
TCPM WG J. Touch
Internet Draft
Intended status: Experimental July 19, 2018
Expires: January 2019

The TCP Service Number Option (SNO)
draft-touch-tcpm-sno-09.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. This document may not be modified,
 and derivative works of it may not be created, except to publish it
 as an RFC and to translate it into languages other than English.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on July 19, 2018.

Touch Expires January 19, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TCP Service Number Option (SNO) July 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

 This document specifies a TCP option for service numbers. The
 current SYN destination port is used both to indicate the desired
 service and as a connection demultiplexing field. This option
 separates those two functions, retaining the current destination
 port solely for demultiplexing and indicating the service separately
 in a service number option (SNO). By decoupling these two functions,
 SNO allows a larger number of concurrent connections for a single
 service, as might be useful between fixed addresses of proxies.

Table of Contents

1. Introduction...3
2. Conventions used in this document..............................4
3. Background...4

3.1. IANA port numbers...5
3.2. DNS SRV records...6
3.3. RPC portmapper and RPCBIND................................6
3.4. TCPMUX..7
3.5. Summary of alternatives and comparison to SNO.............8

4. TCP Service Number Option......................................9
4.1. Interaction between SNO and the TCP API..................10

4.1.1. Active OPEN (Unix connect)..........................11
4.1.2. Passive OPEN (Unix listen)..........................11
4.1.3. Impact on the TCP OPEN API..........................11

4.2. Error conditions...12
4.3. Backward compatibility...................................12

5. Issues..13
5.1. Interaction with other protocols and features............13
5.2. Potential use in other transport protocols...............14

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Touch Expires January 19, 2019 [Page 2]

Internet-Draft TCP Service Number Option (SNO) July 2018

5.3. Discussion of alternative approaches.....................15
5.4. Implementation Issues....................................16

6. SNO impact on TCP option space................................17
7. Security Considerations.......................................17
8. IANA considerations...18
9. References..18

9.1. Normative References.....................................18
9.2. Informative References...................................18

10. Acknowledgments..20

1. Introduction

 TCP connections are defined by a socket pair, where each TCP socket
 consists of an IP address and a port number. The IP addresses
 indicate the network endpoints (hosts) of the connection, and the
 port numbers allow a pair of IP endpoints to have more than one
 concurrent connection. TCP connections begin when an application on
 one host sends a SYN segment to a waiting application on the other
 host, determined by the destination port in that segment.

 Port numbers thus serve two distinct purposes. For the entirety of a
 connection, they help differentiate concurrent connections as part
 of the socket pair, and are thus used for demultiplexing within a
 host. For the SYN, the destination port also indicates the waiting
 application, i.e., the service for that connection, acting as a
 service identifier.

 Service identifiers need to be coordinated between the endpoints of
 a connection, but need not be coordinated with any other component
 of the network. To avoid the need for explicit pairwise
 coordination, most Internet transport protocols currently use
 globally-assigned destination port numbers as service identifiers;
 this includes TCP, UDP, SCTP, and DCCP [RFC768] [RFC793] [RFC4960]
 [RFC4340]. An assigned port number can be requested from the
 Internet Assigned Numbers Authority (IANA) [IANA].

 The use of SYN destination ports as both service identifier and
 demultiplexing identifier can impact TCP performance. For a given
 service, a given pair of endpoints can have at most 2^16 concurrent
 connections, or even connections in the TIME-WAIT state (which is
 typically expected to last two minutes) [To1999]. This limits
 services to at most an average of 550 connections per second, which
 can be a constraint on proxy-to-proxy services.

 To reduce this impact, this document specifies the TCP service
 number option (SNO), which allows services to be specified in an
 option separate from the current header destination port field. SNO

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340

Touch Expires January 19, 2019 [Page 3]

Internet-Draft TCP Service Number Option (SNO) July 2018

 decouples the use of ports for connection demultiplexing and state
 management from their use to indicate a desired endpoint service.
 This decoupling can substantially increase the number of concurrent
 connections to 2^32; even considering current expected TIME-WAIT
 delay, that can support up to 35.8M connections per second.

 Although it changes TCP SYNs, it does not otherwise affect the
 processing of other TCP segments or the TCP state machine. SNO must
 be implemented at both ends of a TCP connection to be effective.

2. Conventions used in this document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying RFC-2119 significance.

 In this document, the characters ">>" preceding an indented line(s)
 indicates a compliance requirement statement using the key words
 listed above. This convention aids reviewers in quickly identifying
 or finding the explicit compliance requirements of this RFC.

