
IPFIX Working Group B. Trammell

Internet-Draft ETH Zurich

Intended status: Standards Track A. Wagner

Expires: March 29, 2012 Consecom AG

B. Claise

Cisco Systems, Inc.

September 26, 2011

Flow Aggregation for the IP Flow Information Export (IPFIX) Protocol

draft-trammell-ipfix-a9n-04.txt

Abstract

This document describes the export of aggregated Flow information using

IPFIX. An Aggregated Flow is essentially an IPFIX Flow representing

packets from multiple Original Flows sharing some set of common

properties. The document describes Aggregated Flow export within the

framework of IPFIX Mediators and defines an interoperable,

implementation-independent method for Aggregated Flow export.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on March 29, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. IPFIX Protocol Overview

1.2. IPFIX Documents Overview

2. Terminology

3. Use Cases for IPFIX Aggregation

4. Architecture for Flow Aggregation

4.1. Aggregation within the IPFIX Architecture

4.2. Intermediate Aggregation Process Architecture

5. IP Flow Aggregation Operations

5.1. Temporal Aggregation through Interval Distribution

5.1.1. Distributing Values Across Intervals

5.1.2. Time Composition

5.2. Spatial Aggregation of Flow Keys

5.2.1. Counting Original Flows

5.2.2. Counting Distinct Key Values

5.3. Spatial Aggregation of Non-Key Fields

5.3.1. Counter Statistics

5.3.2. Derivation of New Values from Flow Keys and non-Key fields

5.4. Aggregation Combination

6. Additional Considerations and Special Cases in Flow

Aggregation

6.1. Exact versus Approximate Counting during Aggregation

6.2. Considerations for Aggregation of Sampled Flows

6.3. Considerations for Aggregation of Heterogeneous Flows

7. Export of Aggregated IP Flows using IPFIX

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7.1. Time Interval Export

7.2. Flow Count Export

7.2.1. originalFlowsPresent

7.2.2. originalFlowsInitiated

7.2.3. originalFlowsCompleted

7.2.4. deltaFlowCount

7.3. Distinct Host Export

7.3.1. distinctCountOfSourceIPAddress

7.3.2. distinctCountOfDestinationIPAddress

7.3.3. distinctCountOfSourceIPv4Address

7.3.4. distinctCountOfDestinationIPv4Address

7.3.5. distinctCountOfSourceIPv6Address

7.3.6. distinctCountOfDestinationIPv6Address

7.4. Aggregate Counter Distribution Export

7.4.1. Aggregate Counter Distribution Options Template

7.4.2. valueDistributionMethod Information Element

8. Examples

8.1. Traffic Time-Series per Source

8.2. Core Traffic Matrix

8.3. Distinct Source Count per Destination Endpoint

8.4. Traffic Time-Series per Source with Counter Distribution

9. Security Considerations

10. IANA Considerations

11. Acknowledgments

12. References

12.1. Normative References

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

12.2. Informative References

Authors' Addresses

1. Introduction

The assembly of packet data into Flows serves a variety of different

purposes, as noted in the requirements [RFC3917] and applicability

statement [RFC5472] for the IP Flow Information Export (IPFIX) protocol

[RFC5101]. Aggregation beyond the flow level, into records representing

multiple Flows, is a common analysis and data reduction technique as

well, with applicability to large-scale network data analysis,

archiving, and inter-organization exchange. This applicability in

large-scale situations, in particular, led to the inclusion of

aggregation as part of the IPFIX Mediators Problem Statement [RFC5982],

and the definition of an Intermediate Aggregation Process in the

Mediator framework [RFC6183].

Aggregation is part of a wide variety of applications, including

traffic matrix calculation, generation of time series data for

visualizations or anomaly detection, or measurement data reduction.

Depending on the keys used for aggregation, it may additionally have an

anonymizing affect on the data: for example, aggregation operations

which eliminate IP addresses make it impossible to later identify nodes

using those addresses.

Aggregation as defined and described in this document covers the

applications defined in [RFC5982], including 5.1 "Adjusting Flow

Granularity", 5.4 "Time Composition", and 5.5 "Spatial Composition".

However, this document specifies a more flexible architecture for an

Intermediate Aggregation Process than that envisioned by the original

Mediator work, in Section 4.2. Instead of a focus on these specific

limited use cases, the Intermediate Aggregation Process is specified to

cover any activity commonly described as "flow aggregation".

An Intermediate Aggregation Process may be applied to data collected

from multiple Observation Points, as aggregation is natural to apply

for data reduction when concentrating measurement data. This document

specifically does not address the protocol issues that arise when

combining IPFIX data from multiple Observation Points and exporting

from a single Mediator, as these issues are general to IPFIX Mediation;

they are therefore treated in detail in the Mediator Protocol [I-

D.claise-ipfix-mediation-protocol] document.

Since Aggregated Flows as defined in the following section are

essentially Flows, the IPFIX protocol [RFC5101] can be used to export,

and the IPFIX File Format [RFC5655] can be used to store, aggregated

data "as-is"; there are no changes necessary to the protocol. This

document provides a common basis for the application of IPFIX to the

handling of aggregated data, through a detailed terminology,

Intermediate Aggregation Process architecture, and methods for Original

Flow counting and counter distribution across intervals.

*

*

1.1. IPFIX Protocol Overview

In the IPFIX protocol, { type, length, value } tuples are expressed in

templates containing { type, length } pairs, specifying which { value }

fields are present in data records conforming to the Template, giving

great flexibility as to what data is transmitted. Since Templates are

sent very infrequently compared with Data Records, this results in

significant bandwidth savings. Various different data formats may be

transmitted simply by sending new Templates specifying the { type,

length } pairs for the new data format. See [RFC5101] for more

information.

The IPFIX information model [RFC5102] defines a large number of

standard Information Elements which provide the necessary { type }

information for Templates. The use of standard elements enables

interoperability among different vendors' implementations.

Additionally, non-standard enterprise-specific elements may be defined

for private use.

1.2. IPFIX Documents Overview

"Specification of the IPFIX Protocol for the Exchange of IP Traffic

Flow Information" [RFC5101] and its associated documents define the

IPFIX Protocol, which provides network engineers and administrators

with access to IP traffic flow information.

"Architecture for IP Flow Information Export" [RFC5470] defines the

architecture for the export of measured IP flow information out of an

IPFIX Exporting Process to an IPFIX Collecting Process, and the basic

terminology used to describe the elements of this architecture, per the

requirements defined in "Requirements for IP Flow Information Export"

[RFC3917]. The IPFIX Protocol document [RFC5101] then covers the

details of the method for transporting IPFIX Data Records and Templates

via a congestion-aware transport protocol from an IPFIX Exporting

Process to an IPFIX Collecting Process.

This document specifies an Intermediate Process which may be applied at

an IPFIX Mediator. "IP Flow Information Export (IPFIX) Mediation:

Problem Statement" [RFC5982] introduces the concept of IPFIX Mediators,

and defines the use cases for which they were designed; "IP Flow

Information Export (IPFIX) Mediation: Framework" [RFC6183] then

provides an architectural framework for Mediators. Protocol-level

issues (e.g., template and observation domain handling across

Mediators) are covered by "Specification of the Protocol for IPFIX

Mediation" [I-D.claise-ipfix-mediation-protocol].

2. Terminology

Terms used in this document that are defined in the Terminology section

of the IPFIX Protocol [RFC5101] document are to be interpreted as

defined there.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

In addition, this document defines the following terms

The terminology presented herein improves the precision of, but does

not supersede or contradict the terms related to mediation and

aggregation defined in the problem statement [RFC5982] and the

framework [RFC6183] documents. Within this document, the terminology

defined in this section is to be considered normative.

3. Use Cases for IPFIX Aggregation

Aggregation, as a common data reduction method used in traffic data

analysis, has many applications. When used with a regular Aggregation

Interval, it generates time series data from a collection of Flows with

discrete intervals. This time series data is itself useful for a wide

variety of analysis tasks, such as generating input for network anomaly

detection systems, or driving visualizations of volume per time for

traffic with specific characteristics. As a second example, traffic

matrix calculation from flow data is inherently an aggregation action,

by aggregating the Flow Key down to input or output interface, address

prefix, or autonomous system.

