
Internet-Draft M. Toomim
Expires: Jul 10, 2020 Invisible College
Intended status: Proposed Standard G. Little
 Invisible College
 R. Walker
 Bard College
 B. Bellomy
 Invisible College
 Mar 9, 2020

 \=/====\\ |//===\\= /=\ =\==\|\=/== =|====\==
 ||/ |\\ ||\ |\\ /|| \|\ |// //| \\\
 |\\ |// |\\ |// //| \\\ \\\ /\/ |||
 \=|====|= |/====/=\ /=\/====|=\ =\= \\= =/=
 //\ /\\ //| |\\ |/| ||| \\\ ||| |//
 ||| ||| |\\ |// |\/ \|/ /|\ |=\ |\\
 =\=\==/=/ ==| |\= ||= /== ===/=|=\=== |==\===//

 Braid-HTTP: Synchronization for HTTP
draft-toomim-httpbis-braid-http-02

Abstract

 Braid is a set of extensions that generalize HTTP from a state
 transfer protocol into a state *synchronization* protocol. Braid
 puts the power of Operational Transform and CRDTs on the web,
 improving network performance and enabling natively peer-to-peer,
 collaboratively-editable, offline-first web applications.

 Braid is composed of four extensions to HTTP:

 1. VERSIONING on resources
 2. SUBSCRIPTIONS on GET requests
 3. PATCHES created from Range Requests
 4. MERGE-TYPES that specify OT or CRDT behavior

 These extensions are independent; each provides a distinct value for
 a stand-alone use-case. However, when used together, they enable a
 web resource to synchronize automatically across multiple clients,
 servers and proxies, and support arbitrary simultaneous edits by
 multiple writers, under arbitrary network delays and partitions,
 while guaranteeing consistency using a OT, CRDT, or other algorithm.

 These synchronization features provide a step towards a standard for
 the dynamic internal state of websites. Web programmers currently
 synchronize state across clients and servers with layers of
 non-standard Javascript frameworks. A synchronization standard built
 upon REST can enable programmers to read and write the internal state
 of any website as easily as a local variable on their own site. This
 could enable a separation of UI from state, and allow any user to
 edit or choose their own UI for any website's state.

https://datatracker.ietf.org/doc/html/draft-toomim-httpbis-braid-http-02

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts. The list of current Internet-Drafts is at

http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
https://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
https://www.ietf.org/shadow.html

Table of Contents

1. Introduction ..4
2. Versioning for Resources5
2.1. Comparison with ETag ..5
2.2. PUT a new version ...6
2.3. PUT a new version as a patch6
2.4. GET a specific version8
3. Subscriptions for GET ...9
3.1. Creating a Subscription11
3.2. Sending multiple updates per GET11
3.3. Continuing a Subscription12
3.4. Ending a Subscription12
3.5. Errors ...12
4. Design Goals..13
5. Use Cases ..13
5.1. Dynamic Resources ..13
5.2. Dynamic Proxies and Caches14
5.3. A Serverless Chat Example14
6. Related Work ...15
6.1. Web Frameworks ...15
6.2. Existing IETF Standards16
7. IANA Considerations ..16
7.1. Header Field Registration16
8. Security Considerations16

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://www.ietf.org/1id-abstracts.html
https://www.ietf.org/shadow.html

9. Conventions ..16
10. Copyright Notice ...17
11. References ...17
11.1. Normative References17
11.2. Informative References18
12. Acknowledgements ...19
13. Authors' Addresses ...20

1. Introduction

 HTTP transfers a static version of state within a single request and
 response. If the state changes, HTTP does not automatically update
 clients with the new versions. This design satisficed when webpages
 were mostly static and written by hand; however today's websites are
 dynamic, generated from layers of state in databases, and provide
 realtime updates across multiple clients and servers. Programmers
 today need to *synchronize*, not just *transfer* state, and to do
 this, they must work around HTTP.