3. Background

 TCP supports multiplexing as one of its six core facilities,
 allowing a single pair of hosts to have multiple concurrent TCP
 sessions (see Sec. 1.5 of [RFC793]). An endpoint address is
 associated with a port number, forming a socket; and "A pair of
 sockets uniquely identifies each connection." Although ports can be
 bound to services uniquely at each endpoint, RFC 793 notes that it
 is useful to attach frequently-used services to fixed ports which
 are publicly known, but that other services may be discovered by
 dynamic means. This document addresses one impact of that
 suggestion, and specifies an alternative which alleviates that
 impact.

 The Internet currently relies on the use of fixed, publicly-agreed
 port numbers for most services, whether for public access (e.g.,
 HTTP, FTP, DNS) or between pre-arranged pairs (e.g., X11, SSL). Some
 of these services use one public port to negotiate other ports for
 further exchanges (e.g., FTP, H.323, RPC).

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Touch Expires January 19, 2019 [Page 4]

Internet-Draft TCP Service Number Option (SNO) July 2018

 There are several current methods for determining the port for a
 public service:

 o Index the service in IANA's port registry

 o Index the service in the host's DNS SRV records

 o Ask the host directly using an RPC portmapper/bind-like service

 o Ask the host for a hand-off using the TCPMUX port (port #1)

 Many of these alternatives, including the use of strings as service
 identifiers, were described in principle in RFC 814, and have
 evolved into deployed capabilities [RFC814]. Each of these
 alternatives is summarized below, and each either significantly
 limits the number of concurrent connections for a service or incurs
 additional latency or management overhead compared to SNO.

3.1. IANA port numbers

 The Internet Assigned Numbers Authority currently manages globally
 reserved port numbers [RFC6335]. The desired port number for a
 service is determined either by an operating system index to a copy
 of IANA's table (e.g., getportbyname() in Unix, which indexes the
 /etc/services file), or is fixed in inside the application.

 The port number space 0..65536 is split into three ranges [RFC2780]:

 o 0..1023 "well-known", also called "system" ports

 o 1024..49151 "registered", also called "user" ports

 o 49152..65535 "dynamic", also called "private" ports

 The terms "well-known" and "registered" are misnomers; both of those
 port ranges are managed by IANA, and are equally registered and
 well-known; they are currently known together as "assigned"
 [RFC6335]. System ports are intended for services that run in
 privileged mode, sometimes known as "root", although that
 distinction is blurred in current operating systems.

 IANA-managed ports are allocated globally, for all hosts everywhere
 on the public Internet, even though the meaning of a port need be
 known only for a particular host. A given service is typically
 assigned a single port, which then limits the number of concurrent
 connections between two hosts to 2^16, i.e., the number expressible
 in the source port field. This assumes that the source port can be

https://datatracker.ietf.org/doc/html/rfc814
https://datatracker.ietf.org/doc/html/rfc814
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc2780
https://datatracker.ietf.org/doc/html/rfc6335

Touch Expires January 19, 2019 [Page 5]

Internet-Draft TCP Service Number Option (SNO) July 2018

 arbitrary; in may implementations, when a service is bound to a SYN
 destination port it is prohibited for use in other connections,
 e.g., as a source port for outgoing SYNs.

3.2. DNS SRV records

 DNS SRV resource records provide a way to find the port number for a
 service based on its string name [RFC2782]. A host asks the DNS to
 index "_servicename._tcp.hostname" (underscores required) and the
 response is a record that includes both the port number and host's
 IP address.

 SRV records allow port numbers to be allocated on a per-host basis,
 and allow multiple ports to be indicated for a given service. A
 system that wants to support a large number of concurrent HTTP
 connections could advertise the HTTP service as available on the
 entire unassigned (dynamic) port range, in addition to port 80. This
 can increase the number of concurrent connections to 2^30 (2^14
 dynamic ports and 2^16 source ports), which would be nearly as good
 as SNO (2^32).

 However, SRV lookups require an additional protocol exchange for
 each first-time access, which can traverse much of the same path the
 TCP SYN will, i.e., incurring an additional round-trip time of delay
 (because DNS servers are often located near the hosts they serve).
 Further, using SRV records requires that the dynamic ports be
 allocated in advance, and they cannot be reclaimed once advertised.
 SRV advertisement may be useful for a single known service, but does
 not support a larger number of connections for any (or every)
 service on-demand.

 Additional challenges for DNS SRV records are autonomy, robustness,
 and size of the name space. Many hosts do not have control over
 their DNS entries; moving port lookup into the DNS could limit the
 services that a host can deploy for public access. This solution
 also makes the DNS a required part of the Internet architecture,
 even for accessing services on hosts with well-known IP addresses
 (e.g., the DNS itself). This decreases network robustness, because
 access of services on a host depends on access to the DNS.

