
Internet-Draft M. Toomim
Expires: Jan 8, 2020 Invisible College
Intended status: Proposed Standard R. Walker
 Invisible College
 July 8, 2019

The Braid Protocol: Synchronization for HTTP
draft-toomim-braid-00

Abstract

 Braid is a proposal for a new version of HTTP that transforms it from
 a state *transfer* protocol into a state *synchronization* protocol.
 Braid puts the power of Operational Transform and CRDTs onto the web,
 improving network performance and robustness, and enabling
 peer-to-peer web applications.

 At the same time, Braid creates an open standard for the dynamic
 internal state of websites. Programmers can access state uniformly,
 whether local or on another website. This creates a separation of UI
 from State, and allows any user to edit or choose their own UI for any
 website's state.

 We have a working prototype of the Braid, and have deployed it with
 production websites. This memo describes the protocol, how it
 differs from prior versions of HTTP, and a plan to deploy it in a
 backwards-compatible way, where web developers can opt into the new
 synchronization features without breaking the rest of the web.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts. The
 list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
https://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
https://www.ietf.org/shadow.html

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://www.ietf.org/1id-abstracts.html
https://www.ietf.org/shadow.html

Table of Contents

1. Introduction . 3
2. Synchronization . 7
3. Deployment and Upgrade Plan 10
4. Proposed Changes to HTTP. 11
4.1. Linked JSON . 12
4.2. Generalized request/response 13
4.3. Subscriptions . 14
4.4. Versioning . 15
4.4.1. Versions . 16
4.4.2. Patches . 17
4.4.3. Merge Types . 18
4.4.4. Acknowledgements . 19
5. Network Messages . 20
6. Security Considerations 23
7. IANA Considerations . 23
8. Copyright Notice . 23
9. Author's Address . 23

1. Introduction

 HTTP was initially designed to transfer static pages. If a page
 changes, it is the client's responsibility to issue another GET
 request. This made sense when pages were static and written by hand.
 However, today's websites are dynamic, generated from databases, and
 continuously mutate as their state changes. Now we need state
 synchronization, not just state *transfer*.

 Unfortunately, there is no standard way to synchronize. Instead,
 programmers write non-standard code; wiring together custom protocols
 over WebSockets and long-polling XMLHTTPrequests with stacks of
 Javascript frameworks. The task of connecting a UI with data is one
 that every dynamic website has to do, but there is no standard way to
 do it.

 ======= HTTP Websites ======= ====== Braid Websites ======

 Today's websites are Braid generalizes HTTP and
 generated from multiple REST into a uniform standard
 layers of state across that synchronizes state
 multiple computers. Each within and between dynamic
 layer has a different API. websites.

 x Non-standard state API o Standard state API

 _Client__
 / \
 : o o o o : Webpage DOM o o o o State
 : \| \| : \| \|
 : x x : HTML Templates o o State
 : /| /| : /| /|
 : x x x x : JS Models o o o o State
 \ | | | | / | | | |
 | | | | | | | |
 o o o o - http:// - o o o o - braid:// -
 / | | | | \ | | | |
 : x x x x : Views o o o o State
 : | \| | : | \| |
 : x x x : Controllers o o o State
 : \ / \| : \ / \|
 : x x : Models o o State
 : \ / : \ /
 \.... x ../ Database o State
 Server

 Today's programmers have to On the braid, each piece of
 learn each API, and wire them state (o) has a URL; whether
 together, making sure that public, or internal to a
 changes to shared state client or server. Any state
 synchronize across all can be a function of other
 layers and computers. state, and dynamically
 recomputes when its
 dependencies change. Braid
 guarantees the network will
 synchronize.

 As the web becomes more dynamic and data-driven, the complexity of the
 non-standard Javascript stack grows, and an increasing amount of data
 is inaccessible to the open web. The result is a web which is open on
 the surface, but closed internally: websites can link to each other's
 pages, but cannot easily share each other's internal *state*.

 We can solve this by generalizing HTTP into a *synchronization*
 protocol, which replaces the complex Javascript stack, while providing
 new features, and making website internal state accessible anywhere
 desired, and realtime synchronized by default.

