
TLS Working Group M. Tiloca
Internet-Draft L. Seitz
Intended status: Standards Track RISE SICS AB
Expires: September 6, 2018 M. Hoeve
 ENCS
 O. Bergmann
 Universitaet Bremen TZI
 March 05, 2018

Extension for protecting (D)TLS handshakes against Denial of Service
draft-tiloca-tls-dos-handshake-02

Abstract

 This document describes an extension for TLS and DTLS to protect the
 server from Denial of Service attacks against the handshake protocol,
 carried out by an on-path adversary. The extension includes a nonce
 and a Message Authentication Code (MAC) over that nonce, encoded as a
 Handshake Token that a Trust Anchor entity computes and provides to
 the client. The server registered at the Trust Anchor verifies the
 MAC to determine whether continuing or aborting the handshake.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Tiloca, et al. Expires September 6, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft (D)TLS extension against Denial of Service March 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 3

2. DoS Protection Extension 4
2.1. Extension Type . 4
2.2. Extension Data . 4

3. Protocol overview . 5
4. Client to Trust Anchor 6
5. Client to Server . 7
6. Server Processing . 8
7. Replay Protection . 8
8. Session Resumption . 10
9. Security Considerations 11
9.1. Security Effectiveness 11
9.2. Trust Anchor as Target 12
9.3. Renewal of Long-Term Key K_M 12
9.4. Rate Limit to Nonce Release 13

10. IANA Considerations . 13
11. Acknowledgments . 13
12. References . 13
12.1. Normative References 13
12.2. Informative References 14

 Authors' Addresses . 14

1. Introduction

 Servers running TLS [RFC5246][I-D.ietf-tls-tls13] and DTLS
 [RFC6347][I-D.ietf-tls-dtls13] are vulnerable to Denial of Service
 (DoS) attacks during the very first step of the handshake protocol.
 That is, an adversary can repeatedly send ClientHello messages to the
 server and induce it to perform computations and execute handshakes,
 before stopping handshake executions and make the server hold state
 open.

 DTLS 1.2 as well as both TLS 1.3 and DTLS 1.3 provide the optional
 Cookie exchange as possible solution to mitigate this DoS attack.
 This mechanism is specifically oriented towards adversaries that are
 not on-path. That is, the Cookie exchange makes the attack more
 complicated to mount. However, a well determined and resourceful on-
 path adversary, able to spoof valid IP addresses, can still

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347

Tiloca, et al. Expires September 6, 2018 [Page 2]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 successfully perform the DoS attack, by intercepting the possible
 server response including the Cookie and then echoing it in the
 second ClientHello. This is in particular possible if the handshake
 does not use Pre-Shared Key exchange modes.

 More specifically, the handshake protocol is exposed to DoS attacks
 mounted by an on-path adversary, ranging minimally from a man-on-the-
 side (i.e. able to read and inject traffic, but not block) to
 maximally a full active adversary (i.e. able also to block traffic).

 Depending on the specific protocol version and the key establishment
 mode used in the handshake, the attack impact can range from a single
 reply triggered by invalid ClientHello messages, to the server
 performing advanced handshake steps with consequent setup of invalid
 half-open sessions. Especially if performed in a large-scale and
 distributed manner, this attack can thwart performance and service
 availability of (D)TLS servers. Moreover, the attack can be
 particularly effective in application scenarios where servers are
 resource-constrained devices running DTLS over low-power, low
 bandwidth and lossy networks.

 This specification describes a "dos_protection" extension for TLS and
 DTLS, included into ClientHello messages in order to mark them as
 valid and neutralize the DoS attacks mentioned above. In essence,
 the "dos_protection" extension includes a Handshake Token encoding a
 nonce and a Message Authentication Code (MAC) computed over that
 nonce. Upon receiving the ClientHello message, the server checks the
 MAC conveyed in the Handshake Token, and determines whether to either
 continue the handshake or to immediately abort it.

