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Abstract

RXRPC was originally designed as the remote procedure call layer for
AFS-3. Today there are a number of anonymous RxRPC applications which
require identity assertions in order to ensure that the desired peer
receives and processes a procedure call. This memo defines a
replacement for the rxnull security class which provides a means for
mutually agreeing upon who is communicating, without incurring
cryptographic overhead. It should be noted that, much like rxnull, this
security object is not suitable for use in a distributed environment
due to its inability to provide integrity protection.
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1. Introduction TOC

RXRPC [draft-zeldovich-rx-spec] (Zeldovich, N. and M. Meffie, “Rx
protocol (work in progress),” November 2009.) is a remote procedure
call (RPC) protocol that evolved from earlier prototypes developed as
part of the Andrew Project at Carnegie Mellon University [VICE1
(Satyanarayanan, M., Howard, J., Nichols, D., Sidebotham, R., Spector,
A., and M. West, “The ITC Distributed File System: Principles and
Design,” December 1985.) [CMU-ITC-85-003] (Satyanarayanan, M., “A
Large-Parameter Remote Procedure Call Mechanism in Unix,” 1985.)
[CMU-ITC-84-011] (Satyanarayanan, M., “RPC User Manual,” January 1985.)
[CMU-ITC-85-038] (Satyanarayanan, M., “RPC2 User Manual,” 1985.). Its
primary, although notably not its only, usage is by the AFS-3
distributed file system [AFS1] (Howard, J., “An Overview of the Andrew
File System",” February 1988.) [AFS2] (Howard, J., Kazar, M., Menees,
S., Nichols, D., Satyanarayanan, M., Sidebotham, R., and M. West,
“Scale and Performance in a Distributed File System,” February 1988.).
RXx provides remote procedure call services over top of multiplexed
stateful virtual circuits called "connections". Individual call
sessions within the multiplexed circuits are called "channels". Flow
control, delivery guarantees, and security are provided at the
connection level. Stream ordering is performed at the channel level.
Security in Rx is handled at the connection level. Thus, all calls
within a given multiplexed connection must be associated with the same
security object, which in all current use cases means the same security
context. Security mechanisms in Rx are pluggable -- the Rx packet
header contains a single octet field which defines the security
mechanism to be used. Rx packet payload encoding is under the control
of the mutually agreed upon Rx security mechanism.

1.1. Existing Security Mechanisms TOC

At present, there are two Rx security mechanisms in wide deployment:
rxnull, and rxkad. Additionally, there was a security mechanism called
rxvab, which was used by early VICE prototypes, never widely deployed,
and considered to be entirely deprecated.
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1.1.1. rxnull

As the name implies, rxnull provides no-op security services for
anonymous services. Rxnull does not modify the packet payload in any
manner. Absolutely no cryptography is used with rxnull; header fields
are asserted to be correct.

1.1.2. rxkad TOC

Rxkad was originally developed as a kerberos 4-based security mechanism
implementing three security profiles: header integrity protection,
payload integrity protection, and payload encryption. With the advent
of Kerberos 5 [RFC4120] (Neuman, C., Yu, T., Hartman, S., and K.
Raeburn, “The Kerberos Network Authentication Service (V5),”

July 2005.), the rxkad mechanism was extended to support DES Kerberos 5
tickets. Rxkad utilizes a spare 16-bit Rx header field to store a 16-
bit cryptographic checksum of a bit-string called the packet
pseudoheader. The pseudoheader contains most Rx header fields, as well
as certain other ancillary pieces of data [AFS-RX] (Zayas, E., “AFS-3
Programmer's Reference: Specification for the Rx Remote Procedure Call
Facility,” August 1991.).