 We have a working prototype of the Braid protocol, and have deployed
 it with production websites. The prototype is implemented as a
 polyfill library, which adds Braid features to existing browsers and
 servers.

 This document describes the new protocol, how it differs from prior

 versions of HTTP, and a plan to deploy it in a backwards-compatible
 way, where web developers can opt into the new synchronization
 features without breaking the rest of the web.

2. Synchronization

 Braid incorporates the abilities of Operational Transform and CRDTs.
 These are approaches to solving *synchronization*.

 Synchronization is a problem that occurs whenever two or more
 computers or threads access the same state. Synchronization code is
 tricky to write, and can result in clobbers, corruptions, or race
 conditions.

 This is a challenging problem, which has seen a number of partial
 attempts in HTTP, such as e-tags, cache control, PATCH, JSON-diff, and
 SSE.

 Luckily, a set of maturing synchronization technologies (such as
 Operational Transform and CRDTs) can now automate and encapsulate
 synchronization within a library. They can synchronize arbitrary JSON
 data structures across an arbitrary set of computers that make
 arbitrary mutations, and consistently merge their edits into a valid
 result, without a central server, in the face of arbitrary network
 delays and dropouts. In other words, it is now possible to interact
 with state stored anywhere on a network as if it is a local variable,
 and program as if it is already downloaded and always up-to-date.

 Unfortunately, each synchronizer implements a different protocol, with
 a different set of features and tradeoffs. Braid proposes a common
 language for synchronizers, so that they can interoperate, and
 implements it as an extension to HTTP.

 This lets multiple synchronizers interoperate, if they agree on a way
 to consistently resolve ambiguities -- a *merge type*. We have run
 tests that succesfully interoperate a CRDT and OT system over the
 common Braid protocol.

 When applying synchronization to the web, we see the power of
 synchronization manifest in these concrete ways:

 - Caches update automatically and instantly, because servers promise
 to push changes to their subscribers. This obsoletes the
 `cache-control` and `refresh` headers, and the `max-age`
 heuristic. Users never need to force-clear their cache.

 - Updates go over the network as diffs, which can be much smaller
 than the resources they modify, significantly reducing network

 usage.

 - Web apps get an offline mode for free. Edits from multiple
 clients merge automatically once they come online. Network
 failures recover transparently.

 - *Reload* buttons in browsers become unnecessary, and can be
 removed for braid sites. Browsers automatically discover and
 display the most recent version on their own.

 - Web apps require roughly 70% less code to build (in our
 experiments), because programmers do not need web frameworks or
 custom logic to wire together a stack of server-state and
 client-state. This work is automated by the protocol.

 - Every <textarea> can become a collaborative editor (like Google
 Docs) for free.

 - Servers become optional. Many apps can function without a server,
 because peers can synchronize with one another directly over the
 protocol.

 - In standardizing synchronization, we implicitly create a standard
 for state. This allows state to be shared between different sites
 without the need for an extra API.

 - Standardizing the representation of *state* allows us to separate
 the representation of UI and state. Most HTTP websites *inject*
 the state that they receive into templates representing UI
 components. Braid sites can instead understand UI components as
 lenses through which to view state. This improves the semantics
 of UI rendering, allows state to be inspected by clients directly,
 and makes it easier to build multiple alternative UIs for a single
 site.

 Standardized state and synchronization allows the topology of content
 on the web to be less centralized.

 Closed Networks

 - - - - Before the web, people used
 / \ / \ closed networks like America
 | x x | | x x | Online. Content was
 | | | | encapsulated behind
 \ x / \ x / proprietary protocols.
 - - - -
 Aol Compuserve

 HTTP Websites

 - o--------------o - The web lets any site define
 / o--------o \ *pages* at URLs. A site can
 | x x o------o x x | *link* to another site's pages,
 | o------o o adding value to both sites.
 \ x o o x /
 - o--------------o -
 Facebook NY Times

 Braid Websites

 o--o _---------o o The braid lets any site define
 |/ o'-------o | | *states* at URLs. A state can
 o---o---o---------o---o--o---o be a *function* of other states.
 / \ / \ o------o \ \ When a state changes, the others
 o o---o __. o o o automatically synchronize with it,
 o--o `-----o--o like a spreadsheet.
 My Stuff Your Stuff

3. Deployment and Upgrade Plan

 Braid makes fundamental changes to HTTP and REST, which creates an
 opportunity to unify a number of disparate features (SSE, E-tags,
 Cache-control, PATCH, JSON-Diff) within a simple integrated design.