 The proposed method relies on a Trust Anchor (TA) entity, which is in
 a trust relation with the server, and authorizes the client to
 establish a secure session with the server. In particular, the Trust
 Anchor computes the MAC encoded in the Handshake Token, before
 providing the latter to the client.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with terms and concepts related
 to TLS 1.2 [RFC5246] and DTLS 1.2 [RFC6347], as well as to TLS 1.3
 [I-D.ietf-tls-tls13] and DTLS 1.3 [I-D.ietf-tls-dtls13], with
 particular reference to their respective handshake protocol.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347

Tiloca, et al. Expires September 6, 2018 [Page 3]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 This document refers also to the following terminology.

 o Trust Anchor (TA): a trusted third party with a security
 association with the (D)TLS server. Compared to each single
 (D)TLS server it is associated to, the Trust Anchor is usually
 equipped with significant larger amounts of resources, especially
 in terms of computing power and memory availability.

 o Master Key (K_M): a long-term symmetric key shared between the
 Trust Anchor and the server.

 o Handshake Token (T): piece of information provided by the Trust
 Anchor to a client intending to start a handshake with the server.
 The Handshake Token is opaque to the client, i.e. the semantics of
 the Handshake Token are intelligible only to the Trust Anchor and
 the server.

 o Nonce (N): an unsigned integer value used by the Trust Anchor to
 produce a fresh Handshake Token. The Trust Anchor maintains a
 pairwise counter separately for each associated server, in order
 to produce Nonce values.

2. DoS Protection Extension

2.1. Extension Type

 This specification extends the ExtensionType enum as follows:

 enum {
 ...,
 dos_protection(TBD),
 (65535)
 } ExtensionType;

2.2. Extension Data

 The "extension_data" field of the "dos_protection" extension contains
 the following information:

 struct {
 opaque handshake_token;
 } extension_data_content;

 The "handshake_token" field is intended to include the Handshake
 Token generated by the Trust Anchor. The Handshake Token encodes a
 nonce and a Message Authentication Code (MAC) computed over the
 nonce.

Tiloca, et al. Expires September 6, 2018 [Page 4]

Internet-Draft (D)TLS extension against Denial of Service March 2018

3. Protocol overview

 Before becoming fully operational, the server S registers at the TA
 through a secure communication channel or other out-of-band means. A
 server is registered at one TA only, while the same TA can be
 associated to multiple servers.

 For each registered server S, the TA and S maintain a pairwise
 counter z_S, associated to that server and encoded as an unsigned
 integer. Upon S's registration, S and the TA initialize z_S to 0 and
 establish a long-term symmetric key K_M. The specific means to
 establish K_M are out of the scope of this specification.

 The rest of this document refers to H as a hash function and to an
 HMAC [RFC2104] relying on H. The TA and the server MUST support the
 hash function SHA-256.

 Figure 1 shows the messages exchanged between the client (C), the
 Trust Anchor (TA) and the server (S).

 C TA S
 | | |
 | | { Shared key K_M } |
 | | |
 | --- Request handshake with S ---> | |
 (1) | | |
 | <------- Handshake Token -------- | |
 | | |
 --- | | |
 | |
 | ClientHello with "dos_protection" extension |
 (2) | ---> |
 | Including the Handshake Token |
 | |
 --- | | |
 | | |
 | |
 (3) | [<-------------- Next handshake steps -------------->] |
 | |
 | | |

 Figure 1: Protocol Overview

 Step (1) concerns a client C that intends to start a (D)TLS session
 with the server S. That is, C contacts the TA and specifies its
 intention to start a (D)TLS handshake with S. The client C can rely
 on services such as [I-D.ietf-core-resource-directory] to know what
 is the specific TA associated to S. All communications between C and

https://datatracker.ietf.org/doc/html/rfc2104

Tiloca, et al. Expires September 6, 2018 [Page 5]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 the TA must be secured, ensuring integrity, source authentication,
 confidentiality and replay protection of exchanged messages. The
 specific means to secure communications between C and the TA are out
 of the scope of this specification.

 The TA must verify that C is authorized to establish a (D)TLS session
 with S. To this end, the TA can directly authorize the client, or
 expect the client to upload authorization evidence previously
 obtained from a trusted entity. Compared with models based on
 proxies, this approach does not require particular adaptations to the
 communication between clients and servers. The specific
 authorization process of clients is out of the scope of this
 specification.