3.3. RPC portmapper and RPCBIND

 An alternative to indexing the service name at a separate host via
 the DNS would be to contact the intended host directly and request
 the lookup there. This is how the RPC portmapper (v2) and RPCBIND
 (v3 and v4) services work, where the source host contacts the
 destination on port #111 [RFC1833][RFC5531]. This service was

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc1833

Touch Expires January 19, 2019 [Page 6]

Internet-Draft TCP Service Number Option (SNO) July 2018

 designed for the same basic reason as the TCP port option of this
 document: to allow a small subset of a potentially large set of
 services to be dynamically bound to a small number of ports. The
 differences between portmapper and RPCBIND are not important here,
 so they are discussed as a single example.

 In both portmapper and RPCBIND the source host contacts the
 destination host on port 111, and issues a request including the
 desired destination RPC service name. A response indicates the
 appropriate port for that RPC service.

 Like the DNS SRV solution, portmapper/RPCBIND requires a separate
 round-trip (one for UDP; more for TCP) to perform the lookup
 operation. This adds to both the communication overhead and
 connection establishment latency.

 The portmapper service also allows services to be selected on
 version, i.e., to have different versions of a service on different
 ports, accessed using the same version name but a different version
 number. This is handled in some IANA entries, DNS SRV records, and
 TCPMUX by using a port keyword that embeds the version number in the
 name, e.g., 'imap' vs. 'imap3'. In most other cases, versioning is
 indicated and negotiated in-band, inside the protocol (e.g., HTTP).

 Unfortunately, portmapper has the same limitation as DNS SRV
 records; once a port is advertised for a given service, it cannot be
 reclaimed for use by another service. Further, once a given service
 is advertised, it is likely that the requesting host will cache the
 response. As a result, dynamic ports can be used to extend the port
 space for a given service in advance, but they need to be pinned to
 that service when it is first requested from that host. Again, this
 limits the ability to flexibly support large numbers of connections
 for any (or every) service.

3.4. TCPMUX

 TCPMUX is a service on TCP port #1 which allows a host to provide a
 port name handoff service for itself [RFC1078]. A source host opens
 a connection to port 1 on a destination host and transmits
 'portname<CR><LF>' in the data stream; the destination replies with
 either '+<CR><LF>' (yes, the service is available) or '-<CR><LF>'
 (no, the service is not available). If the service is available, the
 connection is transferred to the desired service while still in the
 OPEN state.

 TCPMUX modifies the semantics of TCP connection establishment; its
 connections always succeed, and upon receipt of the named service

https://datatracker.ietf.org/doc/html/rfc1078

Touch Expires January 19, 2019 [Page 7]

Internet-Draft TCP Service Number Option (SNO) July 2018

 the application must determine whether to proceed or not. This
 document seeks a more conventional TCP semantics, where unavailable
 services result in a rejected connection (e.g., RST in reply and/or
 ICMP error message).

 TCPMUX further requires all new connections to be received on a
 single port; this again limits the number of connections between two
 machines to 2^16, which provides no benefit compared to existing
 assigned ports as currently used in SYN segments.

3.5. Summary of alternatives and comparison to SNO

 Each of the alternatives presented has a significant limitation.
 These alternatives are summarized as follows:

 o IANA ports: limits a given service to 2^16 concurrent connections
 between two IP addresses; fewer if system/user/dynamic boundaries
 are preserved

 o DNS SRV records: requires an extra round-trip exchange for
 lookup, not typically under host control, allows up to 2^30
 concurrent connections but requires that the additional space of
 2^14 be allocated to services on a given host in advance.

 o Portmapper: requires an extra round-trip exchange for lookup,
 allows up to 2^30 concurrent connections but requires that the
 additional space of 2^14 be allocated to services on a given host
 in advance

 o TCPMUX: destroys semantics of TCP connection establishment,
 limits connections per endpoint pair to 2^16 over all services

 SNO allows the destination host to associate services with processes
 on a per-connection basis, while avoiding unnecessary additional
 round-trips or connections and also while reducing message overhead.
 This enables every service to support up to 2^32 concurrent
 connections, by decoupling the demultiplexing and service identifier
 role of SYN destination ports.

 The basic operation of SNO is as follows:

 o The source host issues a SYN, picking both source and destination
 port numbers arbitrarily that are not currently in use (active or
 pending connection).

 o The SYN includes SNO, which indicates the IANA assigned port
 number of the desired service.

Touch Expires January 19, 2019 [Page 8]

Internet-Draft TCP Service Number Option (SNO) July 2018

 o The destination host, upon receiving the SYN with SNO, determines
 whether the service indicated in the option is running. If so, a
 SYN-ACK is issued with a zero-length SNO, indicating success of
 the lookup and handoff. The service is bound to that connection
 at the destination.

 o If the service is not available, the appropriate RST and/or ICMP
 error messages are returned.

