
Workgroup: Network Working Group

Internet-Draft:

draft-tjhai-ikev2-beyond-64k-limit-03

Published: 28 July 2022

Intended Status: Standards Track

Expires: 29 January 2023

Authors: CJ. Tjhai

Post-Quantum

T. Heider

genua GmbH

V. Smyslov

ELVIS-PLUS

Beyond 64KB Limit of IKEv2 Payloads

Abstract

The maximum Internet Key Exchange Version 2 (IKEv2) payload size is

limited to 64KB. This makes IKEv2 not usable for conservative post-

quantum cryptosystem whose public-key is larger than 64KB. This

document discusses the considerations and defines a mechanism to

exchange large post-quantum public keys and signatures in IKEv2.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Terminology

2. Proposed Solution Overview

3. Protocol Details

4. Operational Considerations

5. Denial of Service Considerations

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Alternative Approaches

A.1. Hash and URL

A.1.1. Key Exchange Payload

A.1.2. Certificate Payload

A.2. Incremental Transfer and Confirmation

Authors' Addresses

1. Introduction

Digital communications are secured by public-key cryptography

algorithms that rely on computational hardness assumptions such as

the difficulty in factoring large integers or that of finding the

discrete logarithm on an elliptic curve group or finite-field.

Recent advances in quantum computing, however, have caused some

concerns on the security of these assumptions. It is conjectured

that these hard computational problems can be solved in polynomial

time when sufficiently large quantum computers become available. The

concerns have prompted the National Institute of Standards and

Technology (NIST) to initiate a process to standardize one or more

public-key algorithms that are quantum-resistant. This family of

algorithms is known as post-quantum cryptography (PQC) algorithms.

It would be ideal if these cryptographic algorithms can be drop-in

replacements to the classical algorithms we currently use.

Unfortunately, almost all of the PQC algorithms have either public-

key, ciphertext or signature size that is many times larger than

their classical counterparts. One of the issues that this will

cause, in particular for UDP-based protocols such as IPsec, is

fragmentation of packets at IP layer. In the context of IPsec/IKEv2

post-quantum key exchange, the fragmentation issue can be addressed

by sending the post-quantum exchange data in IKE_INTERMEDIATE

[RFC9242], which is the intermediary state between IKE_SA_INIT and

IKE_AUTH. This is the approach taken in [I-D.ietf-ipsecme-ikev2-

multiple-ke] whereby a classical and one or more post-quantum key

exchanges are combined in order to establish security associations

that are resistant against quantum attack.

¶

¶

Because all public-key cryptography algorithms rely on computational

hardness assumptions, the confidence of a cryptographic algorithm is

an important consideration. An algorithm that has been well-studied

and field-tested is generally better trusted than newer ones.

Unfortunately, the confidence of PQC algorithms is relatively low.

All of the algorithms submitted to NIST post-quantum standardization

are based on new computational hardness assumptions and despite

being conjectured to be resistant to quantum computer attacks, they

have not been well cryptanalyzed compared to the classical

counterparts. An exception to this is the Goppa-code based McEliece

cryptosystem [McEliece] which has withstood years of cryptanalysis

since 1978 and still remains unbroken. The more efficient and CCA

secure version of McEliece cryptosystem, Classic McEliece [CM], is

one of the NIST PQC standardization candidates (at the time of

writing) [NIST]. Furthermore, this cryptosystem has also been

recommended for long-term confidentiality protection of data, see

[BSI] and [NLNCSA].

While there is interest in using McEliece cryptosystem, in

particular for information that needs to remain secure for a long

time, there is a challenge in integrating it with IKEv2 [RFC7296].

One characteristic of McElieces cryptosystem is the very asymmetric

size of its ciphertext and public-key. While its ciphertext is the

smallest compared to all other post-quantum key-establishment

algorithms submitted to NIST, the size of its public-key, however,

is the largest. The smallest public-key size of Classic McEliece is

255KB. This presents a problem if one were to use Classic McEliece

for key-establishment with IKEv2, as the maximum payload size

supported by IKEv2 is limited to 64KB. This document describes a

mechanism to support IKEv2 key-exchange with key size larger than

64KB, building on the works in [I-D.ietf-ipsecme-ikev2-multiple-ke]

and [RFC9242].

