailarchive.ietf.org/arch/browse/schc/
https://gitlab.com/crimson84/draft-tiloca-schc-8824-update
https://gitlab.com/crimson84/draft-tiloca-schc-8824-update
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. CoAP Options

2.1. CoAP Option Size1, Size2, Proxy-URI, and Proxy-Scheme Fields

2.2. CoAP Option Hop-Limit Field

2.3. CoAP Option Echo Field

2.4. CoAP Option Request-Tag Field

2.5. CoAP Option EDHOC Field

3. SCHC Compression of CoAP Extensions

3.1. Block

3.2. OSCORE

4. Compression of the CoAP Payload Marker

4.1. Without End-to-End Security

4.2. With End-to-End Security

5. CoAP Header Compression with Proxies

5.1. Without End-to-End Security

5.2. With End-to-End Security

6. Examples of CoAP Header Compression with Proxies

7. Security Considerations

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. YANG data model

Acknowledgments

Authors' Addresses

1. Introduction

The Constrained Application Protocol (CoAP) [RFC7252] is a web-

transfer protocol intended for applications based on the REST

¶

¶

https://trustee.ietf.org/license-info

(Representational State Transfer) paradigm, and designed to be

affordable also for resource-constrained devices.

In order to enable the use of CoAP in LPWANs (Low-Power Wide-Area

Networks) as well as to improve performance, [RFC8824] defines how

to use the Static Context Header Compression and fragmentation

(SCHC) framework [RFC8724] for compressing CoAP headers.

This document clarifies, updates and extends the SCHC compression of

CoAP headers defined in [RFC8824] at the application level, by:

providing specific clarifications; updating specific details of the

compression processing, based on recent developments related to the

security protocol OSCORE [RFC8613] for end-to-end protection of CoAP

messages; and extending the compression processing to take into

account additional CoAP options and the presence of CoAP proxies.

In particular, this document updates [RFC8824] as follows.

It clarifies the SCHC compression for the CoAP options Size1,

Size2, Proxy-URI and Proxy-Scheme (see Section 2.1).

It defines the SCHC compression for the CoAP option Hop-Limit

(see Section 2.2).

It defines the SCHC compression for the recently defined CoAP

options Echo (see Section 2.3), Request-Tag (see Section 2.4),

EDHOC (see Section 2.5), as well as Q-Block1 and Q-Block2 (see

Section 3.1).

It updates the SCHC compression processing for the CoAP option

OSCORE (see Section 3.2), in the light of recent developments

related to the security protocol OSCORE as defined in

[I-D.ietf-core-oscore-key-update] and

[I-D.ietf-core-oscore-groupcomm].

It clarifies how the SCHC compression handles the CoAP payload

marker (see Section 4).

It defines the SCHC compression of CoAP headers in the presence

of CoAP proxies (see Section 5).

This document does not alter the core approach, design choices and

features of the SCHC compression applied to CoAP headers.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

related to the SCHC framework [RFC8724], the web-transfer protocol

CoAP [RFC7252], the security protocol OSCORE [RFC8613] and the use

of SCHC for CoAP [RFC8824].

2. CoAP Options

This section updates and extends Section 5 of [RFC8824], as to how

SCHC compresses some specific CoAP options. In particular,

Section 2.1 updates Section 5.4 of [RFC8824].

2.1. CoAP Option Size1, Size2, Proxy-URI, and Proxy-Scheme Fields

The SCHC Rule description MAY define sending some field values by

describing an empty TV, with the MO set to "ignore" and the CDA set

to "value-sent". A Rule MAY also use a "match-mapping" MO when there

are different options for the same FID. Otherwise, the Rule sets the

TV to the value, the MO to "equal", and the CDA to "not-sent".

2.2. CoAP Option Hop-Limit Field

The Hop-Limit field is an option defined in [RFC8768] that can be

used to detect forwarding loops through a chain of CoAP proxies. The

first proxy in the chain that understands the option includes it in

a received request with a proper value set, before forwarding the

request. Any following proxy that understands the option decrements

the option value and forwards the request if the new value is

different than zero, or returns a 5.08 (Hop Limit Reached) error

response otherwise.

When a packet uses the Hop-Limit option, SCHC compression MUST send

its content in the Compression Residue. The SCHC Rule describes an

empty TV with the MO set to "ignore" and the CDA set to "value-

sent".