 In case of successful authorization, the TA provides C with a fresh
 Handshake Token, which encodes a nonce as well as a Message
 Authentication Code (MAC) computed over the nonce using the key K_M.
 The Handshake Token is opaque to the client. Besides, the client
 must consume this Handshake Token right away, and in particular
 before asking the TA for a new Handshake Token intended for the same
 server S.

 During Step (2), C prepares the ClientHello message addressed to S,
 including the "dos_protection" extension defined in Section 2. In
 particular, the extension includes the Handshake Token received by
 the TA, as content of the field "handshake_token". Then, C sends the
 ClientHello message to S. The overall content and format of the
 ClientHello message depend on the specific version of (D)TLS.

 Upon receiving the ClientHello message, the server S retrieves the
 Handshake Token from the "dos_protection" extension. Then, S relies
 on the nonce included in the Handshake Token to check that the
 ClientHello message is not a replay. After that, S uses the key K_M
 to recompute the MAC, and checks it against the MAC encoded in the
 received Handshake Token.

 In case the ClientHello message is fresh and the MAC is valid, S
 continues to Step (3), i.e., it proceeds with the handshake with C.
 Otherwise, S discards the ClientHello message and aborts the
 handshake.

4. Client to Trust Anchor

 The client C requests from the TA an authorization to open a new
 (D)TLS session with the server S. That is, this step does not take
 place if C intends to resume a (D)TLS session previously established
 with S. Considerations about session resumption are provided in

Section 8.

Tiloca, et al. Expires September 6, 2018 [Page 6]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 In case of successful authorization, the TA selects the nonce N as
 the current value of the pairwise counter z_S associated to S. Then,
 the TA performs the following actions.

 1. It sets the variable token_nonce to the nonce N.

 2. It computes a MAC as the output of HMAC(K_M, H(token_nonce)).

 3. It builds a Handshake Token including token_nonce and the MAC.

 After that, the TA provides the Handshake Token to C, and increments
 the counter z_S by 1.

 The TA handles a wrap-around of the counter z_S by renewing the
 Master Key K_M as described in Section 9.3.

5. Client to Server

 This section considers a client C intending to establish a new (D)TLS
 session with S. Considerations about session resumption are provided
 in Section 8.

 Once it has received the Handshake Token from the TA, the client C
 must consume it right away, by including it in a ClientHello message
 addressed to the server S. In particular, the client C must consume
 this Handshake Token before asking the TA for a new one intended for
 the same server S. The client C considers the Handshake Token
 consumed, and hence discards it, once received a valid ServerHello
 message during the same handshake with the server S.

 Furthermore, the client discards a Handshake Token also in case of
 handshake abortion due to too many retransmissions of a same
 ClientHello message. In such a case, the client must ask the TA for
 a new, i.e. fresh, Handshake Token and start over a new handshake
 with the server S.

 When preparing the ClientHello message, the client C proceeds as
 follows.

 1. It builds the "dos_protection" extension defined in Section 2.

 2. It includes the Handshake Token received from the TA in the
 "handshake_token" field of the "dos_protection" extension.

 3. It includes the "dos_protection" extension into the ClientHello
 message, consistently with what is mandated and recommended by
 the specific version of (D)TLS.

Tiloca, et al. Expires September 6, 2018 [Page 7]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 Once the ClientHello message has been completely prepared, C
 transmits it to S. Note that C retransmits exactly the same
 "dos_protection" extension from this first ClientHello message, in
 case it sends a second ClientHello message as a reply to a
 HelloVerifyRequest in DTLS 1.2 or a HelloRetryRequest in (D)TLS 1.3.

6. Server Processing

 This section considers a server S receiving a ClientHello message
 from C for initiating a new (D)TLS session. Considerations on
 session resumption are provided in Section 8.