In addition, some post-quantum digital signature algorithms may also

have either public key size or signature size greater than 64 KB.

This makes them impossible to be used as a drop-in replacement for

classic signature algorithms in IKEv2.

This document is focused on providing a solution for using large

post-quantum algorithms related data (public keys and signatures) in

IKEv2. It is not a goal of this document to provide a generic

solution to transport large data blocks of arbitrary type in IKEv2.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119] and

[RFC8174].

¶

¶

¶

¶

¶

This document assumes familiarity with IKEv2 concept described in

[RFC7296].

2. Proposed Solution Overview

While the Length field in IKEv2 header has a size of 32 bits, so

that the maximum size of an IKEv2 message can theoretically reach 4

GB, the size of any individual payload inside a message is limited

to 64 KB due to the fact that the Payload Length field in generic

payload header consumes 16 bits only. This makes impossible to

transfer blocks of data greater than 64 KB, such as public keys of

some post-quantum key exchange methods or some post-quantum

signatures. In IKEv2 three types of payloads may contain large

amounts of data related to post-quantum algorithms:

Key Exchange (KE) payload in case of large public key of a post-

quantum key exchange method

Authentication (AUTH) payload in case of large signature of a

post-quantum signature algorithm

Certificate (CERT) payloads in case of large public key of a

post-quantum signature algorithm

This specification proposes the following solution to the problem:

when block of data of a particular type (public key, signature)

exceeds 64 KB in size, it is split into a series of chunks smaller

than 64 KB. Each chunk then is placed in its own payload, so that

the large block of data is eventually transferred in a series of

adjacent payloads of the same type. All these payloads MUST have the

same values in their headers (except for Next Payload and Payload

Length fields) and MUST be transferred adjacent to each other, so

that no other payload should appear between them.

This approach works well for KE and AUTH payloads, since only one

such large block is transferred in a message and there is no

ambiguity when it is split over multiple payloads. However, when

multiple certificates containing large public keys are transferred

and each of them is further splitted into several CERT payloads,

there must be a way to find boundaries between these certificates on

a receiving side. To solve this problem an empty CERT payload MUST

be inserted between other non-empty CERT payloads to mark boundaries

between individual certificates. Note that large certificates can

also be transferred using "Hash and URL" format (see Section 3.6 of

[RFC7296].

The resulting message would exceed 64 KB in size, so that it would

not fit into a single UDP datagram. Even if TCP transport [I-D.ietf-

ipsecme-rfc8229bis] is used, the size of any individual IKE message

in a TCP stream is still limited to 64 KB. For this reason, IKE

¶

¶

*

¶

*

¶

*

¶

¶

¶

Fragmentation [RFC7383] MUST be used regardless of the transport

protocol if peers are going to transfer large blocks of data. In the

case of TCP, the size of fragments is not related to path MTU and

can reach 64 KB.

Since IKE Fragmentation is mandatory with this extension and it only

can be used on encrypted IKE messages, large blocks of data cannot

be transferred in the IKE_SA_INIT exchange.

While mandatory IKE Fragmentation makes it possible to transfer

large blocks of data using UDP transport, in practice it may be

problematic for the following reason. When fragmenting large

messages the number of fragments would be high and all of them are

sent at once. If any of these fragment were lost, all the fragments

should be re-sent. In congested network environments this would have

a negative effect, worsening the congestion. Moreover, the number of

IKE message fragments is limited to 2^16. With typical size of IKE

message fragment equal to PMTU or less, this would limit the size of

a single large block of data to ~30-100 MB. While this is enough for

current applications of this specification, it may be a limitation

in the future.

TCP transport has built-in acknowledgement and congestion control

mechanisms and does not suffer from these problems. In addition,

since the size of IKE message fragments in case of TCP may be up to

64 KB, the size of a single large block of data can in theory reach

4 GB. However, [I-D.ietf-ipsecme-rfc8229bis] implies that if TCP is

used as transport for IKE, it is also used for ESP. Encapsulation

ESP in TCP has a lot of negative effects on performance and on ESP

functionality (see Section 10 of [I-D.ietf-ipsecme-rfc8229bis].

This specifications proposes a mixed transport mode as a solution to

the problem. In this mode, IKE uses TCP as its transport, while ESP

packets are still sent over IP or are encapsulated in UDP. The use

of mixed transport mode is optional and is negotiated in the

IKE_SA_INIT exchange.