 The web has a long history of these workarounds. The original web
 required users to click reload when a page changed. XMLHTTPRequest
 [XHR] made it possible to update just part of a page, running a GET
 request behind the scenes. However, a GET request still could not
 push updates. To work around this, web programmers would poll the
 resource, which was inefficient. Long-polling was invented to
 overcome the inefficiencies, which was standardized as Server-Sent
 Events [SSE]. Yet, SSE provides semantics of an event-stream, not an
 update-stream, and although a programmer can encode a protocol within
 the event stream for updating a resource, there is still no standard
 way to express the update of a resource.

 In practice, web programmers today often give up on using standards
 for "data that changes", and instead send custom messages over a
 WebSocket -- a hand-rolled synchronization protocol. Unfortunately,
 this forfeits the benefits of HTTP and ReST, such as caching, and a
 uniform interface [REST]. As the web becomes increasingly dynamic,
 web applications are forced to implement additional layers of
 non-standard Javascript frameworks to synchronize changes to state.

 Braid generalizes HTTP into a synchronization protocol, and ReST into
 a synchronization architecture. It adds these features:

 1. Versioning (Section 2)

 Each resource has a history of changes, ordered in time.

 2. Subscriptions (Section 3)

 A Subscribe header can be added to GET requests, which promises
 to push all future versions to the client, until the client says
 forGET.

 3. Range Patches [RANGE-PATCH]

 Express changes to versions in patches, with a uniform format
 based on Range Requests.

 4. Merge Types [MERGE-TYPES]

 If multiple clients and servers simultaneously edit the same
 resource, they can guarantee a consistent resulting state by
 implementing the same Merge Type. Resources specify their Merge
 Type with a header.

 Taken together, these features allow an arbitrary set of clients and
 servers to make arbitrary edits to resources, under arbitrary network
 delays and paritions, and merge all edits consistently, receiving
 updates as soon as they reconnect. This enables caches to support
 dynamic content, web applications to feature an offline mode, and
 textareas to support collaborative editing.

2. Versioning for Resources

 Each Braid resource has a current version, and a version history.
 Versions are specified as a string in the [STRUCTURED-HEADERS]
 format. Each version string must be unique, to differentiate any two
 points in time. To specify the version of content in a request or
 response body, a Version header MAY be included in a request for a
 PUT, PATCH or POST, or in the response to a GET:

 Version: "dkn7ov2vwg"

 Every version has a set of Parents that denote the most recent parent
 version(s) that were known at the time the version was created. The
 full graph of parents forms a Directed Acyclic Graph (DAG),
 representing the known partial order of all versions. A version A is
 known to have occurred before a version B if and only if A is an
 ancestor of B in the partial order.

 Parents are also specified with a header in a PUT request or GET
 response:

 Parents: "ajtva12kid", "cmdpvkpll2"

 The Parents header is a List of Strings, in the syntax of HTTP's
 [STRUCTURED-HEADERS]. Each string is a version. For any two parent
 versions A and B that are specified in a Parents header, A cannot be
 a descendent of B or vice versa. The ordering of versions in the
 list carries no meaning, and SHOULD be softed lexicographically.

 If a client or server does not specify a Version for a resource it
 transfers, the recipient MAY generate a new version ID of its own

 choosing. If a client or server does not specify a Parents header
 when transferring a new version, the recipient MAY presume that the
 most recent versions it has seen are the parents of the new version.

2.1. Comparison with ETag

 The Version header is similar to an ETag, but has two differences:

 1. ETags are sensitive to Content-Encoding. If you send the same
 version with a GZip Content-Encoding, it will have a different
 ETag, but the same Version.

 2. A Version marks a unique point in time -- not unique content. If
 a resource is changed from version A to B, and then to C, such
 that the contents at A are the same as the contents at C, then it
 is possible versions A and C to have the same ETag, even though
 they have different Versions.