2.3. CoAP Option Echo Field

The Echo field is an option defined in [RFC9175] that a server can

include in a response as a challenge to the client, and that the

client echoes back to the server in one or more requests. This

enables the server to verify the freshness of a request and to

cryptographically verify the aliveness of the client. Also, it

forces the client to demonstrate reachability at its claimed network

address.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8824#section-5
https://rfc-editor.org/rfc/rfc8824#section-5.4

When a packet uses the Echo option, SCHC compression MUST send its

content in the Compression Residue. The SCHC Rule describes an empty

TV with the MO set to "ignore" and the CDA set to "value-sent".

2.4. CoAP Option Request-Tag Field

The Request-Tag field is an option defined in [RFC9175] that the

client can set in request messages of block-wise operations, with

value an ephemeral short-lived identifier of the specific block-wise

operation in question. This allows the server to match message

fragments belonging to the same request operation and, if the server

supports it, to reliably process simultaneous block-wise request

operations on a single resource. If requests are integrity

protected, this also protects against interchange of fragments

between different block-wise request operations.

When a packet uses the Request-Tag option, SCHC compression MUST

send its content in the Compression Residue. The SCHC Rule describes

an empty TV with the MO set to "ignore" and the CDA set to "value-

sent".

2.5. CoAP Option EDHOC Field

The EDHOC field is an option defined in [I-D.ietf-core-oscore-edhoc]

that a client can include in a request, in order to perform an

optimized, shortened execution of the authenticated key

establishment protocol EDHOC [I-D.ietf-lake-edhoc]. Such a request

conveys both the final EDHOC message and actual application data,

where the latter is protected with OSCORE [RFC8613] using a Security

Context derived from the result of the current EDHOC execution.

The option occurs at most once and is always empty. The SCHC Rule

MUST describe an empty TV, with the MO set to "equal" and the CDA

set to "not-sent".

3. SCHC Compression of CoAP Extensions

This section updates and extends Section 6 of [RFC8824], as to how

SCHC compresses some specific CoAP options providing protocol

extensions. In particular, Section 3.1 updates Section 6.1 of

[RFC8824], while Section 3.2 updates Section 6.4 of [RFC8824].

3.1. Block

When a packet uses a Block1 or Block2 option [RFC7959] or a Q-Block1

or Q-Block2 option [RFC9177], SCHC compression MUST send its content

in the Compression Residue. The SCHC Rule describes an empty TV with

the MO set to "ignore" and the CDA set to "value-sent". The Block1,

Block2, Q-Block1 and Q-Block2 options allow fragmentation at the

CoAP level that is compatible with SCHC fragmentation. Both

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8824#section-6
https://rfc-editor.org/rfc/rfc8824#section-6.1
https://rfc-editor.org/rfc/rfc8824#section-6.4

fragmentation mechanisms are complementary, and the node may use

them for the same packet as needed.

3.2. OSCORE

The security protocol OSCORE [RFC8613] provides end-to-end

protection for CoAP messages. Group OSCORE

[I-D.ietf-core-oscore-groupcomm] builds on OSCORE and defines end-

to-end protection of CoAP messages in group communication

[I-D.ietf-core-groupcomm-bis]. This section describes how SCHC Rules

can be applied to compress messages protected with OSCORE or Group

OSCORE.

Figure 1 shows the OSCORE option value encoding, which was

originally defined in Section 6.1 of [RFC8613] and has been extended

in [I-D.ietf-core-oscore-key-update]

[I-D.ietf-core-oscore-groupcomm]. The first byte of the OSCORE

option value specifies the content of the OSCORE option using flags,

as follows.

As defined in Section 4.1 of [I-D.ietf-core-oscore-key-update],

the eight least significant bit, when set, indicates that the

OSCORE option includes a second byte of flags. The seventh least

significant bit is currently unassigned.

As defined in Section 5 of [I-D.ietf-core-oscore-groupcomm], the

sixth least significant bit, when set, indicates that the message

including the OSCORE option is protected with the group mode of

Group OSCORE (see Section 8 of [I-D.ietf-core-oscore-groupcomm]).

When not set, the bit indicates that the message is protected

either with OSCORE, or with the pairwise mode of Group OSCORE

(see Section 9 of [I-D.ietf-core-oscore-groupcomm]), while the

specific OSCORE Security Context used to protect the message

determines which of the two cases applies.

As defined in Section 6.1 of [RFC8613], bit h, when set,

indicates the presence of the kid context field in the option.

Also, bit k, when set, indicates the presence of a kid field.

Finally, the three least significant bits form the field n, which

indicates the length of the piv (Partial Initialization Vector)

field in bytes. When n = 0, no piv is present.