Irregular or data-dependent Aggregation Intervals and key aggregation

operations can also be used to provide adaptive aggregation of network

flow data. Here, full Flow Records can be kept for Flows of interest,

while Flows deemed "less interesting" to a given application can be

aggregated. For example, in an IPFIX Mediator equipped with traffic

classification capabilities for security purposes, potentially

malicious Flows could be exported directly, while known-good or

probably-good Flows (e.g. normal web browsing) could be exported simply

as time series volumes per web server.

Note that an Intermediate Aggregation Process which removes potentially

sensitive information as identified in [RFC6235] may tend to have an

anonymising effect on the Aggregated Flows, as well; however, any

application of aggregation as part of a data protection scheme should

ensure that all the issues raised in [RFC6235] are addressed,

specifically Section 4 "Anonymization of IP Flow Data", Section 7.2

"IPFIX-Specific Anonymization Guidelines", and Section 9 "Security

Considerations".

While much of the discussion in this document, and all of the examples,

apply to the common case that the Original Flows to be aggregated are

all of the same underlying type (i.e., are represented with identical

or compatible Templates), and that each packet observed by the Metering

Process on the far side of the Original Exporter is represented, this

is not a necessary assumption. Aggregation can also be applied as part

of a technique applying both aggregation and correlation to pull

together multiple views of the same traffic from different Observation

Points using different Templates. For example, consider a set of

applications running at different Observation Points for different

purposes -- one generating flows with round-trip-times for passive

performance measurement, and one generating billing records. Once

correlated, these flows could be run through an Intermediate

Aggregation Process to produce Aggregated Flows containing both volume

and performance information together. (Note, however, that the details

of correlation are not in scope for this document.)

4. Architecture for Flow Aggregation

This section specifies how an Intermediate Aggregation Process fits

into the IPFIX Architecture, and the architecture of the Intermediate

Aggregation Process itself.

4.1. Aggregation within the IPFIX Architecture

An Intermediate Aggregation Process could be deployed at any of three

places within the IPFIX Architecture. While aggregation is most

commonly done within a Mediator which collects Original Flows from an

Original Exporter and exports Aggregated Flows, aggregation can also

occur before initial export, or after final collection, as shown in

Figure 1. The presence of an IAP at any of these points is of course

optional.

+===+

| IPFIX Exporter +----------------+ |

| | Metering Proc. | |

| +-----------------+ +----------------+ |

| | Metering Proc. | or | IAP | |

| +-----------------+----+----------------+ |

| | Exporting Process | |

| +-|----------------------------------|--+ |

+===|==================================|====+

 | |

 | (Aggregated Flow Export) |

 | |

+===|===========================+ |

| | Mediator | |

+ +-V-------------------+ | |

| | Collecting Process | | |

+ +---------------------+ | |

| | IAP | | |

+ +---------------------+ | |

| | Exporting Process | | |

+ +-|-------------------+ | |

+===|===========================+ |

 | |

 | (Aggregating Mediator) |

 | |

+===|==================================|=====+

| | Collector | |

| +-V----------------------------------V-+ |

| | Collecting Process | |

| +------------------+-------------------+ |

| | IAP | |

| +-------------------+ |

| | File Writer | |

| +-----------|-------+ |

+================================|===========+

 |

 (Aggregation for Storage) |

 V

 +------------------+

 | IPFIX File |

 +------------------+

The Mediator use case is further shown in Figures A and B in [RFC6183].

Aggregation can be applied for either intermediate or final analytic

purposes. In certain circumstances, it may make sense to export

Aggregated Flows directly from an original Exporting Process, for

example, if the Exporting Process is applied to drive a time-series

visualization, or when flow data export bandwidth is restricted and

flow or packet sampling is not an option. Note that this case, where

the Aggregation Process is essentially integrated into the Metering

Process, is essentially covered by the IPFIX architecture [RFC5470]:

the Flow Keys used are simply a subset of those that would normally be

used, and time intervals may be chosen other than those available from

the cache policies customarily offered by the Metering Process. A

Metering Process in this arrangement MAY choose to simulate the

generation of larger Flows in order to generate Original Flow counts,

if the application calls for compatibility with an Aggregation Process

deployed in a separate location.

In the specific case that an Aggregation Process is employed for data

reduction for storage purposes, it can take Original Flows from a

Collecting Process or File Reader and pass Aggregated Flows to a File

Writer for storage.

Deployment of an Intermediate Aggregation Process within a Mediator

[RFC5982] is a much more flexible arrangement. Here, the Mediator

consumes Original Flows and produces Contributing Flows; this

arrangement is suited to any of the use cases detailed in Section 3. In

a Mediator, aggregation can be applied as well to aggregating Original

Flows from multiple sources into a single stream of Aggregated Flows;

the architectural specifics of this arrangement are not addressed in

this document, which is concerned only with the aggregation operation

itself; see [I-D.claise-ipfix-mediation-protocol] for details.

The data paths into and out of an Intermediate Aggregation Process are

shown in Figure 2.

 packets --+ +- IPFIX Messages -+

 | | |

 V V V

 +==================+ +====================+ +=============+

 | Metering Process | | Collecting Process | | File Reader |

 | | +====================+ +=============+

 | (original Flows | | Original Flows |

 | or direct aggr.)| V V

 + - - - - - - - - -+======================================+

 | Intermediate Aggregation Process (IAP) |

 +===+

 | Aggregated Aggregated |

 | Flows Flows |

 V V

 +===================+ +=============+

 | Exporting Process | | File Writer |

 +===================+ +=============+

 | |

 +------------> IPFIX Messages <----------+

In the special case that aggregation is used together with correlation

to aggregate the output from multiple Metering Processes, the

arrangement would appear as in Figure 3; the details of correlation

are, as noted above, out of scope for this document.

 packets --+---------------------+------------------+

 | | |

 V V V

 +====================+ +====================+ +====================+

 | Metering Process 1 | | Metering Process 2 | | Metering Process n |

 +====================+ +====================+ +====================+

 | | Original Flows |

 V V V

 +==+

 | Correlation process |

 +--+

 | Intermediate Aggregation Process (IAP) |

 +==+

 | Aggregated Aggregated |

 | Flows Flows |

 V V

 +===================+ +=============+

 | Exporting Process | | File Writer |

 +===================+ +=============+

 | |

 +------------> IPFIX Messages <----------+

4.2. Intermediate Aggregation Process Architecture

Within this document, an Intermediate Aggregation Process can be seen

as hosting a function composed of four types of operations on Partially

Aggregated Flows, as illustrated in Figure 4. "Partially Contributing

Flows" as defined in Section 2 are essentially the intermediate results

of aggregation, internal to the Intermediate Aggregation Process.

 Original Flows

 +=============|===+

 | | Intermediate Aggregation Process (IAP) |

 | V |

 | +--+ |

 | | interval distribution (temporal) | |

 | +--+ |

 | | ^ | ^ | |

 | | | Partially Aggregated | | Flows | |

 | V | V | | |

 | +-------------------+ +--------------------+ | |

 | | key aggregation |<------| value aggregation | | |

 | | (spatial) |------>| (spatial) | | |

 | +-------------------+ +--------------------+ | |

 | | | | |

 | | Partially Aggregated | Flows | |

 | V V V |

 | +--+ |

 | | aggregate combination | |

 | +--+ |

 | | |

 +=======================================|===========================+

 V

 Aggregated Flows

The first three of these operations may be carried out any number of

times in any order, either on Original Flows or on the results of one

of the Operations (called Partially Aggregated Flows), with one caveat:

since Flows carry their own interval data, any spatial aggregation

operation implies a temporal aggregation operation, so at least one

interval distribution step, even if implicit, is required by this

architecture. This is shown as the first step for the sake of

simplicity in the diagram above. Once all aggregation operations are

complete, aggregate combination ensures that for a given Aggregation

Interval, set of Flow Key values, and Observation Domain, only one Flow

is produced by the Intermediate Aggregation Process.

This model describes the operations within a single Intermediate

Aggregation Process, and it is anticipated that most aggregation will

be applied within a single process. However, as the steps in the model

may be applied in any order and aggregate combination is idempotent,

any number of Intermediate Aggregation Processes operating in series

can be modeled as a single process. This allows aggregation operations

to be flexibly distributed across any number of processes, should

application or deployment considerations so dictate.