3. Protocol Details

The initiator starts creating an IKEv2 SA by sending the IKE_SA_INIT

request message. If the initiator is going to transfer large blocks

of data (e.g. large public keys), then it should make some

preparations:

IKEV2_FRAGMENTATION_SUPPORTED notification MUST be included to

negotiate support for IKE Fragmentation

INTERMEDIATE_EXCHANGE_SUPPORTED notification MUST be included if

the initiator proposes key exchange methods with public keys

greater than 64 KB

¶

¶

¶

¶

¶

¶

*

¶

*

¶

If the initiator is going to use mixed transport mode then it

starts the IKE_SA_INIT request using UDP port 4500 and includes a

new status type notification IKE_OVER_TCP (<TBA by IANA>), which

has protocol 0, SPI size 0 and contains no data; if the initiator

starts the IKE_SA_INIT over TCP, then the mixed transport mode

cannot be used and this notification SHOULD NOT be included, it

MUST be ignored by the responder if it is still included in the

message

Note that UDP port 4500 (and not port 500) is used for the

IKE_SA_INIT messages, which is allowed by [RFC7296]. Using port 4500

allows return routability check for UDP messages to be carried out

and ensures ESP packets can get through if they are UDP

encapsulated.

The responder supporting this specification MUST agree on using IKE

Fragmentation by sending back IKEV2_FRAGMENTATION_SUPPORTED

notification. If it selects proposal with key exchange method having

public key greater than 64 KB, then it MUST agree on using the

IKE_INTERMEDIATE exchange by sending back

INTERMEDIATE_EXCHANGE_SUPPORTED notification.

If the initiator proposed using mixed transport mode by initiating

the IKE_SA_INIT exchange over UDP port 4500 and including

IKE_OVER_TCP notification and the responder supports this mode and

is willing to use it, then it sends this notification back in the

IKE_SA_INIT response. In this case the initiator MUST switch to TCP

using destination port 4500 in the next exchange (IKE_INTERMEDIATE

or IKE_AUTH) and the responder MUST be prepared to receive the next

exchange request message on TCP port 4500. Once switched all

subsequent IKE exchanges MUST use TCP transport as described in [I-

D.ietf-ipsecme-rfc8229bis], but ESP packets MUST NOT be sent using

TCP, instead they are sent either over IP or using UDP

encapsulation, depending on the presence of NAT, which is determined

in the IKE_SA_INIT exchange. Note, that if NAT is detected and UDP

encapsulation of ESP is used, then NAT keepalive messages MUST be

sent by the peer that is behind NAT over UDP using ports from the

IKE_SA_INIT exchange, as defined in [RFC3948].

If the responder does not support mixed transport mode, then it

ignores the IKE_OVER_TCP notification and all subsequent IKE

exchanges will use UDP transport. Note, that in case the initiator

started the IKE_SA_INIT over TCP then the IKE_OVER_TCP notification

would not be included in the request message and there would be no

option for mixed transport mode.

*

¶

¶

¶

¶

¶

Once the IKE_SA_INIT exchange is completed, the peers continue with

the following exchanges: one or more IKE_INTERMEDITE exchanges in

case multiple key exchanges are negotiated or the IKE_AUTH exchange,

as shown below. Note that all messages containing large blocks of

data are sent fragmented using IKE Fragmentation mechanism, but they

are not shown here for the sake of simplicity.

Since the Payload Length field in the generic IKE payload header has

a size of 16 bits, it is impossible to set a proper value for it in

the Encrypted Payload header when it contains inner payloads with

total length greater than 64 KB. However, using IKE Fragmentation is

mandatory when transferring large blocks of data (even in case of

TCP transport) and with IKE Fragmentation, the Payload Length field

in the Encrypted payload is never transmitted. Instead, the IKE

message fragments that appear on the wire are limited to 64 KB in

size, so there is no problem with setting a proper value in the

Initiator Responder

HDR, SAi1, KEi1, Ni,

N(NAT_DETECTION_SOURCE_IP),

N(NAT_DETECTION_DESTINATION_IP),

N(IKEV2_FRAGMENTATION_SUPPORTED),

[N(INTERMEDIATE_EXCHANGE_SUPPORTED),]