 A server MAY require clients to send a valid "dos_protection"
 extension. A server requiring this MUST respond to a ClientHello
 lacking a "dos_protection" extension by terminating the handshake,
 with a "missing_extension" alert if the client has shown support for
 (D)TLS 1.3, or a "handshake_failure" alert otherwise.

 Upon receiving the first ClientHello message from C, the server S
 retrieves the Handshake Token from the "handshake_token" field of the
 "dos_protection" extension.

 Then, the server S MUST check that the ClientHello message is not a
 replay. Section 7 of this specification describes a possible method
 to perform the anti-replay check, based on the nonce encoded in the
 Handhshake Token. If the ClientHello message is found to be not
 fresh, then S discards it and terminates the handshake with a
 "handshake_failure" alert.

 If the ClientHello message is found to be fresh, then S performs the
 following actions.

 1. It retrieves token_nonce from the Handshake Token.

 2. It computes a MAC as the output of HMAC(K_M, H(token_nonce)).

 If the computed MAC differs from the MAC encoded in the Handshake
 Token, S discards the ClientHello message and terminates the
 handshake with a "handshake_failure" alert. Otherwise, S continues
 performing the handshake with C.

7. Replay Protection

 This section describes a possible method to perform anti-replay
 checks on received ClientHello messages, based on the nonce encoded
 in the Handshake Token as token_nonce.

Tiloca, et al. Expires September 6, 2018 [Page 8]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 The server S maintains a sliding window W of size A, as a pair {w,
 w_b}, where w is an A-bit vector and w_b indicates the current left
 bound of W. That is, w_b indicates the lowest value that S can
 accept as the nonce N encoded in the Handshake Token as token_nonce.
 Upon startup, S sets w_b to 0 and all bits in w to 0.

 Upon receiving a ClientHello message for establishing a new (D)TLS
 session, the server S considers the nonce N encoded in the Handshake
 Token as token_nonce, and performs the following checks. As an
 example, the following considers a 32-bit nonce N.

 o If N < w_b, then S discards the ClientHello message and terminates
 the handshake.

 o If w_b <= N < min(w_b + A, 2^32), then S defines i = (N - w_b),
 and checks the i-th bit of vector w. If such bit is set to 1,
 i.e. the same nonce N has been already used, then S discards the
 ClientHello message and terminates the handshake. Instead, if
 such bit is set to 0, then S proceeds with processing the
 "dos_protection" extension as described in Section 6.

 o If (w_b + A) <= N < 2^32, then S proceeds with processing the
 "dos_protection" extension as described in Section 6.

 During this handshake execution, S discards any possible first
 ClientHello message including the same nonce N encoded in the
 Handshake Token as token_nonce.

 Once the handshake has been successfully completed, S checks whether
 the condition N >= w_b is still valid. In such a case, S updates the
 window W as follows.

 o If w_b <= N < min(w_b + A, 2^32), then S defines i = (N - w_b) and
 sets the i-th bit of vector w to 1, so marking N as used.
 Instead,

 o if (w_b + A) <= N < 2^32, then S defines w* = (N - A + 1) and
 updates vector w as w = w >> (w* - w_b), where '>>' is the
 unsigned right bit shift operator. After that, S updates w_b as
 w_b = w*. Finally, S defines i = (N - w_b) and sets the i-th bit
 of vector w to 1, so marking N as used.

 The window size A should be determined based on the expected
 frequency of new session establishments on the server S. Evidently,
 the larger the window, the more accurate is the replay protection,
 but the greater the memory overhead on the server side.

Tiloca, et al. Expires September 6, 2018 [Page 9]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 Furthermore, the window size A should take into account the time
 required for a client to request and get a Handshake Token from the
 TA, as well as to to deliver it to the (D)TLS server in the
 ClientHello message. This is necessary in order to avoid that the
 sliding window advances too fast, and hence that the (D)TLS server
 discards such ClientHello messages as stale.

8. Session Resumption

 In case a client C sends a ClientHello message asking to resume a
 session, the server S relies on the existing association with C and
 hence does not need a further assertion of client's validity from the
 TA. In addition, S can rely on the Client Hello Recording mechanism
 described in Section 8 of [I-D.ietf-tls-tls13], in order to perform
 anti-replay checks on ClientHello messages asking for session
 resumption.