Assuming the presence of a single flag byte, this is followed by the

piv field, the kid context field, and the kid field, in that order.

Also, if present, the kid context field's length (in bytes) is

encoded in the first byte, denoted by "s".

¶

¶

¶

*

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc8613#section-6.1
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-update-04#section-4.1
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-17#section-5
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-17#section-8
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-17#section-9
https://rfc-editor.org/rfc/rfc8613#section-6.1

Figure 1: OSCORE Option

Figure 2 shows the OSCORE option value encoding, with the second

byte of flags also present. As defined in Section 4.1 of

[I-D.ietf-core-oscore-key-update], the least significant bit d of

this byte, when set, indicates that two additional fields are

included in the option, following the kid context field (if any).

These two fields, namely x and nonce, are used when running the key

update protocol KUDOS defined in [I-D.ietf-core-oscore-key-update],

with x specifying the length of the nonce field in bytes as well as

the specific behavior to adopt during the KUDOS execution. In

particular, the figure provides the breakdown of the x field, where

its three least significant bits form the sub-field m, which

specifies the size of nonce in bytes, minus 1.

 0 1 2 3 4 5 6 7 <--------- n bytes ------------->

+-+-+-+-+-+-+-+-+---------------------------------+

|0 0 0|h|k| n | Partial IV (if any) |

+-+-+-+-+-+-+-+-+---------------------------------+

| | |

|<-- CoAP -->|<------- CoAP OSCORE_piv ------> |

 OSCORE_flags

 <-- 1 byte --> <------ s bytes ----->

+--------------+----------------------+-----------------------+

| s (if any) | kid context (if any) | kid (if any) ... |

+--------------+----------------------+-----------------------+

| | |

|<-------- CoAP OSCORE_kidctx ------->|<-- CoAP OSCORE_kid -->|

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-update-04#section-4.1

Figure 2: OSCORE Option during a KUDOS execution

To better perform OSCORE SCHC compression, the Rule description

needs to identify the OSCORE option and the fields it contains.

Conceptually, it discerns up to six distinct pieces of information

within the OSCORE option: the flag bits, the piv, the kid context,

the x byte, the nonce, and the kid. The SCHC Rule splits the OSCORE

option into six Field Descriptors in order to compress them:

CoAP OSCORE_flags

CoAP OSCORE_piv

CoAP OSCORE_kidctx

CoAP OSCORE_x

CoAP OSCORE_nonce

CoAP OSCORE_kid

Figure 1 shows the OSCORE option format with the four fields

OSCORE_flags, OSCORE_piv, OSCORE_kidctx and OSCORE_kid superimposed

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 <----- n bytes ----->

+-+-+-+-+-+-+-+-+---+---+---+---+---+---+---+---+---------------------+

|1|0|0|h|k| n | 0 | 0 | 0 | 0 | 0 | 0 | 0 | d | Partial IV (if any) |

+-+-+-+-+-+-+-+-+---+---+---+---+---+---+---+---+---------------------+

| | |

|<------------------- CoAP -------------------->|<- CoAP OSCORE_piv ->|

 OSCORE_flags

 <- 1 byte -> <----------- s bytes ------------> <------ 1 byte ----->

+------------+----------------------------------+---------------------+

| s (if any) | kid context (if any) | x (if any) |

+------------+----------------------------------+---------------------+

| | |

|<------------- CoAP OSCORE_kidctx ------------>|<-- CoAP OSCORE_x -->|

 | |

 | 0 1 2 3 4 5 6 7 |

 | +-+-+-+-+-+-+-+-+ |

 | |0|0|b|p| m | |

 | +-+-+-+-+-+-+-+-+ |

 <----- m + 1 bytes ----->

+-------------------------+-----------------------+

| nonce (if any) | kid (if any) ... |

+-------------------------+-----------------------+

| | |

|<-- CoAP OSCORE_nonce -->|<-- CoAP OSCORE_kid -->|

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

on it. Also, Figure 2 shows the OSCORE option format with all the

six fields superimposed on it, with reference to a message exchanged

during an execution of the KUDOS key update protocol.

In both cases, the CoAP OSCORE_kidctx field directly includes the

size octet, s. In the latter case, the following applies.

For the x field, if both endpoints know the value, then the SCHC

Rule will describe a TV to this value, with the MO set to "equal"

and the CDA set to "not-sent". This models the case where the two

endpoints run KUDOS with a pre-agreed size of the nonce field, as

well as with a pre-agreed combination of its modes of operations,

as per the bits b and p of the m sub-field.