[N(IKE_OVER_TCP)] --->

 HDR, SAr1, KEr1, Nr,

 N(NAT_DETECTION_SOURCE_IP),

 N(NAT_DETECTION_DESTINATION_IP),

 N(IKEV2_FRAGMENTATION_SUPPORTED),

 [N(INTERMEDIATE_EXCHANGE_SUPPORTED),]

 <--- [N(IKE_OVER_TCP)]

¶

¶

Initiator Responder

HDR, SK{KEi2.1, KEi2.2, KEi2.3, ...} --->

 <--- HDR, SK{KEr2.1, KEr2.2, ...}

HDR, SK{KEi3.1, KEi3.2, ...} --->

 <--- HDR, SK{KEr3.1, KEr3.2, ...}

 ...

HDR, SK{IDi, [IDr,] [CERTi1, CERTi2, ...]

[CERTREQ,] [IDr,] AUTHi1, AUTHi2, ...

SAi2, TSi, TSr} --->

 <--- HDR, SK{IDr, [CERTr1, CERTr2, ...]

 AUTHr1, AUTHr2, ...

 SAr2, TSi, TSr}

¶

Length field of Encrypted Fragment payloads. However, when

IKE_INTERMEDIATE exchanges are being authenticated, the content of

the Encrypted Payload before encryption and fragmentation is fed to

the prf. In this case if the size of the Encrypted payload content

exceeds 64 KB then the Payload Length field in the Encrypted Payload

header MUST be set to zero when fedding into the prf. On receipt it

MUST be checked that the total size of unencrypted payloads the

Encrypted Payload contains matches the size of the Encrypted payload

calculated from the size of the received message.

4. Operational Considerations

The IKE fragmentation does not require additional infrastructure,

however, there is non-zero probability of lost packets when sending

a large number of fragments over a UDP connection. Given a set of

fragments, when transmitted, each one of them is not individually

acknowledged and if any one of them is lost, the entire set will

have to be retransmitted. As a consequence, given the size of the

payload and also the potential of multiple retransmissions, there

may be a noticeable delay in establishing an security association

(SA), in particular in lossy network conditions. Therefore,

implementations MAY use a longer timeout value for the purpose of

dead-peer detection, but a balance needs to be struck as too large

of a value will open up security vulnerabilities as discussed in the

following section. In the unlikely event where there is a frequent

retransmission due to loss of fragments, implementations MAY send

the IKE messages over a TCP connection as specified in [I-D.ietf-

ipsecme-rfc8229bis]. If TCP is used as IKE transport, then using

mixed transport mode is RECOMMENDED to allow better ESP performance.

5. Denial of Service Considerations

Malicious peers may send a large number of fragments, but

incomplete, to the legitimate peer causing memory exhaustion. It is

RECOMMENDED that the strategies and recommendations described in

[RFC8019] be implemented to counter possible DoS attacks.

An alternative arrangement, if peers do not support [RFC8019], is to

allow the transfer of large block of data only after peers are

authenticated. In other words, key-establishment using large public-

key should not be done to establish an IKE SA, but it should only be

used to establish a Child SA or rekeying an IKE SA. In order to

protect IKE messages from quantum threats, multiple key-exchanges

using a combination of classical and PQC, as described in [I-D.ietf-

ipsecme-ikev2-multiple-ke] can be used. Nonetheless, this approach

has a limitation whereby if a digital signature scheme with large

public-key or signature payload is used, it is still susceptible to

DoS attacks.

¶

¶

¶

¶

[I-D.ietf-ipsecme-ikev2-multiple-ke]

[I-D.ietf-ipsecme-rfc8229bis]

[RFC2119]

[RFC3948]

*** More to be populated in the next version ***

6. Security Considerations

If TCP encapsulation is used, refer to the security considerations

in [I-D.ietf-ipsecme-rfc8229bis].

Downloading or transferring large amounts of data is an expensive

operation, bandwidth and memory wise. Consequently, implementations

should consider using a longer rekeying interval or SHOULD consider

relaxing forward secrecy requirements but using CCA-secure key-

establishment algorithms only. With chosen-ciphertext attack (CCA)-

secure schemes, there is no loss in security if the public-key is

reused.