2.2. PUT a new version

 When a PUT request changes the state of a resource, it can specify
 the new version of the resource, the parent versions that existed
 when it was created, and the way multiple simultaneous changes should
 be merged (the "Merge-Type"):

 Request:

 PUT /chat
 Version: "ej4lhb9z78" | Version
 Parents: "oakwn5b8qh", "uc9zwhw7mf" |
 Content-Type: application/json |
 Merge-Type: sync9 |
 Content-Length: 73 |
 |
 [{text: "Hi, everyone!", | | Body
 author: {type: "link", value: "/user/tommy"}}] | |

 Response:

 HTTP/1.1 200 OK
 Patches: OK

 Merge-Types are specified in [MERGE-TYPES]. The Version and Parents
 headers are optional. If Version is omitted, the recipient may
 invent a version ID. If Parents is omitted, the recipient may assume
 that the current set of leaf versions on its machine is the version's
 context.

 This example includes the entire new value of the state, but one can
 also send updates as patches.

2.3. PUT a new version as a patch

 Not only are patches smaller, and thus more efficient; they also
 provide useful information for merging two simultaneous edits, for
 instance in collaborative editing.

 One can send an update in a patch by setting the "Patches" header to
 a number, and then set the Message body to a sequence of that many
 patches, separated by blank lines:

 Request:

 PUT /chat
 Version: "g09ur8z74r" | Version
 Parents: "ej4lhb9z78" |
 Content-Type: application/json |
 Merge-Type: sync9 |
 Patches: 2 |
 |
 Content-Length: 62 | | Patch
 Content-Range: json .messages[1:1] | |
 | |
 [{text: "Yo!", | |
 author: {type: "link", value: "/user/yobot"}] | |
 |
 Content-Length: 40 | | Patch
 Content-Range: json .latest_change | |
 | |
 {"type": "date", "value": 1573952202370} | |

 Response:

 HTTP/1.1 200 OK
 Patches: OK

 In order to distinguish each patch within a Version, we need to know
 the length of the patch. To know the length of the patch, each patch
 must include one of the following headers:

 Content-Length: N
 Transfer-Encoding: chunked

 Either of these provide a way to determine when the next message
 starts.

 The previous example uses the Range Patch format, which is defined in
 [RANGE-PATCH]. However, one can use any patch format, by sending a
 patch with a Content-Type: set to a patch format with a defined
 behavior, such as application/json-patch+json (as specified in
 [RFC6902]):

 Request:

 PUT /chat
 Version: "up12vyc5ib" | Version
 Parents: "2bcbi84nsp" |
 Content-Type: application/json |
 Merge-Type: sync9 |
 Patches: 1 |
 |
 Content-Length: 326 | | Patch
 Content-Type: application/json-patch+json | |
 | |
 [| |
 { "op": "test", "path": "/a/b/c", "value": "foo" }, | |
 { "op": "remove", "path": "/a/b/c" }, | |
 { "op": "add", "path": "/a/b/c", "value": [] }, | |
 { "op": "replace", "path": "/a/b/c", "value": 42 }, | |
 { "op": "move", "from": "/a/b", "path": "/a/d }, | |
 { "op": "copy", "from": "/a/d/d", "path": "/a/d/e" }| |
] | |

 Response:

 HTTP/1.1 200 OK
 Patches: OK

2.4. GET a specific version

 A server can optionally allow clients to request historical versions
 of a resource in GET requests. To request a historical version, a
 client includes a Version and/or Parents header in the request.

 Request:

 GET /chat
 Version: "ej4lhb9z78"

 Response:

 HTTP/1.1 209 Subscription

https://datatracker.ietf.org/doc/html/rfc6902

 Subscribe: keep-alive

 Version: "ej4lhb9z78" | Version
 Parents: "oakwn5b8qh", "uc9zwhw7mf" |
 Content-Type: application/json |
 Merge-Type: sync9 |
 Content-Length: 73 |
 |
 [{text: "Hi, everyone!", | | Body
 author: {type: "link", value: "/user/tommy"}}] | |

 If a GET request contains a Version header:

 - The Subscribe header (Section 3) MUST be absent.

 - The server SHOULD return a single response, containing that
 version of the resource in its body, with the Version header set
 to the version requested by the client.

 - If the server does not support historical versions, it MAY ignore
 the Version header and respond as usual, but MUST NOT include the
 Version header in its response.

