
CoRE G. Tolle
Internet-Draft Arch Rock Corporation
Intended status: Informational March 23, 2010
Expires: September 24, 2010

Embedded Binary HTTP (EBHTTP)
draft-tolle-core-ebhttp-00

Abstract

 Embedded Binary HTTP (EBHTTP) is a binary-formatted, space-efficient,
 stateless encoding of the standard HTTP/1.1 protocol. EBHTTP is
 intended for transport of small named data items, such as sensor
 readings, between resource-constrained nodes.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 24, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Tolle Expires September 24, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements . 4
1.2. Basic Operation . 5

2. Message Format . 5
2.1. Basic Message Format 5
2.2. Optional Header Format 7

3. Protocol Implementation 8
4. Caching . 9
5. Proxies . 9
6. Publish/Subscribe . 9
7. Resource Naming . 9
8. Resource Encoding . 9
9. Resource Discovery . 10
10. Security Considerations 10
11. References . 10
11.1. Normative References 10
11.2. Informative References 10

 Author's Address . 11

Tolle Expires September 24, 2010 [Page 2]

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

1. Introduction

 HTTP/1.1 [RFC2616] is an application-level protocol for distributed,
 collaborative, hypermedia information systems, and is the underlying
 protocol of the World Wide Web. HTTP is a simple ASCII request/
 response protocol that runs over TCP/IP, in which a client sends a
 request to a server containing a request method, a URI identifying a
 resource to be operated upon, and an optional request body, and
 receives a response containing a status code and an optional response
 body.

 Fielding, in [FieldingArch] suggests that the Web architecture
 succeeded because it has:

 a low barrier to entry

 a simple protocol design

 extensibility

 From the principles and constraints of the Web architecture, Fielding
 derived an architecture called Representational State Transfer
 (REST). REST can be described as a combination of several
 architectural styles:

 client-server interaction

 stateless requests

 cacheable responses

 uniform interface

 layered system

 The key abstractions within a RESTful design are:

 resources (conceptual)

 resource identifiers (URI)

 representations of resources (documents, like HTML and XML)

 representation metadata

https://datatracker.ietf.org/doc/html/rfc2616

Tolle Expires September 24, 2010 [Page 3]

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

 resource metadata

 control data

 On the RESTful web, HTTP is the primary transfer protocol, but
 resources should exist apart from the exact protocol used to transfer
 them across the network.

 The RESTful style originated in human interactions mediated through
 hypertext, but can also be used as the basis for a wide-area system
 for machine-to-machine communications. In machine-to-machine
 communications, the transfer protocol (HTTP) and resource naming
 system (URI) remains the same, but the representations of resources
 are typically defined in a machine-readable format, such as XML,
 coupled with a description of the actions to be taken in response to
 data embedded in the request or representation.

 While most machine-to-machine communication systems can use HTTP
 directly, HTTP is less suitable for certain highly-constrained
 networks. When network bandwidth is limited, the human-readable
 ASCII messages used by HTTP can become a source of congestion. When
 networks are asymmetrical and high-latency, the TCP protocol
 underlying HTTP can reduce effective throughput. When unreliable
 one-way communication is acceptable, the request-response nature of
 HTTP can introduce unwanted overhead. When nodes are limited in
 storage and processing power, the code needed for generating and
 consuming HTTP messages can compete with the application code itself.

 This document proposes a protocol called Embedded Binary HTTP
 (EBHTTP), which maintains the simplicity, RESTful design, and
 extensibility of standard HTTP while being more suitable for highly-
 constrained networks. EBHTTP replaces the ASCII HTTP messages with
 compact binary messages and replaces TCP with UDP (while still
 allowing TCP), and remains faithful enough to the particulars of HTTP
 to enable stateless, application-independent transcoding between the
 two protocols, as long as the original HTTP request fits within any
 limits defined by the EBHTTP protocol and any limits implemented by
 the EBHTTP node.

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Tolle Expires September 24, 2010 [Page 4]

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

1.2. Basic Operation

 EBHTTP can be used between any two hosts on the Internet, regardless
 of whether the hosts are constrained or not. An EBHTTP client makes
 a request to an EBHTTP server, which may return an EBHTTP response.

 An EBHTTP translation proxy waits to accept requests from both HTTP
 and EBHTTP clients. When a HTTP request is received, the proxy makes
 an EBHTTP request on the client's behalf. When an EBHTTP request is
 received, the proxy makes a HTTP request on the client's behalf.

2. Message Format

2.1. Basic Message Format

 An EBHTTP message has the following basic format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Control | Method | URI Length | Body Length |
 +-+
 | URI...
 +-+
 | Body...
 +-+

 Control This byte is broken down into the following bit fields:

 +-+-+-+-+-+-+-+-+
 | Ver |H|R| |
 +-+-+-+-+-+-+-+-+

 Ver This field is the version number of EBHTTP. This MUST be set
 to 1, until superseded by future revisions of this
 specification.