7. IANA Considerations

This document defines a new Notify Message Type in the "Notify

Message Types - Status Types" registry:

8. References

8.1. Normative References

Tjhai, C., Tomlinson, M., Bartlett, G., Fluhrer, S.,

Geest, D. V., Garcia-Morchon, O., and V. Smyslov,

"Multiple Key Exchanges in IKEv2", Work in Progress,

Internet-Draft, draft-ietf-ipsecme-ikev2-multiple-ke-06,

13 June 2022, <https://www.ietf.org/archive/id/draft-

ietf-ipsecme-ikev2-multiple-ke-06.txt>.

Pauly, T. and V. Smyslov, "TCP

Encapsulation of IKE and IPsec Packets", Work in

Progress, Internet-Draft, draft-ietf-ipsecme-

rfc8229bis-07, June 2022, <https://www.ietf.org/archive/

id/draft-ietf-ipsecme-rfc8229bis-07.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", DOI 10.17487/RFC2119, BCP 14, RFC

2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.

Stenberg, "UDP Encapsulation of IPsec ESP Packets", RFC

3948, DOI 10.17487/RFC3948, January 2005, <https://

www.rfc-editor.org/info/rfc3948>.

¶

¶

¶

¶

<TBA> IKE_OVER_TCP¶

https://www.ietf.org/archive/id/draft-ietf-ipsecme-ikev2-multiple-ke-06.txt
https://www.ietf.org/archive/id/draft-ietf-ipsecme-ikev2-multiple-ke-06.txt
https://www.ietf.org/archive/id/draft-ietf-ipsecme-rfc8229bis-07.txt
https://www.ietf.org/archive/id/draft-ietf-ipsecme-rfc8229bis-07.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3948
https://www.rfc-editor.org/info/rfc3948

[RFC7296]

[RFC7383]

[RFC8174]

[RFC9242]

[BSI]

[CM]

[FIPS-202]

[McEliece]

[NIST]

[NLNCSA]

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.

Kivinen, "Internet Key Exchange Protocol Version 2

(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October

2014, <https://www.rfc-editor.org/info/rfc7296>.

Smyslov, V., "Internet Key Exchange Protocol Version 2

(IKEv2) Message Fragmentation", RFC 7383, DOI 10.17487/

RFC7383, November 2014, <https://www.rfc-editor.org/info/

rfc7383>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", DOI 10.17487/RFC8174, RFC 8174, BCP 14,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Smyslov, V., "Intermediate Exchange in the Internet Key

Exchange Protocol Version 2 (IKEv2)", RFC 9242, DOI

10.17487/RFC9242, May 2022, <https://www.rfc-editor.org/

info/rfc9242>.

8.2. Informative References

Federal Office for Information Security, "Cryptographic

Mechanisms: Recommendations and Key Lengths", 28 January

2022, <https://www.bsi.bund.de/SharedDocs/Downloads/EN/

BSI/Publications/TechGuidelines/TG02102/BSI-

TR-02102-1.pdf>.

Classic McEliece submission team, "Classic McEliece: a

submission to NIST's Post-Quantum Cryptography

Standardization Project", 2020, <https://

classic.mceliece.org/>.

National Institute of Standards and Technology, "SHA-3

Standard: Permutation-Based Hash and Extendable-Output

Functions", 2015, <https://doi.org/10.6028/NIST.FIPS.

202>.

McEliece, R. J., "A Public-key Cryptosystem based on

Algebraic Coding Theory", DSN Progress Report 42-44,

1978.

National Institute of Standards and Technology, "Post-

Quantum Cryptography Standardization", <https://

csrc.nist.gov/Projects/post-quantum-cryptography/post-

quantum-cryptography-standardization>.

National Cyber Security Centre, "Guidelines for quantum-

safe transport-layer encryption", 6 July 2022, <https://

www.ncsc.nl/binaries/ncsc/documenten/publicaties/2022/

https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9242
https://www.rfc-editor.org/info/rfc9242
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://classic.mceliece.org/
https://classic.mceliece.org/
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://www.ncsc.nl/binaries/ncsc/documenten/publicaties/2022/juli/guidelines-for-quantum-safe-transport-layer-encryption/guidelines-for-quantum-safe-transport-layer-encryption/Guidelines_for_PQC_-_Kyber.pdf
https://www.ncsc.nl/binaries/ncsc/documenten/publicaties/2022/juli/guidelines-for-quantum-safe-transport-layer-encryption/guidelines-for-quantum-safe-transport-layer-encryption/Guidelines_for_PQC_-_Kyber.pdf

[RFC8019]

juli/guidelines-for-quantum-safe-transport-layer-

encryption/guidelines-for-quantum-safe-transport-layer-

encryption/Guidelines_for_PQC_-_Kyber.pdf>.