5. IP Flow Aggregation Operations

As stated in Section 2, an Aggregated Flow is simply an IPFIX Flow

generated from Original Flows by an Intermediate Aggregation Process.

Here, we detail the operations by which this is achieved within an

Intermediate Aggregation Process.

5.1. Temporal Aggregation through Interval Distribution

Interval distribution imposes a time interval on the resulting

Aggregated Flows. The selection of an interval is specific to the given

aggregation application. Intervals may be derived from the Original

Flows themselves (e.g., an interval may be selected to cover the entire

interval containing the set of all Flows sharing a given Key, as in

Time Composition describe in Section 5.1.2) or externally imposed; in

the latter case the externally imposed interval may be regular (e.g.,

every five minutes) or irregular (e.g., to allow for different time

resolutions at different times of day, under different network

conditions, or indeed for different sets of Original Flows).

The length of the imposed interval itself has tradeoffs. Shorter

intervals allow higher resolution aggregated data and, in streaming

applications, faster reaction time. Longer intervals lead to greater

data reduction and simplified counter distribution. Specifically,

counter distribution is greatly simplified by the choice of an interval

longer than the duration of longest Original Flow, itself generally

determined by the Original Flow's Metering Process active timeout; in

this case an Original Flow can contribute to at most two Aggregated

Flows, and the more complex value distribution methods become

inapplicable.

| | | |

| |<--Flow A-->| | | |

| |<--Flow B-->| | |

| |<-------------Flow C-------------->| |

| | | |

| interval 0 | interval 1 | interval 2 |

In Figure 5, we illustrate three common possibilities for interval

distribution as applies with regular intervals to a set of three

Original Flows. For Flow A, the start and end times lie within the

boundaries of a single interval 0; therefore, Flow A contributes to

only one Aggregated Flow. Flow B, by contrast, has the same duration

but crosses the boundary between intervals 0 and 1; therefore, it will

contribute to two Aggregated Flows, and its counters must be

distributed among these Flows, though in the two-interval case this can

be simplified somewhat simply by picking one of the two intervals, or

proportionally distributing between them. Only Flows like Flow A and

Flow B will be produced when the interval is chosen to be longer than

the duration of longest Original Flow, as above. More complicated is

the case of Flow C, which contributes to more than two Aggregated

Flows, and must have its counters distributed according to some policy

as in Section 5.1.1.

5.1.1. Distributing Values Across Intervals

In general, counters in Aggregated Flows are treated the same as in any

Flow. Each counter is independently calculated as if it were derived

from the set of packets in the Original Flow. For the most part, when

aggregating Original Flows into Aggregated Flows, this is simply done

by summation.

When the Aggregation Interval is guaranteed to be longer than the

longest Original Flow, a Flow can cross at most one Interval boundary,

and will therefore contribute to at most two Aggregated Flows. Most

common in this case is to arbitrarily but consistently choose to

account the Original Flow's counters either to the first or the last

Contributing Flow to which it could contribute.

However, this becomes more complicated when the Aggregation Interval is

shorter than the longest Original Flow in the source data. In such

cases, each Original Flow can incompletely cover one or more time

intervals, and apply to one or more Aggregated Flows. In this case, the

Aggregation Process must distribute the counters in the Original Flows

across the multiple Aggregated Flows. There are several methods for

doing this, listed here in roughly increasing order of complexity and

accuracy; most of these are necessary only in specialized cases.

A method for exporting the distribution of counters across multiple

Aggregated Flows is detailed in Section 7.4. In any case, counters MUST

be distributed across the multiple Aggregated Flows in such a way that

the total count is preserved, within the limits of accuracy of the

implementation (e.g., inaccuracy introduced by the use of floating-

point numbers is tolerable). This property allows data to be aggregated

and re-aggregated without any loss of original count information. To

avoid confusion in interpretation of the aggregated data, all the

counters for a set of given Original Flows SHOULD be distributed via

the same method.

More complex counter distribution methods generally require that the

interval distribution process track multiple "current" time intervals

at once. This may introduce some delay into the aggregation operation,

as an interval should only expire and be available for export when no

additional Original Flows applying to the interval are expected to

arrive at the Intermediate Aggregation Process.

Note, however, that since there is no guarantee that Flows from the

Original Exporter will arrive in any given order, whether for

transport-specific reasons (i.e. UDP reordering) or Metering Process

implementation-specific reasons, even simpler distribution methods may

need to deal with flows arriving in other than start time or end time

order. Therefore, the use of larger intervals does not obviate the need

to buffer Partially Aggregated Flows within "current" time intervals,

to ensure it can accept flow time intervals in any arrival order. More

generally, the interval distribution process SHOULD accept flow start

and end times in the Original Flows in any reasonable order. The

expiration of intervals in interval distribution operations is

dependent on implementation and deployment requirements, and SHOULD be

made configurable in contexts in which "reasonable order" is not

obvious at implementation time.

5.1.2. Time Composition

Time Composition as in Section 5.4 of [RFC5982] (or interval

combination) is a special case of aggregation, where interval

distribution imposes longer intervals on Flows with matching keys and

"chained" start and end times, without any key reduction, in order to

join long-lived Flows which may have been split (e.g., due to an active

timeout shorter than the actual duration of the Flow.) Here, no Key

aggregation is applied, and the Aggregation Interval is chosen on a

per-Flow basis to cover the interval spanned by the set of aggregated

Flows. This may be applied alone in order to normalize split Flows, or

in combination with other aggregation functions in order to obtain more

accurate Original Flow counts.

5.2. Spatial Aggregation of Flow Keys

Key aggregation generates a new set of Flow Key values for the

Aggregated Flows from the Original Flow Keys, non-Key fields in the

Original Flows, or from correlation of the Original Flow information

with some external source. There are two basic operations here. First,

Aggregated Flow Keys may be derived directly from Original Flow Keys

through reduction, or the dropping of fields or precision in the

Original Flow Keys. Second, Aggregated Flow Keys may be derived through

replacement, e.g. by removing one or more fields from the Original Flow

and replacing them with fields derived from the removed fields.

Replacement may refer to external information (e.g., IP to AS number

mappings). Replacement may apply to Flow Keys as well as non-key

fields. For example, consider an application which aggregates Original

Flows by packet count (i.e., generating an Aggregated Flow for all one-

packet Flows, one for all two-packet Flows, and so on). This

application would promote the packet count to a Flow Key.

Key aggregation may also result in the addition of new non-Key fields

to the Aggregated Flows, namely Original Flow counters and unique

reduced key counters; these are treated in more detail in Section 5.2.1

and Section 5.2.2, respectively.

In any key aggregation operation, reduction and/or replacement may be

applied any number of times in any order. Which of these operations are

supported by a given implementation is implementation- and application-

dependent. Key aggregation may aggregate Original Flows with different

sets of Flow Keys; only the Flow Keys of the resulting Aggregated Flows

of any given Key aggregation operation need to contain the same set of

fields.

Original Flow Keys

+---------+---------+----------+----------+-------+-----+

| src ip4 | dst ip4 | src port | dst port | proto | tos |

+---------+---------+----------+----------+-------+-----+

 | | | | | |

 retain mask /24 X X X X

 V V

+---------+-------------+

| src ip4 | dst ip4 /24 |

+---------+-------------+

Aggregated Flow Keys (by source address and destination class-C)

Figure 6 illustrates an example reduction operation, aggregation by

source address and destination class C network. Here, the port,

protocol, and type-of-service information is removed from the Flow Key,

the source address is retained, and the destination address is masked

by dropping the low 8 bits.

Original Flow Keys

+---------+---------+----------+----------+-------+-----+

| src ip4 | dst ip4 | src port | dst port | proto | tos |

+---------+---------+----------+----------+-------+-----+

 | | | | | |

+-------------------+ X X X X

| ASN lookup table |

+-------------------+

 V V

+---------+---------+

| src asn | dst asn |

+---------+---------+

Aggregated Flow Keys (by source and dest ASN)

Figure 7 illustrates an example reduction and replacement operation,

aggregation by source and destination Border Gateway Protocol (BGP)

Autonomous System Number (ASN) without ASN information available in the

Original Flow. Here, the port, protocol, and type-of-service

information is removed from the Flow Keys, while the source and

destination addresses are run though an IP address to ASN lookup table,

and the Aggregated Flow Keys are made up of the resulting source and

destination ASNs.