 If a GET request contains a Parents header:

 - If the request does not also contain a Version, then the request
 MUST also contain a Subscribe header, and the server SHOULD send
 a set of versions connecting the Parents to the current Version,
 and then subscribe the client to future updates.

 - If the request also contains a Version, then the server SHOULD
 respond with a set of versions that connect the specified Parents
 with the specified Version, and then close the connection.

 - If the server does not support historical versions, then it MAY
 ignore the Parents header, but MUST NOT include the Parents
 header in its response.

 A server MAY refactor or rebase the version history that it provides
 to a client, so long as it does not affect the resulting state, or
 the result of the patch-type's merges.

3. Subscriptions for GET

 If a GET request includes the Subscribe header, it will return a
 stream of versions; a new version pushed with each change. Each
 version can contain either the new contents in its body, or a set of
 Patches.

 Request:

 GET /chat
 Subscribe: keep-alive

 Response:

 HTTP/1.1 209 Subscription
 Subscribe: keep-alive

 Version: "ej4lhb9z78" | Version
 Parents: "oakwn5b8qh", "uc9zwhw7mf" |
 Content-Type: application/json |
 Merge-Type: sync9 |
 Content-Length: 73 |
 |
 [{text: "Hi, everyone!", | | Body
 author: {type: "link", value: "/user/tommy"}}] | |

 Version: "g09ur8z74r" | Version
 Parents: "ej4lhb9z78" |
 Content-Type: application/json |
 Merge-Type: sync9 |
 Patches: 1 |
 |
 Content-Length: 62 | | Patch
 Content-Range: json .messages[1:1] | |
 | |
 [{text: "Yo!", | |
 author: {type: "link", value: "/user/yobot"}] | |

 Version: "2bcbi84nsp" | Version
 Parents: "g09ur8z74r" |
 Content-Type: application/json |
 Merge-Type: sync9 |
 Patches: 1 |
 |
 Content-Length: 68 | | Patch
 Content-Range: json .messages[2:2] | |
 | |
 [{text: "Hi, Tommy!", | |
 author: {type: "link", value: "/user/sal"}}] | |

 Version: "up12vyc5ib" | Version
 Parents: "2bcbi84nsp" |
 Content-Type: application/json |
 Merge-Type: sync9 |
 Patches: 1 |
 |
 Content-Length: 326 | | Patch
 Content-Type: application/json-patch+json | |
 | |

 [| |
 { "op": "test", "path": "/a/b/c", "value": "foo" }, | |
 { "op": "remove", "path": "/a/b/c" }, | |
 { "op": "add", "path": "/a/b/c", "value": [] }, | |
 { "op": "replace", "path": "/a/b/c", "value": 42 }, | |
 { "op": "move", "from": "/a/b", "path": "/a/d }, | |
 { "op": "copy", "from": "/a/d/d", "path": "/a/d/e" }| |
] | |

3.1. Creating a Subscription

 The "Subscribe" header on a GET request modifies the method semantics
 to request a subscription to future updates to the data, rather than
 only the current version of the representation data.

 A client requests a subscription by issuing a GET request with a
 Subscribe header:

 Subscribe
 or Subscribe: keep-alive
 or Subscribe: keep-alive=<seconds>

 If a server implements Subscribe, it MUST include a Subscribe header
 in its response. The server then SHOULD keep the connection open,
 and send updates over it.

 In general, a server that implements subscriptions promises to keep
 its subscribed clients up-to-date by sending changes until the client
 closes the subscription. A subscription is different from a GET
 connection (e.g. a TCP connection, or HTTP/2 stream). If a client
 requests "Subscribe: keep-alive", then the subscription will be
 remembered even after the GET connection closes. A subscription can
 be resumed by the client issuing another GET with a Subscribe header.

3.2. Sending multiple updates per GET

 To send multiple updates, a server concatenates multiple
 sub-responses into a single response body. Each sub-response must
 contain its own headers and body. Each sub-response must have a
 known length, which means it must contain one of the following
 headers:

 - Content-Length: N
 - Transfer-Encoding: chunked
 - Patches: N

 Each sub-response must have both headers and a body. The body may be
 zero-length.