1.2. Multi-homed Host Support TOC

During the 1990s Transarc extended the Rx protocol to support
multihomed hosts. The Transarc design involved redefining the most
significant bit of the packet header connection identifier field. Under
the new design, the connection ID field was split as follows:

RXx Header Epoch and Connection ID Fields

0 1 2 3
012345678901 23456789012345678901
Fod oottt oot ottt oot ottt oottt oottt oottt
|G| E |
ot ot odododod ot odododod ot ododododbototododotodotododotodotototot-t
| c | H |
ot oottt oottt oot ottt od oottt oottt oot ottt

G bit: 1 bit
When asserted, the (G)lobal bit indicates that the C
field is globally unique. When not asserted, the tuple (IPv4
address, UDP port, E, C) is used to identify an Rx connection.
However, when multi-homed hosts are involved in a connection, the



Global bit causes the C field to become globally unique, and thus
IP address and port number matching is not performed as part of
the virtual circuit identification process.

E bits: 31 bits (unsigned integer)

The (E)poch field is used to
detect peer Rx state resets. Whenever an Rx protocol stack is
initialized, an effort should be made to assigned it a different
value. Typically, this is done by assigning the current Unix
epoch time.

C bits: 30 bits (unsigned integer)

The (C)onnection bits are part
of the virtual circuit identifier. As discussed above, the G bit
controls what other date is used as part of the virtual circuit
identifier.

H bits: 2 bits (unsigned integer)
The c(H)annel bits are used to
multiplex four RPC call channels over a single Rx connection.
Each packet is thus associated with a specific channel.

1.3. Motivations TOC

IPv4 address renumbering is a frequent occurence in many environments.
Due to the stateless nature of the Rx packet multiplexor, it is
possible for race conditions to occur whereby an RPC call payload is
delivered to the wrong peer. With the existing Rx security classes, the
receiving peer will automatically create a new Rx connection,
optionally go through a challenge/response phase, and then proceed to
process the call arguments. Obviously, mis-delivery of an RPC call can
result in incorrect behavior. For example, in the case of AFS-3, mis-
delivery can lead to data corruption, loss of cache coherence, and
other problematic situations.

1.4. Goals TOC

Many high-performance applications based upon Rx RPC cannot tolerate
cryptographic overhead. In order to ensure correctness in the face of
transport-layer address renumbering, some form of context needs to be
established between client and server to permit upper-layer
applications to reject processing of remote procedure calls that were
misdirected. This memo aims to replace rxnull with a minimally-



intrusive security object that provides a stateful means of detecting
address renumbering events without introducing cryptographic overhead.
Obviously, similar race conditions can occur with the rxkad security
object. Solving that problem is considered outside the scope of this
memo .

2. Conventions TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

3. Overview of Rx RPC TOC

Rx RPC is a remote procedure call mechanism built on top of UDP. In
order to establish a stateful call context on top of a stateless
datagram protocol, Rx relies upon a number of client-asserted header
fields to establish a flow-controlled communications channel between
peers. To eliminate the need for context-establishment round-trips, RX
relies upon client assertions to establish a stateful context.

3.1. Packet Mux TOC

Rx connection objects are identified by a tuple of packet header
fields. The most important control field is the most-significant bit of
the epoch header field. When this bit is asserted, the connection
object is operating in multi-homing mode, as specified in
[draft-zeldovich-rx-spec] (Zeldovich, N. and M. Meffie, “Rx protocol
(work in progress),” November 2009.). In the normal Rx operating mode
(with the multi-homing bit set to zero), Rx connections are identified
by the following tuple: (host, port, epoch, cid), where these elemenets
are defined as:

host: IPv4 address of peer
port: UDP port of peer
epoch: Rx header epoch field

cid: Rx header cid field (channel ID bits masked to zero)



However, when the multi-homing bit is asserted, the connection
identifier tuple becomes: (epoch, cid). Thus, multi-homed Rx connection
objects have a shared (epoch, cid) namespace, independent of peer
address.