 The benefits to TCP SNO are that:

 o For a given service, the number of connections between two given
 IP addresses is no longer limited to 2^16; it is expanded to
 2^32.

 o SNO support is provided at the same host as the intended service,
 so the fate of both is shared (i.e., it is more robust than
 decoupled service such as DNS SRV).

 o SNO is embedded in the TCP SYN segment, avoiding extra round
 trips and messages.

 o NAT traversal is preserved.

 o TCP connection semantics are maintained, i.e., services not
 available never connect.

4. TCP Service Number Option

 The TCP service number option (SNO) extends the TCP header to
 include a 16-bit port field indicating desired service, as shown in
 Figure 1.

 >> New implementations of TCP MAY implement SNO.

 >> SNO SHOULD NOT appear in any TCP segment except SYN and SYN-ACK.
 SNO MUST be silently ignored if in any segments except SYN and SYN-
 ACK.

 SNO includes the mandatory KIND and LENGTH fields [RFC793], as well
 as the desired service port number. The current specification uses
 the TCP Experimental Option format, with an ExID of 0x5323 in
 network-standard byte order (ASCII for "S#") [RFC6994].

 The KIND is a single octet (byte) which indicates this is an
 experimental option; SNO is supported on both experimental options
 (253 and 254); there is no difference as to which experimental

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6994

Touch Expires January 19, 2019 [Page 9]

Internet-Draft TCP Service Number Option (SNO) July 2018

 option is used. The LENGTH is a single octet (byte) interpreted as
 an unsigned number that indicates the length of this option in
 octets (bytes), including the KIND and LENGTH fields, as well as the
 octets of the Service-Number.

 +--------+--------+--------+--------+
 | 253 | 6 | 0x53 | 0x23 |
 +--------+--------+--------+--------+
 | Service-Number |
 +--------+--------+

 Figure 1 TCP SNO SYN option format

 Upon receipt of a TCP SYN segment including SNO ('TCP SYN/SNO'), the
 Service-Number is matched against a list of available services.
 Available services are those that listen on the indicated port
 number. E.g., a web server that listens for incoming connections on
 port 80 will respond to connections with SYN segments with SNO=80.

 The way in which SNO and TCP destination port numbers interacts is
 described in Section 4.1. When an incoming TCP SYN/SNO is considered
 valid, the connection is completed by returning a SYN-ACK with a
 null SNO.

 +--------+--------+--------+--------+
 | 253 | 4 | 0x53 | 0x23 |
 +--------+--------+--------+--------+

 Figure 2 TCP Null SNO format, as used in SYN-ACK

 >> A TCP SYN/SNO answered with a TCP SYN with a non-null SNO (LENGTH
 > 2) or lacking the SNO option MUST cause the initiator to abort the
 connection via issuing a RST and by reporting an error to the
 application as if the port were not available.

 The TCB for that connection is then associated with the process for
 the matching service, which then handles all further interactions
 with the connection.

4.1. Interaction between SNO and the TCP API

 TCP currently uses TCP port numbers to demultiplex connections as
 well as to indicate the desired service at the destination. SNO
 retains the demultiplexing capability, but overrides service
 identification.

Touch Expires January 19, 2019 [Page 10]

Internet-Draft TCP Service Number Option (SNO) July 2018

 TCP specifies port numbers for connections in the OPEN command. The
 current OPEN command is described in RFC 793 Sections 2.7 and 3.8
 as:

 OPEN (local port, foreign socket, active/passive
 [, timeout] [, precedence] [, security/compartment]
 [, options])
 -> local connection name

 The OPEN call is used to initiate connections, corresponding to Unix
 connect, and to wait for incoming connection requests, corresponding
 to Unix listen. The impact of the SNO option on each of these
 variants is described below.

4.1.1. Active OPEN (Unix connect)

 During a TCP active OPEN command, SNO interprets the port number of
 foreign TCP socket as the SNO Service-Number and selects a random
 number as the foreign port. The OPEN command can be extended to
 override that random selection by extending the foreign socket to
 include both the service identifier and port number as separate
 fields.

4.1.2. Passive OPEN (Unix listen)

 During a TCP passive OPEN command, SNO interprets the local port
 number as the SNO service identifier. The OPEN command can be
 extended to allow the listening application to also indicate a
 specific destination port by extending the local port to include
 both a service identifier and port number as separate fields.

4.1.3. Impact on the TCP OPEN API

 Both active OPEN and passive OPEN may need to extend the current
 port numbers to include separate service identifiers. It may be
 useful to consider that only one service identifier is ever used,
 e.g., an active OPEN may need a separate foreign service identifier,
 and a passive OPEN may need a separate local service identifier, but
 separate service identifiers for both foreign and local would never
 occur. As a result, it may be more convenient to consider the TCP
 OPEN API as being extended with a single service field as follows:

https://datatracker.ietf.org/doc/html/rfc793

Touch Expires January 19, 2019 [Page 11]

Internet-Draft TCP Service Number Option (SNO) July 2018

 SNOPEN (local port, foreign socket, service, active/passive
 [, timeout] [, precedence] [, security/compartment]
 [, options])
 -> local connection name

 Legacy uses of the OPEN call can be trivially converted to the new
 SNOPEN description. A legacy active OPEN uses the port of the
 foreign socket as the service; a legacy passive OPEN uses the local
 port as the service.