3.3. Continuing a Subscription

 Even if a connection closes, a subscription might still be active.
 If a server's response headers for a connection contained:

 Subscribe: keep-alive
 or Subscribe: keep-alive=<seconds>

 Then the server SHOULD keep the subscription open even after the
 connection closes. This means that the server promises to keep
 enough history to merge with the client when the client comes back
 online.

 When the client reconnects, it may specify the most recent versions
 it saw from the server using the Parents header. This tells the
 server which versions of state to catch it up from.

 The server can suggest how long it will wait for the client by
 responding with Subscribe: keep-alive=<seconds>. A server should
 wait at least <seconds> after a connection closes before dropping the
 subscription, and clearing its history.

3.4. Ending a Subscription

 Servers and clients MAY drop a subscription at any time, no matter
 the value of keep-alive. A client may reconnect by issuing a new GET
 request with a new Subscribe header.

 If a subscription is set to keep-alive, then closing the TCP/QUIC
 connection won't end the subscription. Thus a client needs a way to
 explicitly end the subscription. In HTTP/1, this is by sending the
 text "forGET\n" over the TCP connection. In HTTP/2, this is by
 issuing a CLOSE event to the GET request's stream. Alternatively,
 since today's web browsers do not support sending extra text after a
 request body, the client can issue a fresh request specified as a
 FORGET method.

3.5. Errors

 If a server has dropped the history that a client requests, the
 server can return a 410 GONE response, to tell the client "sorry, I
 don't have the history necessary to synchronize with you."

4. Design Goals

 This spec is designed to be:

 1. Backwards-compatible with existing HTTP

 2. Easy to implement simple synchronizers with. For instance, it
 should be easy to write a read-only synchronizer for an
 append-only log.

 3. Possible to implement arbitrary synchronization algorithms. For
 instance, these extensions support any Operational Transform or
 CRDT algorithm.

5. Use Cases

5.1. Dynamic Resources: Animating a GIF

 Braid allows resources to become inherently dynamic -- able to change
 over time. You can use this to make a resource animate.

 In this example, a server streams changes to a GIF file in a sequence
 of patches. When the client renders the new state of the GIF after
 each patch, a new frame of animation is displayed.

 Request:
 GET /animated-braid.gif
 Subscribe

 Response:
 HTTP/1.1 209 Subscribe
 Content-Type: image/gif | Version
 Patches: 2 |
 |
 Content-Length: 1239 | | Patch
 Content-Range: bytes 100-200 | |
 | |
 <binary data> | |
 |
 Content-Length: 62638 | | Patch
 Content-Range: bytes 348-887 | |
 | |
 <binary data> | |

5.2. Dynamic Proxies and Caches

 Since updates aren't pushed, today's web often uses timeouts to
 trigger a cache becoming stale. Unfortunately, sometimes the timeout
 is wrong, and caches become out-of-date, and we have to wait for an
 unknown cache to timeout before we can see the new version of
 something. As a result, programmers have learned to force-reload
 pages habitually, and caches become less efficient than necessary.

 A cache supporting the Braid extensions, however, will automatically
 update whenever a change occurs. If a client starts a GET

 Subscription with a proxy, the proxy will then start and maintain a
 GET Subscription with the origin server. The origin server will
 promise to send the proxy updates over its GET Subscription, and the
 proxy will then relay these changes to all connected clients. If a
 set of clients and servers all support Braid, they will never need to
 force-reload caches for any data amongst them.

5.3. A Serverless Chat Example

 A Braid web application can operate offline. A user can use the app
 from an airplane, and their edits can synchronize when they regain
 internet connections. Additionally, the Braid protocol can be
 expressed over peer-to-peer transports (e.g. Braid-WebRTC) to support
 a peer-to-peer synchronization without a server. Braid-HTTP clients
 will be able to interoperate with Braid-WebRTC peers. For example, a
 chat application might be served and synchronized on Braid-HTTP,
 while also establishing redundant peer-to-peer connections on
 Braid-WebRTC. The server could then be shut down, and users of the
 chat app could continue to send messages to one another.