4. Presenting Problems TOC

The design of this Rx security class is motivated by server and client
renumbering incidents at large AFS-3 deployments. When a file server 1is
renumbered, there is a several hour window until the next VL_GetAddrsuU
RPC is performed to refresh the file server UUID to IPv4 address
mappings in the client. Due to the TTL-based invalidation of stale
cached mappings, there is a substantial time interval during which RPCs
can be delivered to the wrong file server, potentially leading to
incorrect behavior.

Similarly, client renumbering can lead to incorrect behavior due to a
loss of cache coherence. The AFS-3 callback mechanism relies upon
correct knowledge of client UUID to IPv4 address mappings in order to
deliver cache invalidation messages to clients. When these mappings
become stale due to intervening address renumbering events,
advertisement of incorrect addresses, NATs, etc. these "call back"
remote procedure calls may be delivered to the wrong client node. In
some circumstances this can lead to false state of success on the file
server because an unintended client received, processed, and sent a
response of success to the file server. Due to the success return code,
the file server will no longer attempt to deliver the invalidation, and
the client to which the call back was supposed to be delivered will
continue to operate on stale cached data because it never received the
cache invalidation message.

4.1. Node Renumbering TOC

When servers are renumbered, one potential outcome is that two or more
machines running the same service will swap addresses. In this case,
there is a possibility for the wrong machine to correctly interpret,
and attempt to execute, a procedure call.

In some cases, execution of an RPC by the wrong endpoint will still
result in correct behavior. However, this is not generally true, where
execution by an unintended target could result in undefined, or even
dangerous, behavior. For example, in AFS-3, the existence of shadow
clones could result in a situation where an RW shadow clone is updated
instead of the canonical RW site registered in the VLDB.



4.2. Epoch ID Multi-Homing Bit TOC

When the multi-homing bit is asserted, (connection,epoch) tuples become
globally unique. This mode of operation permits clients to contact the
server on multiple addresses, thus allowing client operating systems to
route datagrams as desired. Current implementations of Rx bind the
connection to the first peer address on which a datagram was received.
Since all reply datagrams are sent to the bound peer, connection
hijacking becomes impossible. Unfortunately, this comes at the expense
of handling client renumbering events: when the bound peer address
becomes unreachable, or is reassigned, the Rx connection enters a
simplex state and consequently all call channels block until the
connection times out.

4.3. Processing of Non-Idempotent Calls TOC

Another problematic symptom of Rx connections entering a simplex state
involves non-idempotent RPCs. The core problem is that by the time the
lack of a reply channel is observed, the non-idempotent procedure call
has already been executed. Rx RPCs are not generally transactional, and
thus there is typically no means of rolling back the state-changing
behavior. Obviously, this problem is not unique to multihomed hosts,
but it is another indication of how Rx is lacking compared to
alternative multi-home aware protocols, such as SCTP [RFC4960

(Stewart, R., “Stream Control Transmission Protocol,” September 2007.).

5. Rx Clear Security Class TOC

In order to overcome the dangers inherent in assuming stability of
transport addresses, the Rx Clear security class embeds a security
header in all data packets. This security header contains application-
specific endpoint identifier assertions for both the source and
destination.

When a datagram is received by the wrong peer, an Rx abort packet will
be dispatched notifying the peer of the need to re-bind transport
addresses for this connection object. When such an abort packet is
received by a client connection, the error will be immediately
propagated back to the caller so that application-specific logic may be
invoked to refresh transport-layer address mappings for the intended
destination endpoint. In the server case, this memo standardizes new
multi-homing Rx connection peer binding semantics which allow for
graceful handling of client renumbering events.



5.1. Constants TOC

The Rx Clear security class makes use of several newly defined
constants, which are defined below:

RX_SEC_ID_CLEAR:
An Rx security index will be allocated by the

Grand Central Registrar. As with all Rx security indices, this 8
bit integer will uniquely identify the security class bound to a
given Rx datagram.