5.2.1. Counting Original Flows

When aggregating multiple Original Flows into an Aggregated Flow, it is

often useful to know how many Original Flows are present in the

Aggregated Flow. This document introduces four new information elements

in Section 7.2 to export these counters.

There are two possible ways to count Original Flows, which we call here

conservative and non-conservative. Conservative flow counting has the

property that each Original Flow contributes exactly one to the total

flow count within a set of Contributing Flows. In other words,

conservative flow counters are distributed just as any other counter

during interval distribution, except each Original Flow is assumed to

have a flow count of one. When a count for an Original Flow must be

distributed across a set of Aggregated Flows, and a distribution method

is used which does not account for that Original Flow completely within

a single Aggregated Flow, conservative flow counting requires a

fractional representation.

By contrast, non-conservative flow counting is used to count how many

Contributing Flows are represented in an Aggregated Flow. Flow counters

are not distributed in this case. An Original Flow which is present

within N Aggregated Flows would add N to the sum of non-conservative

flow counts, one to each Aggregated Flow. In other words, the sum of

conservative flow counts over a set of Aggregated Flows is always equal

to the number of Original Flows, while the sum of non-conservative flow

counts is strictly greater than or equal to the number of Original

Flows.

For example, consider Flows A, B, and C as illustrated in Figure 5.

Assume that the key aggregation step aggregates the keys of these three

Flows to the same aggregated Flow Key, and that start interval counter

distribution is in effect. The conservative flow count for interval 0

is 3 (since Flows A, B, and C all begin in this interval), and for the

other two intervals is 0. The non-conservative flow count for interval

0 is also 3 (due to the presence of Flows A, B, and C), for interval 1

is 2 (Flows B and C), and for interval 2 is 1 (Flow C). The sum of the

conservative counts 3 + 0 + 0 = 3, the number of Original Flows; while

the sum of the non-conservative counts 3 + 2 + 1 = 6.

Note that the active and inactive timeouts used to generate Original

Flows, as well as the cache policy used to generate those Flows, have

an effect on how meaningful either the conservative or non-conservative

flow count will be during aggregation. In general, all the Original

Exporters producing Original Flows to be aggregated SHOULD be

aggregated using caches configured identically or similarly. Original

Exporters using the IPFIX Configuration Model SHOULD be configured to

export Flows with equal or similar activeTimeout and inactiveTimeout

configuration values, and the same cacheMode, as defined in section 4.3

of [I-D.ietf-ipfix-configuration-model].

5.2.2. Counting Distinct Key Values

One common case in aggregation is counting distinct key values that

were reduced away during key aggregation. The most common use case for

this is counting distinct hosts per Flow Key; for example, in host

characterization or anomaly detection, distinct sources per destination

or distinct destinations per source are common metrics. These new non-

Key fields are added during key aggregation.

For such applications, Information Elements for distinct counts of IPv4

and IPv6 addresses are defined in Section 7.3. These are named

distinctCountOf(KeyName). Additional such Information Elements SHOULD

be registered with IANA on an as-needed basis.

5.3. Spatial Aggregation of Non-Key Fields

Aggregation operations may also lead to the addition of value fields

demoted from key fields, or derived from other value fields in the

Original Flows. Specific cases of this are treated in the subsections

below.

5.3.1. Counter Statistics

Some applications of aggregation may benefit from computing different

statistics than those native to each non-key field (i.e., union for

flags, sum for counters). For example, minimum and maximum packet

counts per Flow, mean bytes per packet per Contributing Flow, and so

on. Certain Information Elements for these applications are already

provided in the IANA IPFIX Information Elements registry (http://

www.iana.org/assignments/ipfix/ipfix.html (e.g. minimumIpTotalLength).

A complete specification of additional aggregate counter statistics is

outside the scope of this document, and should be added in the future

to the IANA IPFIX Information Elements registry on a per-application,

as-needed basis.

5.3.2. Derivation of New Values from Flow Keys and non-Key fields

More complex operations may lead to other derived fields being

generated from the set of values or Flow Keys reduced away during

aggregation. A prime example of this is sample entropy calculation.

This counts distinct values and frequency, so is similar to distinct

key counting as in Section 5.2.2, but may be applied to the

distribution of values for any flow field.

Sample entropy calculation provides a one-number normalized

representation of the value spread and is useful for annomaly

detection. The behaviour of entropy statistics is such that a small

number of keys showing up very often drives the entropy value down

towards zero, while a large number of keys, each showing up with lower

frequency drives the entropy value up.

Entropy statistics are generally useful for address-like keys, like IP

addresses, port numbers, AS numbers, etc. They can also be done on flow

length, flow duration fields and the like, even if this generally

yields less distinct value shifts when the traffic mix changes.

As a practical example, one host scanning a lot of other hosts will

drive source IP entropy down and target IP entropy up. A similar effect

can be observed for ports. This pattern can also be caused by the scan-

traffic of a fast Internet worm. A second example would be a DDoS

flooding attack against a single target (or small number of targets)

which drives source IP entropy up and target IP entropy down.

A complete specification of additional derived values or entropy

information elements is outside the scope of this document. Any such

Information Elements should be added in the future to the IANA IPFIX

Information Elements registry on a per-application, as-needed basis.

However, in the special case of entropy calculations, to support

comparability of entropies of fields with different bit sizes, entropy

SHOULD be represented as a float32 or float64 value normalized to the

range [0..1].

5.4. Aggregation Combination

Interval distribution and key aggregation together may generate

multiple Partially Aggregated Flows covering the same time interval

with the same set of Flow Key values. The process of combining these

Partially Aggregated Flows into a single Aggregated Flow is called

aggregation combination. In general, non-Key values from multiple

Contributing Flows are combined using the same operation by which

values are combined from packets to form Flows for each Information

Element. Counters are summed, averages are averaged, flags are unioned,

and so on.

6. Additional Considerations and Special Cases in Flow Aggregation

6.1. Exact versus Approximate Counting during Aggregation

In certain circumstances, particularly involving aggregation by devices

with limited resources, and in situations where exact aggregated counts

are less important than relative magnitudes (e.g. driving graphical

displays), counter distribution during key aggregation may be performed

by approximate counting means (e.g. Bloom filters). The choice to use

approximate counting is implementation- and application-dependent.

6.2. Considerations for Aggregation of Sampled Flows

The accuracy of Aggregated Flows may also be affected by sampling of

the Original Flows, or sampling of packets making up the Original

Flows. The effect of sampling on flow aggregation is still an open

research question. However, to maximize the comparability of Aggregated

Flows, aggregation of sampled Flows SHOULD only use Original Flows

sampled using the same sampling rate and sampling algorithm, or Flows

created from packets sampled using the same sampling rate and sampling

algorithm. For more on packet sampling within IPFIX, see [RFC5476]. For

more on Flow sampling within the IPFIX Mediator Framework, see [I-

D.ietf-ipfix-flow-selection-tech].

6.3. Considerations for Aggregation of Heterogeneous Flows

Aggregation may be applied to Original Flows from different sources and

of different types (i.e., represented using different, perhaps wildly-

different Templates). When the goal is to separate the heterogeneous

Original Flows and aggregate them into heterogeneous Aggregated Flows,

each aggregation should be done at its own Intermediate Aggregation

Process. The Observation Domain ID on the Messages containing the

output Aggregated Flows can be used to identify the different

Processes, and to segregate the output.

However, when the goal is to aggregate these Flows into a single stream

of Aggregated Flows representing one type of data, and if the Original

Flows may represent the same original packet at two different

Observation Points, the Original Flows should be correlated to ensure

that each packet is only represented in a single Aggregated Flow or set

of Aggregated Flows differing only by aggregation interval.

7. Export of Aggregated IP Flows using IPFIX

In general, Aggregated Flows are exported in IPFIX as any normal Flow.

However, certain aspects of Aggregated Flow export benefit from

additional guidelines, or new Information Elements to represent

aggregation metadata or information generated during aggregation. These

are detailed in the following subsections.

7.1. Time Interval Export

Since an Aggregated Flow is simply a Flow, the existing timestamp

Information Elements in the IPFIX Information Model (e.g.,

flowStartMilliseconds, flowEndNanoseconds) are sufficient to specify

the time interval for aggregation. Therefore, this document specifies

no new aggregation-specific Information Elements for exporting time

interval information.