Otherwise, if the value is changing over time, the SCHC Rule will

set the MO to "ignore" and the CDA to "value-sent". The Rule may

also use a "match-mapping" MO to compress this field, in case the

two endpoints pre-agree on a set of alternative ways to run

KUDOS, with respect to the size of the nonce field and the

combination of the KUDOS modes of operation to use.

For the nonce field, the SCHC Rule describes an empty TV with the

MO set to "ignore" and the CDA set to "value-sent".

In addition, for the value of the nonce field, SCHC MUST NOT send

it as variable-length data in the Compression Residue, to avoid

ambiguity with the length of the nonce field encoded in the x

field. Therefore, SCHC MUST use the m sub-field of the x field to

define the size of the Compression Residue. SCHC designates a

specific function, "osc.x.m", that the Rule MUST use to complete

the Field Descriptor. During the decompression, this function

returns the length of the nonce field in bytes, as the value of

the three least significant bits of the m sub-field of the x

field, plus 1.

4. Compression of the CoAP Payload Marker

As originally intended in [RFC8824], the following applies with

respect to the 0xFF payload marker. A SCHC compression rule for CoAP

includes all the expected CoAP options, therefore the payload marker

does not have to be specified.

4.1. Without End-to-End Security

If the CoAP message to compress with SCHC is not going to be

protected with OSCORE and includes a payload, then the 0xFF payload

marker MUST NOT be included in the compressed message, which is

composed of the Compression RuleID, the Compression Residue (if

any), and the CoAP payload.

¶

¶

*

¶

¶

*

¶

¶

¶

¶

After having decompressed an incoming message, the recipient

endpoint MUST prepend the 0xFF payload marker to the CoAP payload,

if any was present after the consumed Compression Residue.

4.2. With End-to-End Security

If the CoAP message has to be protected with OSCORE, the same

rationale described in Section 4.1 applies to both the Inner SCHC

Compression and the Outer SCHC Compression defined in Section 7.2 of

[RFC8824]. That is:

After the Inner SCHC Compression of a CoAP message including a

payload, the payload marker MUST NOT be included in the input to

the AEAD Encryption, which is composed of the Inner Compression

RuleID, the Inner Compression Residue (if any), and the CoAP

payload.

The Outer SCHC Compression takes as input the OSCORE-protected

message, which always includes a payload (i.e., the OSCORE

Ciphertext) preceded by the payload marker.

After the Outer SCHC Compression, the payload marker MUST NOT be

included in the final compressed message, which is composed of

the Outer Compression RuleID, the Outer Compression Residue (if

any), and the OSCORE Ciphertext.

After having completed the Outer SCHC Decompression of an incoming

message, the recipient endpoint MUST prepend the 0xFF payload marker

to the OSCORE Ciphertext.

After having completed the Inner SCHC Decompression of an incoming

message, the recipient endpoint MUST prepend the 0xFF payload marker

to the CoAP payload, if any was present after the consumed

Compression Residue.

5. CoAP Header Compression with Proxies

Building on [RFC8824], this section clarifies how SCHC Compression/

Decompression is performed when CoAP proxies are deployed. The

following refers to the origin client and origin server as

application endpoints.

5.1. Without End-to-End Security

In case OSCORE is not used end-to-end between client and server, the

SCHC processing occurs hop-by-hop, by relying on SCHC Rules that are

consistently shared between two adjacent hops.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8824#section-7.2

In particular, SCHC is used as defined below.

The sender application endpoint compresses the CoAP message, by

using the SCHC Rules that it shares with the next hop towards the

recipient application endpoint. The resulting, compressed message

is sent to the next hop towards the recipient application

endpoint.

Each proxy decompresses the incoming compressed message, by using

the SCHC Rules that it shares with the (previous hop towards the)

sender application endpoint.

Then, the proxy compresses the CoAP message to be forwarded, by

using the SCHC Rules that it shares with the (next hop towards

the) recipient application endpoint.

The resulting, compressed message is sent to the (next hop

towards the) recipient application endpoint.

The recipient application endpoint decompresses the incoming

compressed message, by using the SCHC Rules that it shares with

the previous hop towards the sender application endpoint.

5.2. With End-to-End Security

In case OSCORE is used end-to-end between client and server (see

Section 7.2 of [RFC8824]), the following applies.