RXCL_HDR_VERS_1:

Rx Clear security header version 1 will be
allocated by the Grand Central Registrar. This version number
will correspond to the XDR [RFC4506] (Eisler, M., “XDR: External
Data Representation Standard,” May 2006.) encoded data structure
called rxClear_Header, as specified in Section 5.2 (Security

Header).

RXCL_ERR_UNKNOWN_VERS:
An Rx error code will be allocated which

communicates that this version of the Rx Clear security header is
unsupported by the peer. This error code will be sent as the user
payload of an Rx abort packet.

RXCL_ERR_UNKNOWN_ID_ TYPE:
An Rx error code will be allocated which

communicates that this endpoint identifier type is not supported
by the peer. This error code will be sent as the user payload of
an Rx abort packet.

RXCL_ERR_WRONG_PEER:
An Rx error code will be allocated which

communicates mis-delivery of an Rx Clear-protected datagram to
the wrong peer. This error code will be sent as the user payload
of an Rx abort packet.

RXCL_ERR_XCID_ UNSUPP:
An Rx error code will be allocated which

communicates to the peer that this node is incapable of
supporting the extended connection id field. This error code will
be sent as the user payload of an Rx abort packet upon receipt of
an RxClear header containing a non-zero clh_xcid field by a node
which cannot support extended connection identifiers.

RXCL_EI_TYPE_NULL:
An endpoint identifier type which provides
fallback to rxnull-like semantics. In other words, the contents



of the source and destination endpoint identifiers have no
meaning (and SHOULD thus be zero octets in length). In this mode
of operation, detection of address renumbering is impossible.

5.2. Security Header TOC

In order to communicate expectations to the peer, all data packets
travelling over an RxClear-protected connection will include an XDR-
encoded security header which carries identity assertions. The RxClear
mechanism uses a header rather than a challenge- response mechanism
because the additional round-trips required by the Rx challenge-
response mechanism were deemed too costly for the typical
unauthenticated Rx call workload.

The proposed security header is an XDR-encoded structure defined as
follows:

struct rxClear_Header {

u_char clh_version; /* authenticator version number */

u_char clh_id_type; /* how to interpret opaque peer
identifier payloads */

u_char clh_data_off; /* data payload offset */

u_char clh_sparesi; /* MUST be set to zero */

afs_uint32 clh_data_len; /* data payload length */

afs_uint32 clh_trl_off; /* security trailer offset */

afs_uint32 clh_flags; /* miscellaneous control flags */

afs_uint32 clh_spares2; /* MUST be set to zero */

afs_uint32 clh_sparess3; /* MUST be set to zero */

opaque clh_src_id; /* assertion of client identity */

opaque clh_dst_id; /* assertion of server identity */

}
Rx Clear Security Header

Figure 1

This security header will be an XDR-encoded data structure, which will
occupy the first octets of the data offset in an Rx packet -- it will
start at the offset directly following the Rx packet header. The normal
packet data will begin at the data offset specified in the clh_data_off
field of the security header.

clh_version: 8-bits (unsigned integer)



This contains the version of the Rx Clear security object header.
If this version is unknown by the peer, then the connection must
be aborted.

clh_id_type: 8-bits (unsigned integer)

An 8-bit unsigned integer
which identifies the encoding of the XDR opaque fields src_id and
dst_id. Values within this 8-bit namespace are allocated by the
AFS Assigned Numbers Registrar.

clh_data_off: 8-bits (unsigned integer)

This field specifies the
beginning of the data payload, in units of octets from the
beginning of the Rx packet payload. This field is used by
receivers to determine where to begin reading the encapsulated
data payload.

clh_trl_off: 32-bits (unsigned integer)
This value specifies the
offset in octets of the clear security class packet trailer. A
value of zero indicates the absence of a security trailer.

clh_flags: 32-bits (unsigned integer)
This is a bitfield whose bits
are used as protocol control flags. All flag bits whose semantics
are not yet standardized MUST be sent as zeroes.