 Imagine the server serves the current set of trusted clients' IP
 addresses at the /peers state. Each client then subscribes to the
 /peers state with:

 GET /peers
 Subscribe: keep-alive

 [{ip: '13.55.32.158', pubkey: 'x371...8382'},
 {ip: '244.38.55.83', pubkey: 'o2u8...2s73'},
 ...
]

 Each peer can then choose a set of those peers with whom to establish
 a WebRTC connection. It will then exchange Braid messages with those
 peers over that connection.

6. Related Work

6.1. Web Frameworks

 Web applications typically synchronize the state of a client and
 server with layers of models, views, and controllers in web
 frameworks. By automating synchronization within HTTP, programmers
 have to write fewer layers of code on top of it.

 ====== Legacy Websites ====== ====== Braid Websites ======

 Today's webpages are Braid generalizes HTTP
 generated from multiple into a standard for

 layers of state. Each layer synchronizing state within
 has a different API. and between websites.

 x Non-standard state API o Standard state API

 _Client__
 / \
 : o o o o : Webpage DOM o o o o State
 : \| \| : \| \|
 : x x : HTML Templates o o State
 : /| /| : /| /|
 : x x x x : JS Models o o o o State
 \ | | | | / | | | |
 | | | | | | | |
 o o o o - http:// - o o o o - http:// -
 / | | | | \ | | | |
 : x x x x : Views o o o o State
 : | \| | : | \| |
 : x x x : Controllers o o o State
 : \ / \| : \ / \|
 : x x : Models o o State
 : \ / : \ /
 \.... x ../ Database o State
 Server

 Today's programmers have to Each piece of Braid state (o)
 learn each API, and wire them has a URL; whether public or
 together, making sure that internal. State can be a
 changes to shared state function of other state, and
 synchronize across all and automatically recompute
 layers and computers. when its dependencies change.
 Braid guarantees network
 synchronization.

6.2. Existing IETF Standards

 A number of IETF specifications already standardize aspects of
 synchronization for specific domains. IMAP [RFC3501] provides
 synchronization of email. WebDAV provides the synchronization of
 "collections" [RFC6578], and has been extended specifically for
 calendar data in CalDAV [RFC4791], and vCards in [RFC6350]. More
 recently, JMAP [RFC8620] provides an updated method of
 synchronization, supporting mail, calendars, and contacts.

7. IANA Considerations

7.1. Header Field Registration

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc6578
https://datatracker.ietf.org/doc/html/rfc4791
https://datatracker.ietf.org/doc/html/rfc6350
https://datatracker.ietf.org/doc/html/rfc8620

 HTTP header fields are registered within the "Message Headers"
 registry maintained at
 <http://www.iana.org/assignments/message-headers/>.

 This document defines the following HTTP header fields, so their
 associated registry entries have been updated according to the
 permanent registrations below (see [BCP90]):

 +---------------------+----------+--------------+-------------+
 | Header Field Name | Protocol | Status | Reference |
 +---------------------+----------+--------------+-------------+
Version	http	experimental	Section 2
Parents	http	experimental	Section 2
Merge-Type	http	experimental	Section 2.2
Patches	http	experimental	Section 2.3
Subscribe	http	experimental	Section 4
 +---------------------+----------+--------------+-------------+

 The change controller is: "IETF (iesg@ietf.org) - Internet
 Engineering Task Force".

8. Security Considerations

 XXX Todo

9. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

10. Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

11. References

11.1. Normative References

http://www.iana.org/assignments/message-headers/
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

 [RFC7230] "HTTP/1.1 Message Syntax and Routing", RFC 7230.

 [RFC7231] "HTTP/1.1 Semantics and Content", RFC 7231.

 [RFC7233] "HTTP/1.2 Range Requests", RFC 7233.