 Rather than shoe-horn these changes into the existing HTTP semantics,
 we propose a new simpler layer, with a backwards-compatible mapping to
 HTTP's existing semantics. This allows existing applications to
 interoperate, but new applications can opt-in to a simpler web API
 that provides more synchronization features.

 We can deploy these semantics in two phases:

 1. The first phase requires no changes to existing web browsers,
 making it easy for users to experiment with the protocol's
 semantics in existing websites.

 In this phase, browsers fetch the initial HTML page over the
 existing HTTP protocol, which includes Javascript code that
 initiates a WebSocket connection that runs the Braid protocol.
 This WebSocket version of the Braid protocol provides the full
 synchronization functionality, but is less performant --
 requiring an extra round-trip to initiate.

 2. If and when the WebSocket protocol stabilizes and achieves
 real-world adoption, we can add the Braid semantics into HTTP
 itself, in a new layer via an HTTP Upgrade header [RFC 2616,

section 14.42].

 Both versions of the protocol can maintain backwards-compatibility
 with existing HTTP clients and servers. Any client accessing a Braid
 server via HTTP 1, 2, or 3 will be able to GET, PUT, and POST Braid
 state, but without full synchronization capabilities. Likewise, Braid
 clients can access state on HTTP servers, but will have to poll the
 server for updates.

4. Proposed Changes to HTTP

 Braid is composed of a set of opt-in changes that any browser or
 server can implement.

 First, whereas HTTP is explicitly client/server, Braid is capable of
 running peer-to-peer. To do this, it generalizes the explicit
 request/response pattern of HTTP into a set of common messages, opened
 over a persistent two-way connection.

 Additionally, Braid specifies a new content-type for a resource:
 Linked JSON. This provides a standard format for dynamic state, akin
 to how HTML specifies a standard for the presented content of a
 webpage.

 This section first describes Linked JSON, and then the changes to HTTP
 networking methods, and finally the versioning features that ensure a
 peer-to-peer network of edits converge to the same version.

4.1. Linked JSON

 Whereas HTML defines a common format for the presented content of web
 pages, braid defines a common format for their internal data, or
 state: Linked JSON. This extends standard JSON with two additional
 datatypes:

 - A *link*, which lets one piece of JSON, at one URL, to link to
 another piece of JSON at another URL

 - A *binary blob*, which lets one encode a binary file (such as an
 image) as a value.

 We encode links within JSON like:

 {
 "foo": 3,
 "bar": 5,
 "something else": {"link": "braid://foo.com/something"}

 }

 Any object with a field named "link" is special, and interpreted as a
 link. To encode an actual field named link, you prefix it with an
 underscore, like:

 {"_link": "this is not a link"}

 To encode an underscore, you use two underscores, like "__", and so
 on.

 Links allow programmers to combine data across multiple services, even
 on multiple websites, and to represent non-tree data as JSON, such as
 circular graphs and relational tables. Foreign keys can be specified
 as links to other queries. Cycles can be specified as a link back to
 the root of an object.

 Binary data is encoded similarly, as:

 {"binary": "<base64-encoded string>", "content-type": "<type>"}

 The content-type is optional.

4.2. Generalized request/response

 In HTTP, a client sends a *request* to the server, and that request is
 met with a *response*. By contrast, a Braid connection is two-way, so
 messages can be initiated by either party. Rather than giving a
 response to a message, a Braid server sends a separate message that
 acts as the response. It turns out that a GET response message has
 the same effect on a peer as a SET request message-- both set the
 state on the recipient.

 --
HTTP	Braid	Meaning
Get Request	Get message	"I want this"
Get Response	Set message	"This is the current version"
Put Request	Set message	"This is the current version"
Put Response	Ack message	"I accept this version"
 --

Subscriptions

 In the Braid model, whenever a client requests some state, it also
 subscribes to new versions of that state. This requires only minor
 changes to the semantics of HTTP.