clh_src_id: XDR opaque
This field contains an application-specific
source endpoint identifier. For example, in the case of AFS-3,
this will likely be an XDR-encoded node UUID.

clh_dst_id: XDR opaque
This field contains an application-specific
destination endpoint identifier. For example, in the case of
AFS-3, this will likely be a XDR-encoded node UUID.

clh_sparesi: 8-bits (unsigned integer)
This field is reserved for
future use, and MUST be set to zero. Future memos MAY define a
standardized use for this field, and thus implementors MUST NOT
make private use of this field.

clh_spares2: 32-bits (unsigned integer)
This field is reserved for
future use, and MUST be set to zero. Future memos MAY define a
standardized use for this field, and thus implementors MUST NOT
make private use of this field.



clh_spares3: 32-bits (unsigned integer)

This field is reserved for future use, and MUST be set to zero.
Future memos MAY define a standardized use for this field, and
thus implementors MUST NOT make private use of this field.

5.3. Data Packet validation TOC

Upon receipt of a data packet with the security index set to
RX_SEC_ID_CLEAR, the node will XDR decode the security header, and
subsequently validate the security header. Following XDR decode, the
node shall first verify that the clh_version field contains a supported
version number. In the event that the node does not support this
RxClear version, the node will send an Rx abort packet to the peer with
error code RXCL_ERR_UNKNOWN_VERS.

The second step in validation involves the extended connection
identifier field, clh_xcid. If this node does not support extended cid,
and the clh_xcid field is non-zero, then an abort packet with user
payload RXCL_ERR_XCID_UNSUPP should be sent to the peer, and the
connection should transition to an error state.

Next, the application-specific endpoint identifier type specified in
clh_id_type field is validated to ensure that the application layer can
handle this identifier type. If this endpoint identifier type is not
supported by the application layer, then the node will send an Rx abort
packet with user payload of RXCL_ERR_UNKNOWN_ID_TYPE, and the
connection should transition to an error state.

The application layer will then be asked to validate the clh_dst_id
field. If there is a mismatch, an abort packet will be sent to the peer
with user payload RXCL_ERR_WRONG_PEER, and the Rx connection will then
transition into an error state.

5.4. Abort Packet Handling TOC

Processing of received Rx Abort packets must be updated to handle the
new RXCL_ERR_ error codes. If such an error code is received on a
connection with security index other than RX_SEC_ID_CLEAR, then
behavior is undefined.

TOC



5.4.1. RXCL_ERR_UNKNOWN_VERS
This error code indicates that the peer is unable to support the

version of the RxClear security header sent in a packet. The connection
is transitioned into an error state.

5.4.2. RXCL_ERR_UNKNOWN_ID_TYPE T0C

This error code indicates that the peer is unable to support this
application-specific endpoint identifier type. The connection is
transitioned into an error state.

5.4.3. RXCL_ERR_WRONG_PEER TOC

This error code indicates that the packet was delivered to the wrong
peer. Behavior in this situation depends on several factors. First, for
connections where the epoch multi-homing bit is zero, the connection
must be transitioned to an error state. For multi-homed connections,
behavior further depends upon whether this is a client connection, or a
server connection. For client connections, the easiest course of action
is to set the connection to an error state, and allow the client to re-
resolve the application-specific endpoint-identifier to transport
identifier mapping, allocate a new Rx connection, and re-try the call.
In the case of a multi-homed server connection, the implementation
SHOULD make a best-effort try to deliver the call reply data to the
correct destination, as this may be a non-idempotent procedure call.
This memo outlines in detail new peer binding semantics for multi-homed
Rx connections in another section. Hence, whenever it is possible, the
server will not transition a server connection into an error state upon
receipt of this message. Instead, it SHOULD invalidate the peer
currently bound to the connection so that future replies go to a
different, hopefully correct, transport address.