The SCHC processing occurs end-to-end as to the Inner SCHC

Compression/Decompression, by relying on Inner SCHC Rules that are

consistently shared between the two application endpoints acting as

OSCORE endpoints and sharing the used OSCORE Security Context.

Instead, the SCHC processing occurs hop-by-hop as to the Outer SCHC

Compression/Decompression, by relying on Outer SCHC Rules that are

consistently shared between two adjacent hops.

In particular, SCHC is used as defined below.

The sender application endpoint performs the Inner SCHC

Compression on the original CoAP message, by using the Inner SCHC

Rules that it shares with the recipient application endpoint.

Following the AEAD Encryption of the compressed input obtained

from the previous step, the sender application endpoint performs

the Outer SCHC Compression on the resulting OSCORE-protected

message, by using the Outer SCHC Rules that it shares with the

next hop towards the recipient application endpoint.

¶

*

¶

*

¶

¶

¶

*

¶

¶

¶

¶

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc8824#section-7.2

The resulting, compressed message is sent to the next hop towards

the recipient application endpoint.

Each proxy performs the Outer SCHC Decompression on the incoming

compressed message, by using the SCHC Rules that it shares with

the (previous hop towards the) sender application endpoint.

Then, the proxy performs the Outer SCHC Compression of the

OSCORE-protected message to be forwarded, by using the SCHC Rules

that it shares with the (next hop towards the) recipient

application endpoint.

The resulting, compressed message is sent to the (next hop

towards the) recipient application endpoint.

The recipient application endpoint performs the Outer SCHC

Decompression on the incoming compressed message, by using the

Outer SCHC Rules that it shares with the previous hop towards the

sender application endpoint.

Then, the recipient application endpoint performs the AEAD

Decryption of the OSCORE-protected message obtained from the

previous step.

Finally, the recipient application endpoint performs the Inner

SCHC Decompression on the compressed input obtained from the

previous step, by using the Inner SCHC rules that it shares with

the sender application endpoint. The result is the original CoAP

message produced by the sender application endpoint.

6. Examples of CoAP Header Compression with Proxies

TBD

7. Security Considerations

The security considerations discussed in [RFC8724] and [RFC8824]

continue to apply. When SCHC is used in the presence of CoAP

proxies, the security considerations discussed in Section 11.2 of

[RFC7252] continue to apply. When SCHC is used with OSCORE, the

security considerations discussed in [RFC8613] continue to apply.

The security considerations in [RFC8824] specifically discuss how

the use of SCHC for CoAP when OSCORE is also used may result in

(more frequently) triggering key-renewal operations for the two

endpoints. This can be due to an earlier exhaustion of the OSCORE

Sender Sequence Number space, or to the installation of new

compression Rules on one of the endpoints.

¶

*

¶

¶

¶

*

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7252#section-11.2

[I-D.ietf-core-oscore-edhoc]

[I-D.ietf-core-oscore-groupcomm]

[I-D.ietf-core-oscore-key-update]

[RFC2119]

[RFC7252]

[RFC7959]

In either case, the two endpoints can run the key update protocol

KUDOS defined in [I-D.ietf-core-oscore-key-update], as the

recommended method to update their shared OSCORE Security Context.

8. IANA Considerations

This document has no actions for IANA.

9. References

9.1. Normative References

Palombini, F., Tiloca, M., Höglund, R.,

Hristozov, S., and G. Selander, "Using EDHOC with CoAP

and OSCORE", Work in Progress, Internet-Draft, draft-

ietf-core-oscore-edhoc-07, 13 March 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-core-oscore-

edhoc-07>.

Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,

and J. Park, "Group OSCORE - Secure Group Communication

for CoAP", Work in Progress, Internet-Draft, draft-ietf-

core-oscore-groupcomm-17, 20 December 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-core-oscore-

groupcomm-17>.

Höglund, R. and M. Tiloca, "Key

Update for OSCORE (KUDOS)", Work in Progress, Internet-

Draft, draft-ietf-core-oscore-key-update-04, 13 March

2023, <https://datatracker.ietf.org/doc/html/draft-ietf-

core-oscore-key-update-04>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in

the Constrained Application Protocol (CoAP)", RFC 7959,

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-edhoc-07
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-edhoc-07
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-edhoc-07
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-17
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-17
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-17
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-update-04
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-key-update-04
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252

[RFC8174]

[RFC8613]

[RFC8724]

[RFC8768]

[RFC8824]

[RFC9175]

[RFC9177]

[I-D.ietf-core-groupcomm-bis]

DOI 10.17487/RFC7959, August 2016, <https://www.rfc-

editor.org/info/rfc7959>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and

JC. Zuniga, "SCHC: Generic Framework for Static Context

Header Compression and Fragmentation", RFC 8724, DOI

10.17487/RFC8724, April 2020, <https://www.rfc-

editor.org/info/rfc8724>.