 As a consequence, the "dos_protection" extension defined in Section 2
 is not strictly necessary in ClientHello messages sent for session
 resumption.

 However, Section 7.4.1.4 of [RFC5246] states that a client asking for
 session resumption SHOULD send the same extensions as it would if it
 was not attempting resumption. At the same time, it states that most
 extensions are relevant only when a new session is initiated, and
 hence the server would not process them in case of session
 resumption.

 In accordance with such guidelines, a server S can possibly instruct
 the TA to also provide requesting clients with a small number R of
 additional Resumption Tokens.

 In order to compute each of the Resumption Tokens for a same request
 from a given client, the TA MUST use the same nonce value N used to
 compute the Handshake Token (see Section 4). In particular, the TA
 computes the i-th Resumption Token, 0 <= i < R, as follows.

 1. It sets the variable token_nonce to (N + i), where '+' is the
 concatenate operator.

 2. It computes a MAC as the output of HMAC(K_M, H(token_nonce)).

 3. It builds the i-th Resumption Token including token_nonce and the
 MAC.

 Finally, the TA provides the requesting client with the Handshake
 Token and the additional Resumption Tokens. The client MUST use the
 Handshake Token during a handshake with S for session initiation, as

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4

Tiloca, et al. Expires September 6, 2018 [Page 10]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 described in Section 5. The client MUST use the i-th Resumption
 Token upon attempting the i-th resumption of that session. After it
 has used all the Resumption Tokens received from the TA, the client
 must assume that S does not support further resumptions of the same
 session.

 Upon receiving a ClientHello message from C asking to resume a
 session, the server S verifies the MAC encoded in the Resumption
 Token as described in Section 6. However, S does not rely on the
 "dos_protection" extension and the token_nonce in the Resumption
 Token to perform an anti-replay check.

 Further details about session resumption are defined in the (D)TLS
 specifications of the different respective versions.

9. Security Considerations

 This specification does not change the intended security properties
 of TLS and DTLS. Additional security aspects are discussed below.

9.1. Security Effectiveness

 The MAC encoded in the "dos_protection" extension as part of the
 Handshake Token is computed only over the 'token_nonce' part of the
 same Handshake Token. That is, a server S can actually assert the
 validity and freshness of the Handshake Token only, rather than of
 the whole ClientHello message.

 As a consequence, an on-path adversary can intercept ClientHello
 messages sent by legitimate clients, retrieve the "dos_protection"
 extension, and then use it inside forged ClientHello messages
 injected and addressed to the server. However, this practically
 displays negligible consequences in terms of additional impact on the
 server, as discussed in the following.

 On one hand, a man-on-the-side adversary, namely able to intercept
 and inject traffic but not block, can, with reasonable effort,
 exploit the limitation above in order to induce the server to
 negotiate more expensive cipher suites, which is fair to consider as
 a weak attack achievement. Furthermore, the injection of such forged
 ClientHello messages including a stolen "dos_protection" extension is
 anyway rate limited by the number of legitimate clients and the
 frequency of their handshake executions.

 On the other hand, a full active adversary, namely able to also block
 traffic, would not even bother to inject forged ClientHello messages
 including a stolen "dos_protection" extension. In fact, (s)he can
 more easily let the server process handshake messages from legitimate

Tiloca, et al. Expires September 6, 2018 [Page 11]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 clients during handhshake early phases, and later on block specific
 client messages during handshake advanced phases, so leaving the
 server with several half-open sessions and open states. Again, this
 is anyway rate limited by the number of legitimate clients and the
 frequency of their handshake executions.

9.2. Trust Anchor as Target

 Communications between clients and the TA may be secured by means of
 (D)TLS, with the TA acting as server. In such a case, the TA becomes
 also a target for the DoS attack addressed in this specification.

 On the other hand, TAs are expected to be equipped with plentiful of
 resources, i.e. in significant larger amounts than each of the
 associated (D)TLS servers. That is, given a class of adversary
 targeting a number of (D)TLS servers, the corresponding TA is
 practically not a feasible target for that adversary.