 H This field is set to 1 when additional EBHTTP headers are
 present between the URI and the Body. When a message is
 received with this bit set, the receiver MUST either process or
 ignore every header in the message, before processing the Body.

 R This field is set to 1 when a response is required. When a
 message is received with this bit set, the receiver MUST
 respond with an EBHTTP response message. When the bit is not
 set, the receiver SHOULD not send a response, but MAY still
 respond.

Tolle Expires September 24, 2010 [Page 5]

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

 The remaining two bits are reserved for future use.

 Method This byte represents either an encoded HTTP method or an
 encoded HTTP status code. The encodings of the methods are
 defined here:

 typedef enum ebhttp_method {
 EBHTTP_GET = 1,
 EBHTTP_POST = 2,
 EBHTTP_PUT = 3,
 EBHTTP_DELETE = 4,
 EBHTTP_HEAD = 5,
 EBHTTP_OPTIONS = 6,
 EBHTTP_TRACE = 7,
 EBHTTP_CONNECT = 8,
 EBHTTP_SUBSCRIBE = 9,
 EBHTTP_UNSUBSCRIBE = 10,
 EBHTTP_NOTIFY = 11,
 } ebhttp_method_t;

 The encodings of the status codes are created by packing the
 status code class into the first 3 bits, and the status code value
 into the last 5 bits, as so:

 typedef enum ebhttp_status {
 EBHTTP_200_OK = 2 << 5 | 00,
 EBHTTP_229_SUBSCRIPTION_SUCCEEDED = 2 << 5 | 29,
 EBHTTP_230_NOTIFICATION_ACKNOWLEDGED = 2 << 5 | 30,
 EBHTTP_231_SUBSCRIPTION_TERMINATED = 2 << 5 | 31,
 EBHTTP_400_BAD_REQUEST = 4 << 5 | 00,
 EBHTTP_404_NOT_FOUND = 4 << 5 | 04,
 EBHTTP_405_METHOD_NOT_ALLOWED = 4 << 5 | 05,
 EBHTTP_429_SUBSCRIPTION_FAILED = 4 << 5 | 29,
 EBHTTP_500_INTERNAL_SERVER_ERROR = 4 << 5 | 00,
 ... other status codes are constructed similarly ...
 } ebhttp_status_t;

 Because the encoding of the HTTP request methods always have 0's
 in their 3 most significant bits, and the encodings of the status
 codes do not, requests can be distinguished from responses solely
 by the contents of the Method field -- without requiring a
 separate bitfield.

 URI Length This field specifies the length of the URI in bytes.
 URIs longer than 255 bytes MAY be included by setting this field
 to 255, and then storing the actual URI length into the first 4
 bytes of the URI field as an unsigned 4-byte integer in network
 byte order. This length does not include the 4-byte integer

Tolle Expires September 24, 2010 [Page 6]

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

 itself. EBHTTP message receivers MUST interpret this "extended
 length" mode when determining the true start of the URI within the
 message, but EBHTTP message receivers MAY return the status code
 414 "Request-URI Too Large" if the specified length of the URL
 exceeds the capabilities of the host.

 Body Length This field specifies the length of the body data in
 bytes. Bodies longer than 255 bytes MAY be included by setting
 this field to 255, and then storing the actual body length into
 the first 4 bytes of the Body field as an unsigned 4-byte integer
 in network byte order. This length does not include the 4-byte
 integer itself. EBHTTP message receivers MUST interpret this
 "extended length" mode when determining the true start of the Body
 within the message, but MAY return the status code 413 "Request
 Entity Too Large" if the specified length of the body exceeds the
 capabilities of the host.

 URI This field contains the text of the HTTP URI.

 Body This field contains the contents of the HTTP message body.

2.2. Optional Header Format

 Each HTTP header is encoded as a single EBHTTP optional header.
 Optional headers are placed after the end of the URI field, and
 before the start of Body field. They are packed back to back with no
 padding. Both requests and responses may contain optional headers,
 matching the HTTP standard.

 Optional headers have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Value ...
 +-+

 The Length byte MUST be interpreted in the same way as the URI length
 and Body Length bytes defined above. If a header Value longer than
 255 bytes is specified, then the first 4 bytes of the header Value
 MUST be interpreted as an unsigned 4-byte integer in network byte
 order.

 EBHTTP includes space for a 7-bit Type code, and defines an encoded
 value for each of the 57 standard HTTP request and response headers
 currently defined [TODO]. This leaves room to expand the space of
 encoded headers in the future.

Tolle Expires September 24, 2010 [Page 7]

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

 For commonly-used header values, like MIME types, EBHTTP also defines
 a set of encoded values [TODO]. Headers containing the encoded value
 and headers containing the unencoded value must have separate type
 codes.

 In addition to encoding the standard HTTP headers, EBHTTP supports
 encoded EBHTTP-only headers. One such header is "Request-ID", which
 contains a token that can be used to match requests with responses.
 This "Request-ID" header MUST be maintained in any responses to
 requests that contain it. EBHTTP implementations MUST process the
 "Request-ID" header.