Each Aggregated Flow SHOULD contain both an interval start and interval

end timestamp. If an exporter of Aggregated Flows omits the interval

end timestamp from each Aggregated Flow, the time interval for

Aggregated Flows within an Observation Domain and Transport Session

MUST be regular and constant. However, note that this approach might

lead to interoperability problems when exporting Aggregated Flows to

non-aggregation-aware Collecting Processes and downstream analysis

tasks; therefore, an Exporting Process capable of exporting only

interval start timestamps MUST provide a configuration option to export

interval end timestamps as well.

7.2. Flow Count Export

The following four Information Elements are defined to count Original

Flows as discussed in Section 5.2.1.

7.2.1. originalFlowsPresent

7.2.2. originalFlowsInitiated

7.2.3. originalFlowsCompleted

7.2.4. deltaFlowCount

7.3. Distinct Host Export

The following four Information Elements represent the distinct counts

of source and destination network-layer addresses, used to export

distinct host counts reduced away during key aggregation.

7.3.1. distinctCountOfSourceIPAddress

7.3.2. distinctCountOfDestinationIPAddress

7.3.3. distinctCountOfSourceIPv4Address

7.3.4. distinctCountOfDestinationIPv4Address

7.3.5. distinctCountOfSourceIPv6Address

7.3.6. distinctCountOfDestinationIPv6Address

7.4. Aggregate Counter Distribution Export

When exporting counters distributed among Aggregated Flows, as

described in Section 5.1.1, the Exporting Process MAY export an

Aggregate Counter Distribution Record for each Template describing

Aggregated Flow records; this Options Template is described below. It

uses the valueDistributionMethod Information Element, also defined

below. Since in many cases distribution is simple, accounting the

counters from Contributing Flows to the first Interval to which they

contribute, this is default situation, for which no Aggregate Counter

Distribution Record is necessary; Aggregate Counter Distribution

Records are only applicable in more exotic situations, such as using an

Aggregation Interval smaller than the durations of Original Flows.

7.4.1. Aggregate Counter Distribution Options Template

IE Description

templateId [scope]

The Template ID of the Template defining the

Aggregated Flows to which this distribution

option applies. This Information Element MUST

be defined as a Scope Field.

valueDistributionMethod

IE Description

The method used to distribute the counters for

the Aggregated Flows defined by the associated

Template.

This Options Template defines the Aggregate Counter Distribution

Record, which allows the binding of a value distribution method to a

Template ID. Note that this Options Template causes the

valueDistributionMethod to be implicitly scoped to the Observation

Domain ID of the IPFIX Message containing the Aggregate Counter

Distribution Record. This is used to signal to the Collecting Process

how the counters were distributed. The fields are as below:

7.4.2. valueDistributionMethod Information Element

8. Examples

In these examples, the same data, described by the same template, will

be aggregated multiple different ways; this illustrates the various

different functions which could be implemented by Intermediate

Aggregation Processes. Templates are shown in iespec format as

introduced in [I-D.trammell-ipfix-ie-doctors]. The source data format

is a simplified flow: timestamps, traditional 5-tuple, and octet count.

The template is shown in Figure 8.

flowStartMilliseconds(152)[8]

flowEndMilliseconds(153)[8]

sourceIPv4Address(8)[4]

destinationIPv4Address(12)[4]

sourceTransportPort(7)[2]

destinationTransportPort(11)[2]

protocolIdentifier(4)[1]

octetDeltaCount(1)[8]

The data records given as input to the examples in this section are

shown below, in the format "flowStartMilliseconds-flowEndMilliseconds

sourceIPv4Address:sourceTransportPort ->

destinationIPv4Address:destinationTransportPort (protocolIdentifier)

octetDeltaCount"; timestamps are given in H:MM:SS.sss format.

9:00:00.138-9:00:00.138 192.0.2.2:47113 -> 192.0.2.131:53 (17) 119

9:00:03.246-9:00:03.246 192.0.2.2:22153 -> 192.0.2.131:53 (17) 83

9:00:00.478-9:00:03.486 192.0.2.2:52420 -> 198.51.100.2:443 (6) 1637

9:00:07.172-9:00:07.172 192.0.2.3:56047 -> 192.0.2.131:53 (17) 111

9:00:07.309-9:00:14.861 192.0.2.3:41183 -> 198.51.100.67:80 (6) 16838

9:00:03.556-9:00:19.876 192.0.2.2:17606 -> 198.51.100.68:80 (6) 11538

9:00:25.210-9:00:25.210 192.0.2.3:47113 -> 192.0.2.131:53 (17) 119

9:00:26.358-9:00:30.198 192.0.2.3:48458 -> 198.51.100.133:80 (6) 2973

9:00:29.213-9:01:00.061 192.0.2.4:61295 -> 198.51.100.2:443 (6) 8350

9:04:00.207-9:04:04.431 203.0.113.3:41256 -> 198.51.100.133:80 (6) 778

9:03:59.624-9:04:06.984 203.0.113.3:51662 -> 198.51.100.3:80 (6) 883

9:00:30.532-9:06:15.402 192.0.2.2:37581 -> 198.51.100.2:80 (6) 15420

9:06:56.813-9:06:59.821 203.0.113.3:52572 -> 198.51.100.2:443 (6) 1637

9:06:30.565-9:07:00.261 203.0.113.3:49914 -> 197.51.100.133:80 (6) 561

9:06:55.160-9:07:05.208 192.0.2.2:50824 -> 198.51.100.2:443 (6) 1899

9:06:49.322-9:07:05.322 192.0.2.3:34597 -> 198.51.100.3:80 (6) 1284

9:07:05.849-9:07:09.625 203.0.113.3:58907 -> 198.51.100.4:80 (6) 2670

9:10:45.161-9:10:45.161 192.0.2.4:22478 -> 192.0.2.131:53 (17) 75

9:10:45.209-9:11:01.465 192.0.2.4:49513 -> 198.51.100.68:80 (6) 3374

9:10:57.094-9:11:00.614 192.0.2.4:64832 -> 198.51.100.67:80 (6) 138

9:10:59.770-9:11:02.842 192.0.2.3:60833 -> 198.51.100.69:443 (6) 2325

9:02:18.390-9:13:46.598 203.0.113.3:39586 -> 198.51.100.17:80 (6) 11200

9:13:53.933-9:14:06.605 192.0.2.2:19638 -> 198.51.100.3:80 (6) 2869

9:13:02.864-9:14:08.720 192.0.2.3:40429 -> 198.51.100.4:80 (6) 18289

8.1. Traffic Time-Series per Source

Aggregating flows by source IP address in time series (i.e., with a

regular interval) can be used in subsequent heavy-hitter analysis and

as a source parameter for statistical anomaly detection techniques.

Here, the Intermediate Aggregation Process imposes an interval,

aggregates the key to remove all key fields other than the source IP

address, then combines the result into a stream of Aggregated Flows.

The imposed interval of 5 minutes is longer than the majority of flows;

for those flows crossing interval boundaries, the entire flow is

accounted to the interval containing the start time of the flow.

In this example the Partially Aggregated Flows after each conceptual

operation in the Intermediate Aggregation Process are shown. These are

meant to be illustrative of the conceptual operations only, and not to

suggest an implementation (indeed, the example shown here would not

necessarily be the most efficient method for performing these

operations). Subsequent examples will omit the Partially Aggregated

Flows for brevity.

The input to this process could be any Flow Record containing a source

IP address and octet counter; consider for this example the template

and data from the introduction. The Intermediate Aggregation Process

would then output records containing just timestamps, source IP, and

octetDeltaCount, as in Figure 10.

flowStartMilliseconds(152)[8]

flowEndMilliseconds(153)[8]

sourceIPv4Address(8)[4]

octetDeltaCount(1)[8]

Assume the goal is to get 5-minute time series of octet counts per

source IP address. The aggregation operations would then be arranged as

in Figure 11.