5.4.4. RXCL_ERR_XCID_UNUSPP TOC

This error code indicates that the peer is unable to support the
extended connection identifier field in the RxClear security header.
The connection is transitioned to error state, and the implementation
SHOULD mark the peer as being incapable of supporting extended
connection identifiers so that connections allocated to this peer in
the future contain a clh_xcid field with value zero.



6. Multi-Home Behavior TOC

RX supports multi-homed clients through the assertion of the most-
significant bit in the Rx header epoch field. When this bit is
asserted, a server will accept datagrams into a connection regardless
of the source host address and port. However, reply packets are always
sent to the first peer address which contacted the server on any given
(epoch, cid) tuple. This behavior prevents connection hijacking, at the
expense of robust multi-homing support.

In order to properly support multi-homing this memo specifies
relaxation of the peer binding policies. Most importantly, upon receipt
of an RXCL_ERR_WRONG_PEER abort packet, an Rx server should not
transition a server-mode connection to an error state. Rather, it
SHOULD mark the peer currently bound to the Rx connection as being
incorrect so that responses may be sent to a different peer, as
determined upon receipt of the next ping packet. Although this does
open up room for connection hijacking, it does so only for anonymous
connections, which are otherwise exposed to denial of service attacks.
To address the issue of lack of response, new Rx server implementations
SHOULD permit re-binding of the peer on server-mode connections. To
this end, servers should track liveness of peer addresses on a server
connection in order to remove a dead peer from a connection. If an RXx
ping comes from an address other than the currently bound peer
transport address, the Rx implementation MAY try to re-send
unacknowledged packets to this other address. If these re-transmits are
correctly aknowledged, the connection may be re-bound to the new peer.
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8. IANA Considerations

This memo includes no request to IANA.

9. AFS Assigned Numbers Registrar Considerations TOC

This memo includes several assigned numbers requests which must be
considered by the AFS Assigned Numbers Registrar.

9.1. Definition of new registries TOC

This memo requests that the AFS Assigned Numbers Registrar allocate new
registries for three fields in the Rx Clear security header, as
described in Section 5.2 (Security Header):

*clh_version
*clh_id_type
*clh_flags

Allocations for the following registries are to be processed by the AFS
Assigned Numbers Regisrar pursuant to the policies dictated in sections
2.3.2 and 2.3.3 of [AFS3-STDS-CHARTER] (Wilkinson, S., “Options for AFS
Standardisation,” September 2008.).

9.1.1. clh_version TOC

The Rx Clear security class includes a version number in its packet
header. This memo requests that the AFS Assigned Numbers Registrar
allocate a new registry for tracking assigned values for this protocol
field. The unsigned 8-bit namespace for this registry shall be divided
into three regions as follows:

Range Policy
0-239 standards
240-254 private use
255 reserved

Standards-track allocation requests for this registry MUST contain the
following pieces of information:



*A reference to an RFC section documenting the XDR definition of
the header

In addition, a standards-track allocation request MAY contain the
following optional elements:

*A reference to an RFC section documenting security considerations
for this header type

*A requested version number

9.1.2. clh_id_type TOC

The Rx Clear security class provides a means of sending opaque
application data, which is intended to provide a means of transmitting
application-specific transport-independent endpoint identifiers. The 8-
bit unsigned namespace for this registry shall be divided into three
policy regions as follows:

Range Policy
0-239 standards
240-254 private use
255 reserved

Standards-track allocation requests for this registry MUST contain the
following pieces of information:

*A reference to an RFC section documenting the means of encoding
the payload, such as an XDR type definition

*A reference to an RFC section documenting the semantics for this
encoding type

In addition, a standards-track allocation request MAY contain the
following optional elements:

*A reference to an RFC section documenting security considerations
for this encoding type

*A requested type identification number

T0C



9.1.3. clh_flags

The Rx Clear security class header contains a 32-bit flags bit vector.
Bits within this vector shall be allocated by the AFS Assigned Numbers
Registrar. This 32-value namespace shall be subdivided into two policy
regions as follows:

Range Policy
270 to 2727 standards
2728 to 2731 private use

Standards-track allocation requests for this registry MUST contain the
following pieces of information:

*A reference to an RFC section documenting the semantics for this
flag

In addition, a standards-track allocation request MAY contain the
following optional elements:

*A reference to an RFC section documenting security considerations
for this flag

*A requested bit position

9.2. Allocation of new values TOC

This memo also makes several allocation requests to the AFS Assigned
Numbers Registrar.