 If the host wishes to specify a HTTP header that is not currently
 encoded by EBHTTP, then the host specifies a Type of 255. The full,
 unencoded, ASCII HTTP header is then placed into the Value field.

 Hosts MUST ignore any headers that they are unable to process.

3. Protocol Implementation

 EBHTTP hosts MUST support UDP as a protocol for carrying EBHTTP
 messages.

 EBHTTP requests are transmitted from clients to servers over UDP, and
 EBHTTP responses are transmitted back to clients, using the client's
 UDP source port.

 EBHTTP responses are optional, as described above.

 Multiple EBHTTP messages MAY be packed into a single UDP datagram,
 and EBHTTP servers MUST unpack these messages and treat them as
 separate requests. All the lengths are specified within the message,
 making this possible. EBHTTP message packing allows more efficient
 use of the network by reducing the number of redundant UDP and IP
 headers, and SHOULD be used in constrained networks.

 Multiple EBHTTP responses MAY also be packed into a single UDP
 message. EBHTTP clients MUST unpack these responses and treat them
 the same way as responses contained in individual datagrams. The
 "Request-ID" header SHOULD be used to match requests and responses.

 A single EBHTTP message MUST NOT span multiple UDP datagrams. EBHTTP
 does not support fragmentation. If EBHTTP needs to carry messages
 larger than a single datagram, then TCP MUST be used.

 EBHTTP hosts MAY run EBHTTP over TCP.

Tolle Expires September 24, 2010 [Page 8]

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

 EBHTTP requests and responses MUST be packed back-to-back into the
 TCP bytestream, with no padding. Any number of requests and
 responses may be sent over a single TCP connection.

4. Caching

 EBHTTP implementations should follow the HTTP caching behavior
 described in [RFC2616]. TODO...

5. Proxies

 EBHTTP implementations should support the HTTP proxy behavior, where
 necessary. TODO...

6. Publish/Subscribe

 Publish/Subscribe functionality may be implemented over EBHTTP using
 application-defined message formats.

 In addition, EBHTTP supports the HTTP-level publish/subscription
 mechanisms described in the General Event Notification Architecture
 (GENA) Internet-Draft [cohen-gena-p-base]. These mechanisms include
 new HTTP methods for SUBSCRIBE, UNSUBSCRIBE, NOTIFY, and POLL, and
 new headers for conveying subscription IDs, callback URLs, and
 subscription lifetimes.

7. Resource Naming

 EBHTTP carries full HTTP URLs, but URLs for services intended for use
 within constrained networks should be as compact as possible. By
 using short letter and number codes, meaningful resource names can be
 compacted into only a few bytes.

8. Resource Encoding

 EBHTTP makes no statement about the encoding of the actual resources
 it can transport. However, because EBHTTP is intended for use in
 constrained networks, EBHTTP users should try to provide compact
 resources, and then use profile systems to automatically expand those
 compact resources into formats that are more usable on higher-end
 hosts.

https://datatracker.ietf.org/doc/html/rfc2616

Tolle Expires September 24, 2010 [Page 9]

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

9. Resource Discovery

 As befits the RESTful style, resource discovery should begin by
 retrieving the base URL representing the service.

 This resource should contain a machine readable representation of the
 URLs for the resources supported by the service (suggest using one of
 the Binary XML encodings, or a more compact encoding needed by the
 application). These resources may represent data or further indexes,
 depending on the definition of the service using EBHTTP.

 This index resource may also be proactively sent to another server,
 which will then act as a discovery proxy on behalf of the originator.

 Discovery of the network addresses of EBHTTP-speaking hosts can be
 performed via DNS-Service Discovery and Multicast DNS, as defined in
 [I-D.cheshire-dnsext-dns-sd] and [I-D.cheshire-dnsext-multicastdns].

 TODO...

10. Security Considerations

 HTTP includes several security mechanisms, including digest
 authentication for passwords and SSL for transport. These mechanisms
 should be supported in EBHTTP as well. Application layer protocols
 above EBHTTP may also include additional authentication, key
 exchange, and encryption techniques. TODO...

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

11.2. Informative References

 [FieldingArch]
 Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000.

 [I-D.cheshire-dnsext-dns-sd]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616

Tolle Expires September 24, 2010 [Page 10]

Internet-Draft Embedded Binary HTTP (EBHTTP) March 2010

 Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", draft-cheshire-dnsext-dns-sd-06 (work in
 progress), March 2010.

 [I-D.cheshire-dnsext-multicastdns]
 Cheshire, S. and M. Krochmal, "Multicast DNS",

draft-cheshire-dnsext-multicastdns-10 (work in progress),
 March 2010.

Author's Address

 Gilman Tolle
 Arch Rock Corporation
 501 2nd St. Ste 410
 San Francisco 94107
 US

 Phone: 415-692-0828
 Email: gtolle@archrock.com
 URI: http://www.archrock.com

https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-dns-sd-06
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-multicastdns-10
http://www.archrock.com

Tolle Expires September 24, 2010 [Page 11]