Nir, Y. and V. Smyslov, "Protecting Internet Key Exchange

Protocol Version 2 (IKEv2) Implementations from

Distributed Denial-of-Service Attacks", RFC 8019, DOI

10.17487/RFC8019, November 2016, <https://www.rfc-

editor.org/info/rfc8019>.

Appendix A. Alternative Approaches

A.1. Hash and URL

[RFC7296] defines a mechanism whereby an authentication payload such

as a certificate can be encoded using a hash value and a URL. A peer

utilizes HTTP_CERT_LOOKUP_SUPPORTED Notify payload to indicate that

X.509 certificates are not transported in-band, instead the other

peer shall fetch the certificates from the given URL and verify its

integrity from the hash value. In this way, the peer needs to send

20 octets plus a variable length URL only over the wire, instead of

a few kilobytes of payload, which is useful in the event IKEv2

message fragmentation is not available.

Large public keys can be transported by reusing the same technique

and this can be done in two ways, as described below.

A.1.1. Key Exchange Payload

The Key Exchange Data field of IKEv2 Key Exchange Payload contains a

single format, which is a blob that is only meaningful to the

specified key exchange method. In order to support hash and URL

data, an encoding format needs to be specified on the header.

The reserved bit-field F above specifies the encoding format. If it

is 0, the Key Exchange Data is a blob as specified in RFC7296. On

the other hand if it is 1, the Key Exchange Data is in the form of

hash and URL format, whereby the hash value is the SHA3-256 digest

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Next Payload |C|F| RESERVED | Payload Length |

+-+

| Key Exchange Method | RESERVED |

+-+

| |

~ Key Exchange Data ~

| |

+-+

¶

https://www.ncsc.nl/binaries/ncsc/documenten/publicaties/2022/juli/guidelines-for-quantum-safe-transport-layer-encryption/guidelines-for-quantum-safe-transport-layer-encryption/Guidelines_for_PQC_-_Kyber.pdf
https://www.ncsc.nl/binaries/ncsc/documenten/publicaties/2022/juli/guidelines-for-quantum-safe-transport-layer-encryption/guidelines-for-quantum-safe-transport-layer-encryption/Guidelines_for_PQC_-_Kyber.pdf
https://www.ncsc.nl/binaries/ncsc/documenten/publicaties/2022/juli/guidelines-for-quantum-safe-transport-layer-encryption/guidelines-for-quantum-safe-transport-layer-encryption/Guidelines_for_PQC_-_Kyber.pdf
https://www.rfc-editor.org/info/rfc8019
https://www.rfc-editor.org/info/rfc8019

[FIPS-202] of the replaced value truncated to 20 octets and the URL

value is a variable length URL (in either http or https schema) that

resolves to the DER-encoded of the replaced value itself.

Because the hash and URL value is transported in a Key Exchange

Payload, it is possible to support the use-case of a single post-

quantum key-establishment with large public-key. This payload will

be sent as part of IKE_SA_INIT exchange and it will not require

IKE_INTERMEDIATE exchanges.

While using hash and URL method to transport large key-establishment

data requires minimal modification to IKEv2 protocol, there are

disadvantages from deployment point of view that may make this

method impractical. Firstly, an IKE peer that originates a hash and

URL value will also need to implement additional infrastructure so

that it can serve HTTP requests in order to allow the actual key-

establishment data to be fetched. While this may not be an issue for

Internet facing peers, in the context of road-warrior or remote-

access cases, the hash and URL value is initiated by an IKE peer

that is usually a device sitting behind a network address

translation (NAT) device and as such, it may not be able to run a

publicly reachable HTTP server infrastructure on the same device. An

possible solution for these cases is to publish the key-

establishment data to a separate server, which is not practical as

one cannot expect an IKE initiator to always have deployed an HTTP

server. Lastly, IKE peers are predominantly deployed at the network

edge where strict firewall rules are generally enforced. The need to

open up another port to serve HTTP requests may cause either

technical or policy complication that render this approach

unacceptable.