 Original Flows

 |

 V

 +-----------------------+

 | interval distribution |

 | * impose uniform |

 | 300s time interval |

 +-----------------------+

 |

 | Partially Aggregated Flows

 V

+------------------------+

| key aggregation |

| * reduce key to only |

| sourceIPv4Address |

+------------------------+

 |

 | Partially Aggregated Flows

 V

 +-------------------------+

 | aggregate combination |

 | * sum octetDeltaCount |

 +-------------------------+

 |

 V

 Aggregated Flows

After the interval distribution step, only the time intervals have

changed; the Partially Aggregated flows are shown in Figure 12. Note

that interval distribution follows the default Start Interval policy;

that is, the entire flow is accounted to the interval containing the

flow's start time.

9:00:00.000-9:05:00.000 192.0.2.2:47113 -> 192.0.2.131:53 (17) 119

9:00:00.000-9:05:00.000 192.0.2.2:22153 -> 192.0.2.131:53 (17) 83

9:00:00.000-9:05:00.000 192.0.2.2:52420 -> 198.51.100.2:443 (6) 1637

9:00:00.000-9:05:00.000 192.0.2.3:56047 -> 192.0.2.131:53 (17) 111

9:00:00.000-9:05:00.000 192.0.2.3:41183 -> 198.51.100.67:80 (6) 16838

9:00:00.000-9:05:00.000 192.0.2.2:17606 -> 198.51.100.68:80 (6) 11538

9:00:00.000-9:05:00.000 192.0.2.3:47113 -> 192.0.2.131:53 (17) 119

9:00:00.000-9:05:00.000 192.0.2.3:48458 -> 198.51.100.133:80 (6) 2973

9:00:00.000-9:05:00.000 192.0.2.4:61295 -> 198.51.100.2:443 (6) 8350

9:00:00.000-9:05:00.000 203.0.113.3:41256 -> 198.51.100.133:80 (6) 778

9:00:00.000-9:05:00.000 203.0.113.3:51662 -> 198.51.100.3:80 (6) 883

9:00:00.000-9:05:00.000 192.0.2.2:37581 -> 198.51.100.2:80 (6) 15420

9:00:00.000-9:05:00.000 203.0.113.3:39586 -> 198.51.100.17:80 (6) 11200

9:05:00.000-9:10:00.000 203.0.113.3:52572 -> 198.51.100.2:443 (6) 1637

9:05:00.000-9:10:00.000 203.0.113.3:49914 -> 197.51.100.133:80 (6) 561

9:05:00.000-9:10:00.000 192.0.2.2:50824 -> 198.51.100.2:443 (6) 1899

9:05:00.000-9:10:00.000 192.0.2.3:34597 -> 198.51.100.3:80 (6) 1284

9:05:00.000-9:10:00.000 203.0.113.3:58907 -> 198.51.100.4:80 (6) 2670

9:10:00.000-9:15:00.000 192.0.2.4:22478 -> 192.0.2.131:53 (17) 75

9:10:00.000-9:15:00.000 192.0.2.4:49513 -> 198.51.100.68:80 (6) 3374

9:10:00.000-9:15:00.000 192.0.2.4:64832 -> 198.51.100.67:80 (6) 138

9:10:00.000-9:15:00.000 192.0.2.3:60833 -> 198.51.100.69:443 (6) 2325

9:10:00.000-9:15:00.000 192.0.2.2:19638 -> 198.51.100.3:80 (6) 2869

9:10:00.000-9:15:00.000 192.0.2.3:40429 -> 198.51.100.4:80 (6) 18289

After the key aggregation step, all Flow Keys except the source IP

address have been discarded, as shown in Figure 13. This leaves

duplicate Partially Aggregated flows to be combined in the final

operation.

9:00:00.000-9:05:00.000 192.0.2.2 119

9:00:00.000-9:05:00.000 192.0.2.2 83

9:00:00.000-9:05:00.000 192.0.2.2 1637

9:00:00.000-9:05:00.000 192.0.2.3 111

9:00:00.000-9:05:00.000 192.0.2.3 16838

9:00:00.000-9:05:00.000 192.0.2.2 11538

9:00:00.000-9:05:00.000 192.0.2.3 119

9:00:00.000-9:05:00.000 192.0.2.3 2973

9:00:00.000-9:05:00.000 192.0.2.4 8350

9:00:00.000-9:05:00.000 203.0.113.3 778

9:00:00.000-9:05:00.000 203.0.113.3 883

9:05:00.000-9:10:00.000 203.0.113.3 1637

9:05:00.000-9:10:00.000 203.0.113.3 561

9:05:00.000-9:10:00.000 192.0.2.2 1899

9:05:00.000-9:10:00.000 192.0.2.3 1284

9:05:00.000-9:10:00.000 203.0.113.3 2670

9:10:00.000-9:15:00.000 192.0.2.4 75

9:10:00.000-9:15:00.000 192.0.2.4 3374

9:10:00.000-9:15:00.000 192.0.2.4 138

9:10:00.000-9:15:00.000 192.0.2.3 2325

9:10:00.000-9:15:00.000 192.0.2.2 2869

9:10:00.000-9:15:00.000 192.0.2.3 18289

Aggregate combination sums the counters per key and interval; the

summations of the first two keys and intervals are shown in detail in

Figure 14.

 9:00:00.000-9:05:00.000 192.0.2.2 119

 9:00:00.000-9:05:00.000 192.0.2.2 83

 9:00:00.000-9:05:00.000 192.0.2.2 1637

 9:00:00.000-9:05:00.000 192.0.2.2 11538

+ 9:00:00.000-9:05:00.000 192.0.2.2 15420

= 9:00:00.000-9:05:00.000 192.0.2.2 28797

 9:00:00.000-9:05:00.000 192.0.2.3 111

 9:00:00.000-9:05:00.000 192.0.2.3 16838

 9:00:00.000-9:05:00.000 192.0.2.3 119

+ 9:00:00.000-9:05:00.000 192.0.2.3 2973

= 9:00:00.000-9:05:00.000 192.0.2.3 20041

Applying this to each set of Partially Aggregated Flows to produce the

final Aggregated Flows shown in Figure 15 to be exported by the

template in Figure 10.

9:00:00.000-9:05:00.000 192.0.2.2 28797

9:00:00.000-9:05:00.000 192.0.2.3 20041

9:00:00.000-9:05:00.000 192.0.2.4 8350

9:00:00.000-9:05:00.000 203.0.113.3 12861

9:05:00.000-9:10:00.000 192.0.2.2 1899

9:05:00.000-9:10:00.000 192.0.2.3 1284

9:05:00.000-9:10:00.000 203.0.113.3 4868

9:10:00.000-9:15:00.000 192.0.2.2 2869

9:10:00.000-9:15:00.000 192.0.2.3 20594

9:10:00.000-9:15:00.000 192.0.2.4 3587

8.2. Core Traffic Matrix

Aggregating flows by source and destination autonomous system number in

time series is used to generate core traffic matrices. The core traffic

matrix provides a view of the state of the routes within a network, and

can be used for long-term planning of changes to network design based

on traffic demand. Here, imposed time intervals are generally much

longer than active flow timeouts. The traffic matrix is reported in

terms of octets, packets, and flows, as each of these values may have a

subtly different effect on capacity planning.

This example demonstrates key aggregation using derived keys and

original flow counting. While some Original Flows may be generated by

Exporting Processes on forwarding devices, and therefore contain the

bgpSourceAsNumber and bgpDestinationAsNumber Information Elements,

Original Flows from Exporting Processes on dedicated measurement

devices will contain only a destinationIPv[46]Address. For these flows,

the Mediator must look up a next hop AS from a IP to AS table,

replacing source and destination addresses with AS numbers. The table

used in this example is shown in Figure 16. (Note that due to limited

example address space, in this example we ignore the common practice of

routing only blocks of /24 or larger).

prefix ASN

192.0.2.0/25 64496

192.0.2.128/25 64497

198.51.100/24 64498

203.0.113.0/24 64499

The template for Aggregated Flows produced by this example is shown in

Figure 17.

flowStartMilliseconds(152)[8]

flowEndMilliseconds(153)[8]

bgpSourceAsNumber(16)[4]

bgpDestinationAsNumber(17)[4]

octetDeltaCount(1)[8]

Assume the goal is to get 60-minute time series of octet counts per

source/destination ASN pair. The aggregation operations would then be

arranged as in Figure 18.