Boucadair, M., Reddy.K, T., and J. Shallow, "Constrained

Application Protocol (CoAP) Hop-Limit Option", RFC 8768,

DOI 10.17487/RFC8768, March 2020, <https://www.rfc-

editor.org/info/rfc8768>.

Minaburo, A., Toutain, L., and R. Andreasen, "Static

Context Header Compression (SCHC) for the Constrained

Application Protocol (CoAP)", RFC 8824, DOI 10.17487/

RFC8824, June 2021, <https://www.rfc-editor.org/info/

rfc8824>.

Amsüss, C., Preuß Mattsson, J., and G. Selander,

"Constrained Application Protocol (CoAP): Echo, Request-

Tag, and Token Processing", RFC 9175, DOI 10.17487/

RFC9175, February 2022, <https://www.rfc-editor.org/info/

rfc9175>.

Boucadair, M. and J. Shallow, "Constrained Application

Protocol (CoAP) Block-Wise Transfer Options Supporting

Robust Transmission", RFC 9177, DOI 10.17487/RFC9177,

March 2022, <https://www.rfc-editor.org/info/rfc9177>.

9.2. Informative References

Dijk, E., Wang, C., and M. Tiloca,

"Group Communication for the Constrained Application

Protocol (CoAP)", Work in Progress, Internet-Draft,

draft-ietf-core-groupcomm-bis-08, 11 January 2023,

https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8768
https://www.rfc-editor.org/info/rfc8768
https://www.rfc-editor.org/info/rfc8824
https://www.rfc-editor.org/info/rfc8824
https://www.rfc-editor.org/info/rfc9175
https://www.rfc-editor.org/info/rfc9175
https://www.rfc-editor.org/info/rfc9177

[I-D.ietf-lake-edhoc]

<https://datatracker.ietf.org/doc/html/draft-ietf-core-

groupcomm-bis-08>.

Selander, G., Mattsson, J. P., and F.

Palombini, "Ephemeral Diffie-Hellman Over COSE (EDHOC)",

Work in Progress, Internet-Draft, draft-ietf-lake-

edhoc-19, 3 February 2023, <https://datatracker.ietf.org/

doc/html/draft-ietf-lake-edhoc-19>.

Appendix A. YANG data model

TBD

Acknowledgments

The authors sincerely thank Göran Selander for his comments and

feedback.

The work on this document has been partly supported by the H2020

projects SIFIS-Home (Grant agreement 952652) and ARCADIAN-IoT (Grant

agreement 101020259).

Authors' Addresses

Marco Tiloca

RISE AB

Isafjordsgatan 22

SE-16440 Kista

Sweden

Email: marco.tiloca@ri.se

Laurent Toutain

IMT Atlantique

CS 17607, 2 rue de la Chataigneraie

35576 Cesson-Sevigne Cedex

France

Email: Laurent.Toutain@imt-atlantique.fr

Ivan Martinez

IMT Atlantique

CS 17607, 2 rue de la Chataigneraie

35576 Cesson-Sevigne Cedex

France

Email: ivanmarinomartinez@gmail.com

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-bis-08
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-19
mailto:marco.tiloca@ri.se
mailto:Laurent.Toutain@imt-atlantique.fr
mailto:ivanmarinomartinez@gmail.com

	Clarifications and Updates on using Static Context Header Compression (SCHC) for the Constrained Application Protocol (CoAP)
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. CoAP Options
	2.1. CoAP Option Size1, Size2, Proxy-URI, and Proxy-Scheme Fields
	2.2. CoAP Option Hop-Limit Field
	2.3. CoAP Option Echo Field
	2.4. CoAP Option Request-Tag Field
	2.5. CoAP Option EDHOC Field

	3. SCHC Compression of CoAP Extensions
	3.1. Block
	3.2. OSCORE

	4. Compression of the CoAP Payload Marker
	4.1. Without End-to-End Security
	4.2. With End-to-End Security

	5. CoAP Header Compression with Proxies
	5.1. Without End-to-End Security
	5.2. With End-to-End Security

	6. Examples of CoAP Header Compression with Proxies
	7. Security Considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. YANG data model
	Acknowledgments
	Authors' Addresses