 In the Braid protocol, a GET message not only returns the current
 value of state, but also *subscribes* to future updates. The
 subscription continues until the client sends a FORGET. Finally,
 Braid unifies the PUT, POST, and PATCH methods in to a single
 SET method, which is able to both create state and change state.

HTTP method	Braid method	What's new
Get	Get	Also subscribes to future updates
- n/a -	Forget	Ends a "Get" subscription
Put/Post/Patch	Set	Also updates all subscribers
Delete	Delete	Also updates all subscribers

 The traditional distinction between PUT and POST is that PUT requests
 are idempotent, allowing them to be cached and retried, whereas POST
 is often not. However, the Braid protocol allows idempotence to be
 distinguished by re-using a version on Set -- if two messages set a
 state to the same version, they are idempotent, and equivalent to a
 PUT.

 In their simplest forms, these messages are otherwise semantically
 identical to their corresponding HTTP methods. When robust
 synchronization is required, these messages will include optional
 versioning features.

4.4. Versioning

 Even though there are many synchronizers, it is possible for them to
 communicate in a common language. Different synchronizers use
 different data structures internally, and have different network
 messages-- however, the *information* they send can all be represented
 with a common set of objects:

 - VERSIONS define points in time, irrespective of space
 - LOCATIONS define points of space, irrespective of time
 - PATCHES replace regions of space, across spans of time

 These three objects are enough to represent any type of change to a
 JSON data structure. We have verified this experimentally, by
 implementing a translation algorithm that converts the network
 messages of ShareDB (an Operational Transform synchronizer) and
 Automerge (a CRDT synchronizer) into these objects, and back again,
 and verifying that the synchronizers still work in fuzz testing.

 However, synchronizers also differ in how they resolve conflicting
 changes to the same region of state. We can generalize the behavior
 of these resolvers by defining *merge types*:

 - MERGE TYPES define how edits to the same location resolve

 If a synchronizer expresses state changes using versions, locations,
 and patches, and specifies its merge types, then it can synchronize
 with any other braid synchronizer implementing the same merge types,
 no matter their internal implementation.

 Finally, synchronizers also broadcast *acknowledgements* of the
 versions they have received, in order to tell their peers that they
 have moved forward in time, and will no longer refer to old history
 when sending patches. This allows their peers to prune their history
 logs, and free up unused memory:

 - ACKNOWLEDGEMENTS of versions allow peers to prune historical memory

 The rest of this section explains how these concepts work together.

4.4.1. VERSIONS

 Time on a network is ambiguous as a result of latency. If multiple
 peers edit the same state at the same time, we cannot say that one
 happened before the other, and time forks. When they communicate
 their changes over the network, they merge their edits, and time
 merges.

 (O) All peers are aware of version (O).
 / \
 / \
 (A) (B) Two peers make simultaneous edits creating versions (A)
 \ / and (B) respectively, and time forks.
 \ /
 (M) Once a peer sees both of the edits, time merges again.
 Until a peer makes an edit with (A) and (B) as parents,
 the merge is only implicit-- there is no need for to
 assign an ID to it.

 Thus the shape of time is not a line but a Directed Acyclic Graph-- a
 DAG. Every change to state creates a new version. This version has
 parents: all recent (leaf) versions that the client had seen when it
 made its edit. The edit becomes the *child* of its parents. We can
 say that one version came before another only if the first version is
 an *ancestor* of the second.

 Every version is identified by a unique ID. There is no requirement
 on the format of the ID, only that it be a unique string.

 When a peer makes an edit, it broadcasts the edit's version ID, its
 parents version IDs, and a patch from its parents state to its state.

4.4.2. Patches

 When a peer changes some state, it encodes that change as a patch. A
 SET message includes 'patches' as an array of patches. All patches
 are *replace* operations, that replace one region of space with a new
 value. The region being replaced is specified as a start and end
 index of the previous state, which is computed by merging all the
 parents of the version using its merge type.

 Insertions are implemented as replacing a zero-length region with a
 non-zero-length region, and deletes replace a non-zero length region
 with a zero-length one.