 However, because the most common use is to allow the active foreign
 port or passive local port "float" (be unspecified, and thus filled
 by the OS with an arbitrary value), most implementations will not
 need to modify the TCP OPEN API implementation, or can extend the
 API using a separate interface (e.g., Unix setsockopt).

4.2. Error conditions

 There are two error conditions for a SYN segment with the SNO option
 to be considered:

 o SNO not supported

 o Invalid port (i.e., no application listening on that port)

 The case where SNO is not supported is already addressed in TCP as
 an unknown option [RFC793. Implementations are expected to ignore
 it, which means the SYN-ACK would not include the SNO confirmation
 response.

 >> For an invalid port, the receiving TCP should act as it would if
 the destination port were a service that is not available, i.e., it
 SHOULD return an ICMP port unreachable error message [RFC1122]. This
 message MUST include the received TCP header including the SNO
 option in its entirety. The destination TCP MUST also send a RST in
 response. Other interactions are the result of backward
 compatibility, and are discussed in Section 4.3.

4.3. Backward compatibility

 The TCP SNO option is designed to interact correctly only on SNO-
 supporting implementations.

 SNO connection attempts to non-SNO endpoints will be rejected; the
 SNO SYN will receive a non-SNO SYN-ACK, at which point the SNO
 endpoint will terminate the connection attempt.

https://datatracker.ietf.org/doc/html/rfc1122

Touch Expires January 19, 2019 [Page 12]

Internet-Draft TCP Service Number Option (SNO) July 2018

 Services on SNO endpoints will support both SNO and non-SNO incoming
 connections, without the need for recompilation or relinking.

 >> Outgoing connections intended to be compatible with both
 implementations MUST either attempt both SNO and non-SNO connections
 in parallel or retry a failed SNO attempt with a non-SNO attempt.

5. Issues

 The TCP SNO option interacts with some other IP and TCP services,
 notably security services. Variants of the option may be useful in
 other transport protocols. Also, there were a number of alternate
 designs considered which this document captures in summary.

5.1. Interaction with other protocols and features

 TCP SNO potentially interacts with any other protocol that
 interprets or modifies TCP port numbers. This includes IPsec and
 other firewall systems, TCP/MD5 and other TCP security mechanisms,
 FTP and other in-band exchange of ports, and network address
 translators (NATs).

 IPsec uses port numbers to perform access control in transport mode
 [RFC4301]. Security policies can define port-specific access
 control (PROTECT, BYPASS, DISCARD), as well as port-specific
 algorithms and keys. Similarly, firewall policies allow or block
 traffic based on port numbers.

 Use of port numbers in IPsec selectors and firewalls may assume that
 the numbers correspond to well-known services. It is useful to note
 that there is no such requirement; any service may run on any port,
 subject to mutual agreement between the endpoint hosts. Use of SNO
 may interfere with this assumption both within IPsec and in other
 firewalling systems, but it does not add a new vulnerability. New
 implementations of IPsec and firewall systems may want to support
 interpreting SNO in these policy rules, but again should not rely on
 either port numbers to indicate a specific service.

 TCP SNO occupies space in the TCP SYN segment. Such space is
 severely limited in cases where TCP-level security is present, as
 noted in detail in Section 5.

 >> TCP SNO MUST be protected in the same way that the existing SYN
 destination port is protected.

 For IPsec, this is not an issue because the entire TCP header and
 payload are protected by all IPsec modes. None of the TCP header is

https://datatracker.ietf.org/doc/html/rfc4301

Touch Expires January 19, 2019 [Page 13]

Internet-Draft TCP Service Number Option (SNO) July 2018

 protected by application-layer security, e.g., TLS, so again this is
 not an issue [RFC5246].

 The resulting primary concern is TCP-level security, e.g., legacy
 TCP/MD5 and its successors TCP-AO [RFC2385][RFC5925]. TCP/MD5 always
 excludes TCP options in its hash calculation; this it fails to
 protect current critical TCP options such as alternate checksums,
 window scale, and timestamp options [RFC793] [RFC7323]. TCP-AO
 allows options to be included or excluded, depending on per-
 connection parameter. This document recommends, as per above, that
 SNO, as all options, be included in TCP-level protection. Note that
 it may be difficult to use SNO together with any of these TCP-layer
 protection mechanisms unless the TCP option space is extended, as
 with TCP EDO and/or EDO-SYN [To2018a][To2018b].