 [RFC7234] "HTTP/1.2 Caching", RFC 7234.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [MERGE-TYPES] draft-toomim-httpbis-merge-types-00

 [RANGE-PATCH] draft-toomim-httpbis-range-patch-00

 [STRUCTURED-HEADERS] draft-ietf-httpbis-header-structure-14

11.2. Informative References

 [XHR] Van Kestern, A., Aubourg, J., Song, J., and R. M.
 Steen, H. "XMLHttpRequest", September 2019.
 <https://xhr.spec.whatwg.org/>

 [SSE] Hickson, I. "Server-Sent Events", W3C Recommendation,
 February 2015.
 <https://www.w3.org/TR/2015/REC-eventsource-20150203/>

 [REST] Fielding, R. "Architectural Styles and the Design of
 Network-based Software Architectures" Doctoral
 dissertation, University of California, Irvine, 2000.

 [RFC3501] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 3501, DOI 10.17487/RFC3501, March 2003,
 <https://www.rfc-editor.org/info/rfc3501>.

 [RFC6578] Daboo, C., Quillaud, A., "Collection Synchronization
 for Web Distributed Authoring and Versioning (WebDAV)",

RFC 6578, DOI 10.17487/RFC6578, March 2012,
 <https://www.rfc-editor.org/info/rfc6578>.

 [RFC4791] Daboo, C., Desruisseaux, B., Dusseault, L., "Calendaring
 Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <https://www.rfc-editor.org/info/rfc4791>.

 [RFC6350] Perreault, S., "vCard Format Specification", RFC 6350,
 DOI 10.17487/RFC6350, August 2011,
 <https://www.rfc-editor.org/info/rfc6350>.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-toomim-httpbis-merge-types-00
https://datatracker.ietf.org/doc/html/draft-toomim-httpbis-range-patch-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-14
https://xhr.spec.whatwg.org/
https://www.w3.org/TR/2015/REC-eventsource-20150203/
https://datatracker.ietf.org/doc/html/rfc3501
https://www.rfc-editor.org/info/rfc3501
https://datatracker.ietf.org/doc/html/rfc6578
https://www.rfc-editor.org/info/rfc6578
https://datatracker.ietf.org/doc/html/rfc4791
https://www.rfc-editor.org/info/rfc4791
https://datatracker.ietf.org/doc/html/rfc6350
https://www.rfc-editor.org/info/rfc6350

 [RFC8620] Jenkins, N., Newman, C., "The JSON Meta Application
 Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620,
 July 2019, <https://www.rfc-editor.org/info/rfc8620>.

 [RFC6902] Bryan, P., Nottingham, M., "Javascript Object Notation
 (JSON) Patch", RFC 6902.

 [BCP90] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

12. Acknowledgements

 In addition to the authors, this spec contains intellectual
 contributions from the following people:

 - Seph Gentle
 - Mitar Milutinovic
 - Sarah Allen
 - Duane Johnson
 - Travis Kriplean
 - Marius Nita
 - Paul Pham
 - Morgan Dixon
 - Karthik Palaniappan

 We thank the following people for key feedback on previous drafts:

 - Austin Wright
 - Martin Thomson
 - Eric Kinnear
 - Olli Vanhoja
 - Julian Reschke

 We also thank Mark Nottingham, Fred Baker, Adam Roach, and Barry
 Leiba for facilitating a productive environment.

13. Authors' Addresses

 For more information, the authors of this document are best contacted
 via Internet mail:

 Michael Toomim
 Invisible College, Berkeley
 2053 Berkeley Way
 Berkeley, CA 94704

 EMail: toomim@gmail.com

https://datatracker.ietf.org/doc/html/rfc8620
https://www.rfc-editor.org/info/rfc8620
https://datatracker.ietf.org/doc/html/rfc6902
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864

 Web: https://invisible.college/@toomim

 Greg Little
 Invisible College, Berkeley
 2053 Berkeley Way
 Berkeley, CA 94704

 EMail: glittle@gmail.com
 Web: https://glittle.org/

 Rafie Walker
 Bard College

 EMail: slickytail.mc@gmail.com

 Bryn Bellomy
 Invisible College, Berkeley
 2053 Berkeley Way
 Berkeley, CA 94704

 EMail: bryn@signals.io
 Web: https://invisible.college/@bryn

https://invisible.college/@toomim
https://glittle.org/
https://invisible.college/@bryn