 Here are some example patches targeting object 'obj'
 (ie, {set: 'obj', patches: [...]})

 .foo[0].bar = null # Replace obj.foo[0].bar with null

 [3:3] = "asdf" # Insert the string 'asdf' at index 3 of
 string obj. Illegal if array.
 [3] = "a" # Set char 3 of string obj to 'a'
 or element 3 of array obj to 'a'
 [3] = "asdf" # Illegal if string.
 If array, set obj[3] to 'asdf'
 [3:4] = [1, 3, 5] # Splice [1,3,5] into array obj, replacing
 element 3. Illegal if string.
 [4:4] = [{msg: "hi"}] # Insert an object at the end of array obj

 [3:10] = "" # Delete characters 3-10 in string obj

 = false # Set the entire object obj to false

 .foo[0].bar = undefined # Delete obj.foo[0].bar

4.4.3. Merge Types

 Different applications want to resolve conflicts in different ways.
 For instance, strings in a collaborative text editor will want to
 merge clobbering edits by inserting everything typed, and deleting
 everything deleted, and breaking ordering ties arbitrarily; but if two
 debits to a bank account balance occur in parallel, we will want to
 merge the debits by adding the differences together.

 A "merge type" specifies how any two edits made in parallel are merged
 together. If two synchronizers implement the same merge type for some
 state, they will converge to a consistent result after arbitrary
 merges. Merge types are specified by unique strings, such as
 "sync9-string" or "sharedb-rich-text".

 LWW(vid) # Last-write-wins, sorted by version ID
 text(vid) # Merges text edits like Google Docs
 counter # Merges additions and subtractions by summing

 All peers synchronizing with a piece of state will need to implement
 the same merge types. We envision a handful of merge types will
 likely cover most situations on the web. Each field in a JSON object
 can merge using a different merge type. One way to specify merge
 types of JSON objects is with a schema:

 {
 id: <string> : LWW(vid)
 body: <string> : text(vid)
 authors: <array> : text(vid) [
 author_id: <string> : LWW(vid)
]
 likes: <int> : counter
 }

 However, we have not yet implemented configurable merge types in our
 prototype, or settled on a way to communicate them in the protocol.
 Thus, we do not specify merge types in the network examples given
 later.

4.4.4. Acknowledgements

 In order merge two versions, a synchronizer generally needs enough
 history to trace a path of time back from both versions through a
 common "fork point." Thus, in order to synchronize perfectly, peers
 need to store historical versions in time back to any fork point from
 which they expect another peer to send an edit.

 To allow other peers to prune history, any peer thus needs to inform
 them that it no longer intends to base edits onto versions from the
 past. A general way to do this is for peers to agree to always make
 edits to the most recent versions they have. Then, a peer will be
 able to prune old history as long as it knows which versions of
 history all other peers have seen. Once all peers have seen a more
 recent version, a peer can know that they will not base an edit on one
 of its ancestors.

 In the Braid protocol, peers can communicate which versions they have
 seen using ACK messages. Each ACK specifies the URL and version of
 the state that the peer has seen. When a peer sends an ACK, it means
 "everyone who I have sent this version to has also acknowledged its
 receipt." Then, once the original sender has received all
 acknowledgements from all peers, it sends out a final "ack-complete"
 message, which communicates "everyone in the entire network has
 acknowledged receipt of this version." This is enough information for

 any peer to then know that no peer will be sending an edit based on a
 prior ancestor.

 However, this spec does not yet handle the case where a peer goes on
 and offline in a peer-to-peer network. We are currently working on
 implementing a solution to this and will update this draft when the
 spec has been finished and tested.

5. Network Messages

 We present some examples of the Braid protocol, from the perspective
 of a client communicating with a server.