 A number of protocols exchange port numbers in-band, notably to
 coordinate separate concurrent connections, e.g., FTP (file
 transfer) and SIP (teleconferencing) [RFC959][RFC3261]. Because
 these protocols coordinate the specific port numbers in advance,
 there is no need for SNO to indicate the desired service. As a
 result, it is unlikely that it would be useful to augment these
 protocols to support SNO in their creation of subordinate
 connections. SNO could still be useful in establishing the primary
 (first) connection for these services.

 Network address and port translators, known collectively as NATs,
 not only read TCP ports, but may also translate them [RFC2993]. This
 interferes with the use of ports for service identification
 [RFC3234]. SNO may allow services to be identified behind NATs if
 NATs are not further extended to translate SNO. It is thus unknown
 whether SNO will help restore service identification in the presence
 of NATs.

 TCP connections using SNO continue to use IP addresses and ports,
 although both port numbers are typically set arbitrarily.
 Translation of these ports should not interfere with the operation
 of NATs, though this has not been verified and is not a design
 requirement.

5.2. Potential use in other transport protocols

 As noted earlier, SNO may be a useful addition to a variety of other
 transport protocols, such as UDP, SCTP and DCCP [RFC768] [RFC4960]
 [RFC4340]. Adding SNO support to SCTP and DCCP should be
 straightforward because both already have an option space. These are
 not addressed further in this document, because this focuses on TCP
 only.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc2993
https://datatracker.ietf.org/doc/html/rfc3234
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340

Touch Expires January 19, 2019 [Page 14]

Internet-Draft TCP Service Number Option (SNO) July 2018

 DCCP already includes a Service Code that provides a similar way to
 separately identify services, but these codes are 32 bits and use a
 separate IANA registered space. DCCP does not use Service Codes as a
 way to expand the number of concurrent connections to a given IANA
 transport service.

 UDP lacks options, so adding support for SNO is not feasible.

5.3. Discussion of alternative approaches

 The current proposal assumes that the source TCP selects both source
 and destination port numbers randomly, that SNO occurs only in SYN
 and SYN-ACKs. A number of alternative approaches were considered
 during the development of the approach presented herein. These
 include:

 o A portmapper-like service that returns a specific port number

 o Continued demuxing based on SNO

 o Dynamic overwriting of the destination port

 The first approach, of returning a specific port number for a
 service, requires a separate round trip and messages to initiate a
 connection. We avoid both the additional time and messages in the
 proposed solution which integrates the lookup in the SYN.

 Continued demultiplexing based on SNO would violate TCP connection
 semantics, which indicate that a connection be uniquely identified
 by the 4-tuple: <src addr><src port><dst addr><dst port>. Although
 SNO demuxing would increase the connection tuple space, this seems
 unnecessary as it is already over 2^32 concurrent connections
 between a single pair of host addresses. Finally, this variant
 incurs the SNO option overhead on every message, which seems
 unnecessarily inefficient. The proposed solution is more efficient
 and sufficiently increases the utility of the entire current
 connection name space.

 Dynamic overwriting of the destination port complicates the
 connection establishment on the source side, because the SYN-ACK
 would have a different port pair than the SYN. It would further
 interfere with NAT traversal. The primary utility for overwriting
 the port number would be to facilitate demultiplexing at the
 receiver, but this is should already include the entire 4-tuple
 anyway. Overall, this variant seems unnecessarily complex for no
 real benefit.

Touch Expires January 19, 2019 [Page 15]

Internet-Draft TCP Service Number Option (SNO) July 2018

5.4. Implementation Issues

 Prototypes underway in both FreeBSD and Linux indicate substantial
 challenges with implementing SNO due to errors in option processing
 as well as optimizations that interfere with SNO's decoupling of
 service and connection identifiers.

 Option processing has never been sufficiently described to ensure
 interoperable implementation. Both FreeBSD and Linux assume that TCP
 options can be processed at a single location in both incoming and
 outgoing TCP header processing, but this has never been true. In
 particular, options that determine whether a segment is valid (TCP
 MD5, TCP-AO, header checksum, etc.) must be processed before any
 other header fields are interpreted, whereas options that are
 interpreted in the context of header fields (e.g., SACK, etc.) must
 be interpreted afterwards.

 Keeping track of TCP state can require multiple data structures on
 both endpoints, but these structures are currently optimized
 assuming that port numbers are overloaded as both service and
 connection identifiers. Connections can be in any of the following
 11 states: CLOSED, LISTEN, SYN-SENT, SYN-RECEIVED, ESTABLISHED, FIN-
 WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT. CLOSED
 is fictional because no connection context exists. The remaining
 states are often grouped as follows:

 o LISTEN - no connection state yet; tracking which ports are bound

 o Active - SYN-SENT, ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-
 WAIT, CLOSING, and LAST-ACK (sometimes also TIME-WAIT), in which
 full connection state is kept

 There are two states that are typically not kept in detail - SYN-
 RECEIVED and TIME-WAIT. SYN-RECEIVED keeps track of a connection
 that has received a SYN but not yet the final ACK of the three-way
 handshake; it state is typically not kept in detail to avoid DOS
 attacks that overload a server with half-open connections [RFC4987].
 Similarly, the TIME-WAIT state is often ignored or kept in aggregate
 to avoid state accumulation on busy servers [Fa99].