 Original Flows

 |

 V

 +-----------------------+

 | interval distribution |

 | * impose uniform |

 | 3600s time interval |

 +-----------------------+

 |

 | Partially Aggregated Flows

 V

+------------------------+

| key aggregation |

| * reduce key to only |

| sourceIPv4Address + |

| destIPv4Address |

+------------------------+

 |

 V

+------------------------+

| key aggregation |

| * replace addresses |

| with ASN from map |

+------------------------+

 |

 | Partially Aggregated Flows

 V

 +-------------------------+

 | aggregate combination |

 | * sum octetDeltaCount |

 +-------------------------+

 |

 V

 Aggregated Flows

After the interval distribution step, only the time intervals have

changed; the Partially Aggregated flows are shown in Figure 19. Note

that the flows are identical to those in interval distribution step in

the previous example, except the chosen interval (1 hour, 3600 seconds)

is different; therefore, all the flows fit into a single interval.

9:00:00.000-10:00:00.000 192.0.2.2:47113 -> 192.0.2.131:53 (17) 119

9:00:00.000-10:00:00.000 192.0.2.2:22153 -> 192.0.2.131:53 (17) 83

9:00:00.000-10:00:00.000 192.0.2.2:52420 -> 198.51.100.2:443 (6) 1637

9:00:00.000-10:00:00.000 192.0.2.3:56047 -> 192.0.2.131:53 (17) 111

9:00:00.000-10:00:00.000 192.0.2.3:41183 -> 198.51.100.67:80 (6) 16838

9:00:00.000-10:00:00.000 192.0.2.2:17606 -> 198.51.100.68:80 (6) 11538

9:00:00.000-10:00:00.000 192.0.2.3:47113 -> 192.0.2.131:53 (17) 119

9:00:00.000-10:00:00.000 192.0.2.3:48458 -> 198.51.100.133:80 (6) 2973

9:00:00.000-10:00:00.000 192.0.2.4:61295 -> 198.51.100.2:443 (6) 8350

9:00:00.000-10:00:00.000 203.0.113.3:41256 -> 198.51.100.133:80 (6) 778

9:00:00.000-10:00:00.000 203.0.113.3:51662 -> 198.51.100.3:80 (6) 883

9:00:00.000-10:00:00.000 192.0.2.2:37581 -> 198.51.100.2:80 (6) 15420

9:00:00.000-10:00:00.000 203.0.113.3:52572 -> 198.51.100.2:443 (6) 1637

9:00:00.000-10:00:00.000 203.0.113.3:49914 -> 197.51.100.133:80 (6) 561

9:00:00.000-10:00:00.000 192.0.2.2:50824 -> 198.51.100.2:443 (6) 1899

9:00:00.000-10:00:00.000 192.0.2.3:34597 -> 198.51.100.3:80 (6) 1284

9:00:00.000-10:00:00.000 203.0.113.3:58907 -> 198.51.100.4:80 (6) 2670

9:00:00.000-10:00:00.000 192.0.2.4:22478 -> 192.0.2.131:53 (17) 75

9:00:00.000-10:00:00.000 192.0.2.4:49513 -> 198.51.100.68:80 (6) 3374

9:00:00.000-10:00:00.000 192.0.2.4:64832 -> 198.51.100.67:80 (6) 138

9:00:00.000-10:00:00.000 192.0.2.3:60833 -> 198.51.100.69:443 (6) 2325

9:00:00.000-10:00:00.000 203.0.113.3:39586 -> 198.51.100.17:80 (6) 11200

9:00:00.000-10:00:00.000 192.0.2.2:19638 -> 198.51.100.3:80 (6) 2869

9:00:00.000-10:00:00.000 192.0.2.3:40429 -> 198.51.100.4:80 (6) 18289

The next step is to discard irrelevant key fields, and replace the

source and destination addresses with source and destination AS numbers

in the map; the results of these key aggregation steps are shown in

Figure 20.

9:00:00.000-10:00:00.000 AS64496 -> AS64497 119

9:00:00.000-10:00:00.000 AS64496 -> AS64497 83

9:00:00.000-10:00:00.000 AS64496 -> AS64498 1637

9:00:00.000-10:00:00.000 AS64496 -> AS64497 111

9:00:00.000-10:00:00.000 AS64496 -> AS64498 16838

9:00:00.000-10:00:00.000 AS64496 -> AS64498 11538

9:00:00.000-10:00:00.000 AS64496 -> AS64497 119

9:00:00.000-10:00:00.000 AS64496 -> AS64498 2973

9:00:00.000-10:00:00.000 AS64496 -> AS64498 8350

9:00:00.000-10:00:00.000 AS64499 -> AS64498 778

9:00:00.000-10:00:00.000 AS64499 -> AS64498 883

9:00:00.000-10:00:00.000 AS64496 -> AS64498 15420

9:00:00.000-10:00:00.000 AS64499 -> AS64498 1637

9:00:00.000-10:00:00.000 AS64499 -> AS64498 561

9:00:00.000-10:00:00.000 AS64496 -> AS64498 1899

9:00:00.000-10:00:00.000 AS64496 -> AS64498 1284

9:00:00.000-10:00:00.000 AS64499 -> AS64498 2670

9:00:00.000-10:00:00.000 AS64496 -> AS64497 75

9:00:00.000-10:00:00.000 AS64496 -> AS64498 3374

9:00:00.000-10:00:00.000 AS64496 -> AS64498 138

9:00:00.000-10:00:00.000 AS64496 -> AS64498 2325

9:00:00.000-10:00:00.000 AS64499 -> AS64498 11200

9:00:00.000-10:00:00.000 AS64496 -> AS64498 2869

9:00:00.000-10:00:00.000 AS64496 -> AS64498 18289

Finally, aggregate combination sums the counters per key and interval.

The resulting Aggregated Flows containing the traffic matrix, shown in

Figure 21, are then exported using the template in Figure 17. Note that

these aggregated flows represent a sparse matrix: AS pairs for which no

traffic was received have no corresponding record in the output.

9:00:00.000-10:00:00.000 AS64496 -> AS64497 507

9:00:00.000-10:00:00.000 AS64496 -> AS64498 86934

9:00:00.000-10:00:00.000 AS64499 -> AS64498 17729

The output of this operation is suitable for re-aggregation: that is,

traffic matrices from single links or observarion points can be

aggregated through the same interval imposition and aggregate

combination steps in order to build a traffic matrix for an entire

network.

8.3. Distinct Source Count per Destination Endpoint

Aggregating flows by destination address and port, and counting

distinct sources aggregated away, can be used as part of passive

service inventory and host characterization approaches. This example

shows aggregation as an analysis technique, performed on source data

stored in an IPFIX File. As the Transport Session in this File is

bounded, removal of all timestamp information allows summarization of

the entire time interval contained within the interval. Removal of

timing information during interval imposition is equivalent to an

infinitely long imposed time interval. This demonstrates both how

infinite intervals work, and how unique counters work. The aggregation

operations are summarized in Figure 22.

 Original Flows

 |

 V

 +-----------------------+

 | interval distribution |

 | * discard timestamps |

 +-----------------------+

 |

 | Partially Aggregated Flows

 V

+----------------------------+

| value aggregation |

| * discard octetDeltaCount |

+----------------------------+

 |

 | Partially Aggregated Flows

 V

+----------------------------+

| key aggregation |

| * reduce key to only |

| destIPv4Address + |

| destTransportPort, |

| * count distinct sources |

+----------------------------+

 |

 | Partially Aggregated Flows

 V

 +--+

 | aggregate combination |

 | * no-op (distinct sources already counted) |

 +--+

 |

 V

 Aggregated Flows

The template for Aggregated Flows produced by this example is shown in

Figure 23.

destinationIPv4Address(12)[4]

destinationTransportPort(11)[2]

distinctCountOfSourceIPAddress(TBD4)[8]

Interval distribution, in this case, merely discards the timestamp

information from the Original Flows, and as such is not shown.

Likewise, the value aggregation step simply discards the

octetDeltaCount value field. The key aggregation step reduces the key

to the destinationIPv4Address and destinationTransportPort, counting

the distinct source addresses. Since this is essentially the output of

this aggregation function, the aggregate combination operation is a no-

op; the resulting Aggregated Flows are shown in Figure 24.

destination 192.0.2.131:53 3 sources

destination 198.51.100.2:80 1 source

destination 198.51.100.2:443 3 sources

destination 198.51.100.67:80 2 sources

destination 198.51.100.68:80 2 sources

destination 198.51.100.133:80 2 sources

destination 198.51.100.3:80 3 sources

destination 198.51.100.4:80 2 sources

destination 198.51.100.17:80 1 source

destination 198.51.100.69:443 1 source

8.4. Traffic Time-Series per Source with Counter Distribution

Returning to the example in Section 8.1, note that our source data

contains some flows with durations longer than the imposed interval of

five minutes. The default method for dealing with such flows is to

account them to the interval containing the flow's start time.