 Besides, while it is infeasible to expect a considerably high number
 of (resource-contrained) (D)TLS servers to be robust against DoS by
 construction, it is instead feasible to have relatively few deployed
 TAs which are able to endure this attack when carried out against
 them. This might in turn encourage an adversary to rather target a
 TA, in order to indirectly make the (D)TLS servers unavailable to
 serve clients. However, as discussed above, a class of adversary
 targeting a (D)TLS server is not supposed to have sufficient
 resources to effectively compromise the availability of the
 corresponding TA.

 Furthermore, a typical starting point for an adversary consists in
 identifying the set of victim servers, as belonging to the same
 application/administrative domain(s) or network segment(s). Hence,
 the adversary would be motivated in targeting the TA(s) associated to
 the (D)TLS servers in those segments. As an additional deterrent,
 (D)TLS servers in a same segment or domain can thus be registered at
 different TAs, in order to further reduce the feasibility and spread
 the effectiveness of attacks rather addressed against those TAs.

9.3. Renewal of Long-Term Key K_M

 While it can practically take a long amount of time, the pairwise
 counter z_S maintained by the TA and associated to S eventually wraps
 around. When this happens, the TA MUST revoke the key K_M shared
 with S, in order to not reuse {K_M, N} pairs when building Handshake
 Tokens for requesting clients.

 In particular, when the counter z_S wraps-around, the TA MUST perform
 the following actions.

Tiloca, et al. Expires September 6, 2018 [Page 12]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 1. It stops accepting requests related to S from clients.

 2. It securely generates a new long-term key K_M and securely
 provides it to S.

 3. It resumes serving requests related to S from clients, using the
 new K_M to compute MACs when building Handshake Tokens.

9.4. Rate Limit to Nonce Release

 It is RECOMMENDED that the TA does not release Handshake Tokens to
 clients beyond a maximum rate. This prevents a client with
 legitimate credentials from quickly consuming the nonce space
 associated to S, and thus making the TA unable to serve other
 clients.

10. IANA Considerations

 IANA is requested to allocate an entry to the existing TLS
 "ExtensionType" registry defined in [RFC5246] and originally created
 in [RFC4366], for dos_protection (TBD) defined in this document.

11. Acknowledgments

 The authors are sincerely thankful to Santiago Aragon, Rolf Blom and
 Eric Rescorla for their comments and feedback.

 The work on this document has been partly supported by the EU FP7
 project SEGRID (Grant Agreement no. 607109) and the EIT-Digital High
 Impact Initiative ACTIVE.

12. References

12.1. Normative References

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-22 (work in progress),
 November 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-24 (work in progress),
 February 2018.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-22
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-24

Tiloca, et al. Expires September 6, 2018 [Page 13]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.
 Amsuess, "CoRE Resource Directory", draft-ietf-core-

resource-directory-12 (work in progress), October 2017.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, DOI 10.17487/RFC4366, April 2006,
 <https://www.rfc-editor.org/info/rfc4366>.

Authors' Addresses

 Marco Tiloca
 RISE SICS AB
 Isafjordsgatan 22
 Kista SE-164 29
 Sweden

 Phone: +46 70 604 65 01
 Email: marco.tiloca@ri.se

https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-12
https://datatracker.ietf.org/doc/html/rfc4366
https://www.rfc-editor.org/info/rfc4366

Tiloca, et al. Expires September 6, 2018 [Page 14]

Internet-Draft (D)TLS extension against Denial of Service March 2018

 Ludwig Seitz
 RISE SICS AB
 Scheelevaegen 17
 Lund SE-223 70
 Sweden

 Phone: +46 70 349 92 51
 Email: ludwig.seitz@ri.se

 Maarten Hoeve
 ENCS
 Regulusweg 5
 The Hague 2516 AC
 The Netherlands

 Phone: +31 62 015 75 51
 Email: maarten.hoeve@encs.eu

 Olaf Bergmann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49 421 218 63904
 Email: bergmann@tzi.org

Tiloca, et al. Expires September 6, 2018 [Page 15]