9.2.1. RxClear security index TOC

A new Rx protocol security index must be allocated. It is anticipated
that given the small size of the security index namepsace, the
allocation will only be satisfied after rough consensus is established
on the afs3-standardization@openafs.org mailing list.

TOC



9.2.2. Rx error codes

The Rx Clear security class allocates several new Rx error codes for
use in Rx abort packet payloads. Given that there are multiple RX
implementations, it is assumed that the AFS Assigned Numbers Registrar
will be responsible for allocating new error table values.
Specifically, the following new Rx error codes need to be allocated:

*RXCL_ERR_UNKNOWN_VERS

*RXCL_ERR_UNKNOWN_ID_TYPE

*RXCL_ERR_WRONG_PEER

*RXCL_ERR_XCID_UNSUPP

Please see Section 5.1 (Constants) for further details regarding these
constants.

9.2.3. Rx Clear Security Header Version TOC

This memo requests allocation of version 1 within this new namespace
for the protocol header described in Section 5.2 (Security Header).

9.2.4. Endpoint Identifier Type TOC

One endpoint type identifier is requested at this time:
RXCL_EI_TYPE_NULL. The null endpoint identifier type shall have
encoding and semantics as defined in Section 5.1 (Constants)

10. Security Considerations TOC

This protocol explicitly provides neither the means for encrypting nor
integrity checking the contents of Rx headers or payloads. Its use,
except in physically secured and isolated high-performance computing
environments where cryptographic overhead is deemed to be unacceptable,
is NOT RECOMMENDED. Where use on the internet is necessary, other means
of protecting the Rx protocol from attack, such as IPsec [RFC4301
(Kent, S. and K. Seo, “Security Architecture for the Internet
Protocol,” December 2005.) [RFC4302] (Kent, S., “IP Authentication
Header,” December 2005.) [RFC4303] (Kent, S., “IP Encapsulating
Security Payload (ESP),” December 2005.) are RECOMMENDED. It should be




noted that, due to its use of UDP as a transport, Rx is not a candidate
for encapsulation within TLS [RFC5246] (Dierks, T. and E. Rescorla,
“The Transport Layer Security (TLS) Protocol Version 1.2,”

August 2008.).

Rx without packet header integrity, at a minimum, is open to a call
injection attack. The following section outlines describes this known
attack vector, and how the introduction of the Rx Clear security class
changes the susceptibility of Rx to this attack.

10.1. call injection TOC

With rxnull, simplex injection attacks have always been possible. For
connections with the G bit (as described in Section 1.2 (Multi-homed
Host Support)) asserted, this means that the attacker must correctly
spoof the epoch and connection ID. For injection of data packets into a
channel, one further piece of information must be available: the range
of packet sequence numbers currently within the valid receive window.
Much of this information is obtainable by probing the victim with RX
protocol debugging packets.

The Rx Clear security class changes the nature of this attack. If an
attacker, in addition to the information above, also posesses the
correct endpoint identifiers for the two peers, it may hijack the Rx
connection. The key difference here is that the attack is full-duplex;
all replies will now flow to the attacker instead of the original
recipient.

Given that both rxnull and Rx Clear are unauthenticated security
objects, this is unlikely to result in anything more severe than a
denial of service. Furthermore, given the new Rx Clear abort codes, the
peer will detect this situation one round trip after transmission of
its next call, rather than ending up in a state where the two peers
disagree on call channel window position, which is complex to detect
and resolve.
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