 The challenge implementing SNO involves using the LISTEN queue for
 SYN-RECEIVED states. Connections in the LISTEN state are indexed by
 the service number: for legacy TCP connections, this is the SYN
 destination port, and for SNO connections this is the SNO service
 number. In the SYN-RECEIVED state, connections always need to be
 indexed by the receive port number of the incoming ACK segment. As a
 result, SNO implementations need a distinct SYN-RECEIVED queue; they

https://datatracker.ietf.org/doc/html/rfc4987

Touch Expires January 19, 2019 [Page 16]

Internet-Draft TCP Service Number Option (SNO) July 2018

 cannot reuse the LISTEN queue to keep track of pending half-open
 connections.

 The additional state needed for the SYN-RECEIVED queue is the same
 regardless of whether it shares space with the LISTEN queue - each
 receive port for half-open connections needs to be listed. The key
 difference is the index to the queue.

6. SNO impact on TCP option space

 SNO needs to fit inside the available TCP option space, which
 provides 40 bytes for options. It is useful to consider that TCP SYN
 segments may include other options, notably:

 o 4 bytes of MSS [RFC793]

 o 10 bytes of timestamp [RFC7323]

 o 3 bytes of window scale [RFC7323]

 o 2 + 8N bytes of SACK, for N SACK blocks [RFC2018][RFC6675]

 This leaves only 13 bytes for the SNO option (assuming 1 SACK
 block), which is more than sufficient. The experimental variant
 described herein uses 6 bytes; a standards-track variant would use
 only 4 bytes.

7. Security Considerations

 There are four areas of security which the SNO option raises:

 1. Interaction with IPsec and firewalls

 2. Interaction with TCP/MD5 and TCP-AO security

 3. Increased DOS impact

 The impact on IPsec and firewalls is discussed in detail in Section
5.1. As noted there, SNO defeats the assumption that port numbers

 correspond to specific services, an assumption that was already
 defeated between consenting hosts. The SNO option thus raises no new
 vulnerability.

 The impact of SNO on TCP/MD5 and TCP-AO is also discussed in
 Sections 5.1. Use of these services without inclusion of TCP options
 makes all options vulnerable, including SNO.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc2018

Touch Expires January 19, 2019 [Page 17]

Internet-Draft TCP Service Number Option (SNO) July 2018

 The additional resources incurred by parsing the SNO option are
 minimal.

8. IANA considerations

 This document specifies a new TCP option that uses the shared
 experimental options format, with ExID = 0x5323 in network-standard
 byte order (representing ASCII "S#") [RFC6994]. This ExID has
 already been registered with IANA.

9. References

9.1. Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, Sep. 1981 (STANDARD).

 [RFC1122] Braden, R. (ed.), "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, Oct. 1989
 (STANDARD).

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, Mar. 1997 (BEST
 CURRENT PRACTICE).

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options",
RFC6994, Aug. 2013 (PROPOSED STANDARD).

9.2. Informative References

 [Fa99] T. Faber, J. Touch, and W. Yue, "The TIME-WAIT state in
 TCP and Its Effect on Busy Servers", in Proc. IEEE
 Infocom, 1999, pp. 1573-1583.

 [Fr2008] Freire, S., A. Zuquete, "A TCP-layer name service for TCP
 ports", Proc. Usenix, 2008.

 [IANA] Internet Assigned Numbers Authority, www.iana.org

 [RFC768] Postel, J., "User Datagram Protocol", RFC768, Aug. 1980
 (STANDARD).

 [RFC814] Clark, D., "NAME, ADDRESSES, PORTS, AND ROUTES", RFC 814,
 Jul. 1982 (UNKNOWN).

 [RFC959] Postel, J., J. Reynolds, "FILE TRANSFER PROTOCOL (FTP)",
 STD 9, RFC 959, Oct. 1985 (STANDARD).

https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc814
https://datatracker.ietf.org/doc/html/rfc959

Touch Expires January 19, 2019 [Page 18]

Internet-Draft TCP Service Number Option (SNO) July 2018

 [RFC1078] Lottor, M., "TCP Port Service Multiplexer (TCPMUX)",
RFC1078, Nov. 1988 (UNKNOWN).

 [RFC1833] Srinivasan, R., "Binding Protocols for ONC RPC Version 2",
RFC 1833, Aug. 1995 (PROPOSED STANDARD).