 Basic session with no versioning:

 Send: {get: "text"} [1]
 Recv: {set: "text", val: "Hello"} [2]
 Send: {set: "text", val: "Hello, World!"} [3]
 Send: {forget: "text"} [4]

 [1]: The client requests the most recent version of "text"
 [2]: The server sends the client the value of "text"
 [3]: The client changes the value to "Hello, World!"
 [4]: The client unsubscribes from edits to "text"

 Basic session with versioning:

 Send: {get: "text"} [1]
 Recv: {set: "text", val: "Hello", version: "v1"} [2]
 Send: {set: "text", version: "v2", [3]
 patches: ['[5:5] = ", World!"'],
 parents: ["v1"]}
 Send: {forget: "text"} [4]

 [1]: The client requests the most recent version of "text"
 [2]: The server sends the client the value of "text"
 [3]: The client adds ", World!" on to the end of "text"
 [4]: The client unsubscribes from edits to "text"

 JSON locations and more complex versioning:

 Send: {get: "user/fred", parents: ['62347']} [1]
 Recv: {set: "user/fred", [2]
 patches: ['.name[0] = "F"'],
 version: '2h38a',
 parents: ['62347']}
 Send: {ack: "user/fred", version: "2h38a"} [3]

 Send: {set: "user/fred", [4]
 patches: [".name[4:4] = \" Wilson\""],
 version: "36x02",
 parents: ["2h38a"]}
 Recv: {ack: "user/fred", version: "36x02"} [5]
 Send: {forget: "user/fred"} [6]

 [1]: The client requests the current version of "/current_user",
 as a patch based on version 62347, which it has in cache.
 [2]: The server responds with a SET containing a patch.
 [3]: The client acknowledges receipt of the new version.
 This enables the server to prune its history of old versions.
 [4]: The client updates the current user's name to "Fred Wilson".
 [5]: The server acknowledges receipt of the new version.
 This enables the client to prune its history.
 [6]: The client is done with current_user, and unsubscribes.

 GET semantics:

 Send: {get: "val"} [1a]
 Recv: {set: "val", val: ..., version: "vX"} [1b]
 ...
 Send: {get: "val", version: "vX"} [2a]
 Recv: {set: "val", version: "vX", val: ...} [2b]
 ...
 Send: {get: "val", parents: ["vPA", "vPB"]} [3a]
 Send: {get: "val", parents: ["vPA", "vPB"], [3b]
 version: "vX", patches: ...}
 ...
 Send: {get: "val", version: "vX", [4a]
 parents: ["vPA", "vPB"]}
 Send: {get: "val", version: "vX", [4b]
 parents: ["vPA", "vPB"], patches: ...}

 [1a]: The client requests the document "val".
 [1b]: The server sends the client the most recent version, giving
 the explicit value of the document as well as the ID of the
 most recent version. The server also subscribes the client
 to new updates.

 [2a]: The client requests version "vX" of document "val".
 [1b]: The server sends the client version "vX", giving the explicit
 value of the document at version "vX" as well as the ID "vX".
 The server does NOT subscribe the client to new updates.

 [3a]: The client requests the document "val" as a patch based on
 parent versions "vPA" and "vPB".
 [3b]: The server sends the client the most recent version, giving
 its value as a patch against the implicit merge of the given

 parents "vPA" and "vPB", even if these are not the original
 parents of version "vX". The server also subscribes the
 client to new updates.

 [4a]: The client requests version "vX" of document "val" as a patch
 based on parent versions "vPA" and "vPB".
 [3b]: The server sends the client version "vX", giving its value as
 a patch against the implicit merge of the given parents "vPA"
 and "vPB", even if these are not the original parents of
 version "vX". The server does NOT subscribe the client to new
 updates.

6. Security Considerations

 Although this protocol enables and encourages web programmers to make
 more internal available and shared, it has the same fundamental
 security model as HTTP. State at any URL can have access control
 controlling who can access it.

 However, additional work will be needed to analyze the security
 concerns of specific uses of the protocol.

7. IANA Considerations

 This document has no actions for IANA.

8. Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Simplified BSD License.

9. Author's Address

 Michael Toomim
 Invisible College, Berkeley
 2053 Berkeley Way
 Berkeley, CA 94704

 Email: toomim@gmail.com

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

 Web: https://invisible.college/@toomim

 Rafie Walker
 Invisible College, Berkeley
 2053 Berkeley Way
 Berkeley, CA 94704

 Email: slickytail.mc@gmail.com

https://invisible.college/@toomim