The hash and URL approach is vulnerable to (distributed) denial of

service attacks as an unauthenticated rogue peer may trick a

legitimate peer to fetch a large amount of random meaningless data

from a remote server. Implementations SHOULD NOT blindly download

all of the data in the given URL. Because a legitimate key-

establishment payload should be DER-encoded, they SHOULD download

the first few octets to determine the length of the ASN.1 structure

representing these octets, then only continue to download the

remaining decoded number of octets if the length is expected for the

chosen key-establishment algorithm. It should be noted that the

content of the data to be downloaded may be under attacker's control

and therefore even if the length is as expected, the content may be

meaningless bit that is of no use for key-establishment.

A.1.2. Certificate Payload

An alternative is to re-purpose Certificate Payload to carry the

hash and URL value of the post-quantum key-establishment data. At

¶

¶

¶

¶

the time of writing, the IANA registry defines two hash and URL

encoding values, namely X.509 certificate and X.509 certificate

bundle. In order to use this payload, a new encoding value for key

establishment data will be required.

Because a Certificate Payload is part of IKE_AUTH message, unlike

the previous approach, the hash and URL value of the key-

establishment data shall be transported via IKE_INTERMEDIATE

message. As such, it will not be able to support a single post-

quantum key-establishment with a large public-key case. Furthermore,

it is semantically incorrect to re-purpose Certificate Payload,

which is intended to carry authentication data, to transport key-

establishment data.

A.2. Incremental Transfer and Confirmation

As stated in Section 4 of [RFC7383], if any single fragment is lost,

the receiving peer will not be able to reassemble the original large

key-establishment payload. The above bulk transfer is susceptible to

this issue. There is another way to transfer these payload chunks

that is less susceptible to this, but at the cost of higher latency.

Instead of transferring in a bulk, each Key Exchange payload chunk

must be acknowledged prior to sending the subsequent chunk. As

before, the large key-establishment payload is split over several

Key Exchange payload chunks where each of them share the same Key

Exchange Method value. Each chunk is then sent to the peer using the

IKE_INTERMEDIATE message, and each one must be acknowledged by the

receiving peer before the subsequent chunk can be sent.

¶

¶

¶

In order to support key-encapsulation mechanism, the receiving peer

has to wait until the entire chunks are received before it can

respond with its own Key Exchange payload, which may not be large.

Authors' Addresses

CJ Tjhai

Post-Quantum

United Kingdom

Email: cjt@post-quantum.com

Tobias Heider

genua GmbH

Germany

Email: me@tobhe.de

Valery Smyslov

ELVIS-PLUS

PO Box 81

Moscow (Zelenograd)

124460

Russian Federation

Initiator Responder

HDR, SAi1, KEi1, Ni,

N(IKEV2_FRAGMENTATION_SUPPORTED)*,

N(INTERMEDIATE_EXCHANGE_SUPPORTED) --->

 HDR, SAr1, KEr1, Nr,

 N(IKEV2_FRAGMENTATION_SUPPORTED)*,

 <--- N(INTERMEDIATE_EXCHANGE_SUPPORTED)

HDR, SK{KEi2.1, ...} --->

 <--- HDR, SK{}

HDR, SK{KEi2.2, ...} --->

 <--- HDR, SK{}

HDR, SK{KEi2.3, ...} --->

 <--- HDR, SK{KEr2, ...}

HDR, SK{} --->

*: optional

¶

¶

mailto:cjt@post-quantum.com
mailto:me@tobhe.de

Phone: +7 495 276 0211

Email: svan@elvis.ru

tel:+7%20495%20276%200211
mailto:svan@elvis.ru

	Beyond 64KB Limit of IKEv2 Payloads
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Proposed Solution Overview
	3. Protocol Details
	4. Operational Considerations
	5. Denial of Service Considerations
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Alternative Approaches
	A.1. Hash and URL
	A.1.1. Key Exchange Payload
	A.1.2. Certificate Payload

	A.2. Incremental Transfer and Confirmation

	Authors' Addresses