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, Aug. 1998 (PROPOSED
 STANDARD).

 [RFC2780] Bradner, S., V. Paxson, "IANA Allocation Guidelines For
 Values In the Internet Protocol and Related Headers", BCP

37, RFC 2780, Mar. 2000 (BEST CURRENT PRACTICE).

 [RFC2782] Gulbrandsen, A., P. Vixie, L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 Feb. 2000 (PROPOSED STANDARD).

 [RFC2993] Hain, T., "Architectural Implications of NAT", RFC 2993,
 November 2000 (INFORMATIONAL).

 [RFC3234] Carpenter, B., S. Brim, "Middleboxes: Taxonomy and
 Issues", RFC 3234 Feb. 2002 (INFORMATIONAL).

 [RFC3261] Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston,
 J. Peterson, R. Sparks, M. Handley, E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, Jun. 2002
 (PROPOSED STANDARD).

 [RFC4301] Kent, S., K. Seo, "Security Architecture for the Internet
 Protocol", RFC4301, Dec. 2005 (PROPOSED STANDARD).

 [RFC4340] Kohler, E., M. Handley, S. Floyd, "Datagram Congestion
 Control Protocol (DCCP)", RFC 4340, Mar. 2006 (PROPOSED
 STANDARD).

 [RFC4960] Stewart, R. (Ed.), "Stream Control Transmission Protocol",
RFC 4960, Sep. 2007 (PROPOSED STANDARD).

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, Aug. 2007.

https://datatracker.ietf.org/doc/html/rfc1078
https://datatracker.ietf.org/doc/html/rfc1833
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/bcp37
https://datatracker.ietf.org/doc/html/bcp37
https://datatracker.ietf.org/doc/html/rfc2780
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2993
https://datatracker.ietf.org/doc/html/rfc3234
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4987

Touch Expires January 19, 2019 [Page 19]

Internet-Draft TCP Service Number Option (SNO) July 2018

 [RFC5246] Dierks, T., E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, Aug. 2008 (PROPOSED
 STANDARD).

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2006 (DRAFT
 STANDARD).

 [RFC5925] Touch, J., A. Mankin, R. Bonica, "The TCP Authentication
 Option", RFC5925, Jun. 2010 (PROPOSED STANDARD).

 [RFC6335] Cotton, M., L. Eggert, J. Touch, M. Westerlund, S.
 Cheshire "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Transport Protocol
 Port Number and Service Name Registry", RFC 6335 / BCP

165, Aug. 2011.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP", RFC

6675, August 2012.

 [RFC7323] D. Borman, R. Braden, Jacobson, V., R. Scheffenegger, Ed.,
 "TCP Extensions for High Performance", RFC 7323, May 1992
 (PROPOSED STANDARD).

 [To1999] Touch, J., T. Faber, "The TIME-WAIT state in TCP and its
 Effect on Busy Servers", Proc. Infocom, 1999.

 [To2006] Touch, J., "A TCP Option for Port Names", draft-touch-tcp-
portnames-00.txt (work in progress), Apr. 2006.

 [To2018a] Touch, J., W. Eddy, "TCP Extended Data Offset Option",
draft-ietf-tcpm-tcp-edo (work in progress), Jan. 2018.

 [To2018b] Touch, J., T. Faber, "TCP SYN Extended Option Space Using
 an Out-of-Band Segment", draft-touch-tcpm-tcp-syn-ext-opt
 (work in progress), Jan. 2018.

10. Acknowledgments

 This work was inspired by discussions on the IETF mailing list,
 notably by suggestions by Keith Moore and Noel Chiappa. Bob Braden
 noted some of the origins of the named service concept.

 This document is based on an earlier version based on using strings
 rather than IANA port numbers, where the receiving host used the

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5531
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/bcp165
https://datatracker.ietf.org/doc/html/bcp165
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/draft-touch-tcp-portnames-00.txt
https://datatracker.ietf.org/doc/html/draft-touch-tcp-portnames-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcp-edo
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-tcp-syn-ext-opt

Touch Expires January 19, 2019 [Page 20]

Internet-Draft TCP Service Number Option (SNO) July 2018

 strings to directly identify services [To2006]. A similar approach
 was proposed that also used strings was implemented in Linux, except
 that the strings were resolved by a separate server and transmitted
 in the TCP segment as data (e.g., as with TCPMUX) [Fr2008].

 This work is partly supported by USC/ISI's Postel Center.

 This document was initially prepared using 2-Word-v2.0.template.dot.

Authors' Addresses

 Joe Touch

 Manhattan Beach, CA 90266 USA

 Phone: +1 (310) 560-0334
 Email: touch@strayalpha.com
 URL: http://www.strayalpha.com/

Touch Expires January 19, 2019 [Page 21]

http://www.strayalpha.com/