In this example, the same data is aggregated using the same arrangement

of operations and the same output template as the as in Section 8.1,

but using a different counter distribution policy, Simple Uniform

Distribution, as described in Section 5.1.1. In order to do this, the

Exporting Process first exports the Aggregate Counter Distribution

Options Template, as in Figure 25.

templateId(12)[2]{scope}

valueDistribtutionMethod(TBD10)[1]

This is followed by an Aggregate Counter Distribution Record described

by this Template; assuming the output template in Figure 10 has ID 257,

this would appear as in Figure 26.

templateId 257: valueDistributionMethod 4 (Simple Uniform)

[EDITOR'S NOTE: redo these in boxdiagrams?]

Following metadata export, the aggregation steps follow as before.

However, two long flows are distributed across multiple invervals in

the interval imposition step, as indicated with "*" in Figure 27. Note

the uneven distribution of the three-interval, 11200-octet flow into

three Partially Aggregated Flows of 3733, 3733, and 3734 octets; this

ensures no cumulative error is injected by the interval distribution

step.

 9:00:00.000-9:05:00.000 192.0.2.2:47113 -> 192.0.2.131:53 (17) 119

 9:00:00.000-9:05:00.000 192.0.2.2:22153 -> 192.0.2.131:53 (17) 83

 9:00:00.000-9:05:00.000 192.0.2.2:52420 -> 198.51.100.2:443 (6) 1637

 9:00:00.000-9:05:00.000 192.0.2.3:56047 -> 192.0.2.131:53 (17) 111

 9:00:00.000-9:05:00.000 192.0.2.3:41183 -> 198.51.100.67:80 (6) 16838

 9:00:00.000-9:05:00.000 192.0.2.2:17606 -> 198.51.100.68:80 (6) 11538

 9:00:00.000-9:05:00.000 192.0.2.3:47113 -> 192.0.2.131:53 (17) 119

 9:00:00.000-9:05:00.000 192.0.2.3:48458 -> 198.51.100.133:80 (6) 2973

 9:00:00.000-9:05:00.000 192.0.2.4:61295 -> 198.51.100.2:443 (6) 8350

 9:00:00.000-9:05:00.000 203.0.113.3:41256 -> 198.51.100.133:80 (6) 778

 9:00:00.000-9:05:00.000 203.0.113.3:51662 -> 198.51.100.3:80 (6) 883

* 9:00:00.000-9:05:00.000 192.0.2.2:37581 -> 198.51.100.2:80 (6) 7710

* 9:00:00.000-9:05:00.000 203.0.113.3:39586 -> 198.51.100.17:80 (6) 3733

 9:05:00.000-9:10:00.000 203.0.113.3:52572 -> 198.51.100.2:443 (6) 1637

 9:05:00.000-9:10:00.000 203.0.113.3:49914 -> 197.51.100.133:80 (6) 561

 9:05:00.000-9:10:00.000 192.0.2.2:50824 -> 198.51.100.2:443 (6) 1899

 9:05:00.000-9:10:00.000 192.0.2.3:34597 -> 198.51.100.3:80 (6) 1284

 9:05:00.000-9:10:00.000 203.0.113.3:58907 -> 198.51.100.4:80 (6) 2670

* 9:05:00.000-9:10:00.000 192.0.2.2:37581 -> 198.51.100.2:80 (6) 7710

* 9:05:00.000-9:10:00.000 203.0.113.3:39586 -> 198.51.100.17:80 (6) 3733

 9:10:00.000-9:15:00.000 192.0.2.4:22478 -> 192.0.2.131:53 (17) 75

 9:10:00.000-9:15:00.000 192.0.2.4:49513 -> 198.51.100.68:80 (6) 3374

 9:10:00.000-9:15:00.000 192.0.2.4:64832 -> 198.51.100.67:80 (6) 138

 9:10:00.000-9:15:00.000 192.0.2.3:60833 -> 198.51.100.69:443 (6) 2325

* 9:10:00.000-9:15:00.000 203.0.113.3:39586 -> 198.51.100.17:80 (6) 3734

 9:10:00.000-9:15:00.000 192.0.2.2:19638 -> 198.51.100.3:80 (6) 2869

 9:10:00.000-9:15:00.000 192.0.2.3:40429 -> 198.51.100.4:80 (6) 18289

Subsequent steps are as in Section 8.1; the results, to be exported

using Figure 10, are shown in Figure 28, with Aggregated Flows

differing from the previous example indicated by "*".

* 9:00:00.000-9:05:00.000 192.0.2.2 21087

 9:00:00.000-9:05:00.000 192.0.2.3 20041

 9:00:00.000-9:05:00.000 192.0.2.4 8350

* 9:00:00.000-9:05:00.000 203.0.113.3 9394

* 9:05:00.000-9:10:00.000 192.0.2.2 9609

 9:05:00.000-9:10:00.000 192.0.2.3 1284

* 9:05:00.000-9:10:00.000 203.0.113.3 8601

 9:10:00.000-9:15:00.000 192.0.2.2 2869

 9:10:00.000-9:15:00.000 192.0.2.3 20594

 9:10:00.000-9:15:00.000 192.0.2.4 3587

* 9:10:00.000-9:15:00.000 203.0.113.3 3734

9. Security Considerations

This document specifies the operation of an Intermediate Aggregation

Process with the IPFIX Protocol; the Security Considerations for the

protocol itself in Section 11 of [RFC5101] therefore apply. In the

common case that aggregation is performed on a Mediator, the Security

Considerations for Mediators in Section 9 of [RFC6183] apply as well.

As mentioned in Section 3, certain aggregation operations may tend to

have an anyonymizing effect on flow data by obliterating sensitive

identifiers. Aggregation may also be combined with anonymization within

a Mediator, or as part of a chain of Mediators, to further leverage

this effect. In any case in which an Intermediate Aggregation Process

is applied as part of a data anonymization or protection scheme, or is

used together with anonymization as described in [RFC6235], the

Security Considerations in Section 9 of [RFC6235] apply.

10. IANA Considerations

This document specifies the creation of new IPFIX Information Elements

in the IPFIX Information Element registry located at http://

www.iana.org/assignments/ipfix, as defined in Section 7 above. IANA has

assigned Information Element numbers to these Information Elements, and

entered them into the registry.

[NOTE for IANA: The text TBDn should be replaced with the respective

assigned Information Element numbers where they appear in this

document. Note that the deltaFlowCount Information Element has been

assigned the number 3, as it is compatible with the corresponding

existing (reserved) NetFlow v9 Information Element. Other Information

Element numbers should be assigned outside the NetFlow V9 compatibility

range, as these Information Elements are not supported by NetFlow V9.]

11. Acknowledgments

Special thanks to Elisa Boschi for early work on the concepts laid out

in this document. Thanks to Lothar Braun and Christian Henke for their

reviews. This work is materially supported by the European Union

Seventh Framework Programme under grant agreement 257315 (DEMONS).

12. References

12.1. Normative References

[RFC5101]

Claise, B., "Specification of the IP Flow Information

Export (IPFIX) Protocol for the Exchange of IP Traffic

Flow Information", RFC 5101, January 2008.

[RFC5102]

Quittek, J., Bryant, S., Claise, B., Aitken, P. and J.

Meyer, "Information Model for IP Flow Information

Export", RFC 5102, January 2008.

12.2. Informative References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC

2119, March 1997.

[RFC3917]

Quittek, J., Zseby, T., Claise, B. and S.

Zander, "Requirements for IP Flow Information

Export (IPFIX)", RFC 3917, October 2004.

[RFC5103]

Trammell, B. and E. Boschi, "Bidirectional

Flow Export Using IP Flow Information Export

(IPFIX)", RFC 5103, January 2008.

[RFC5153]

Boschi, E., Mark, L., Quittek, J.,

Stiemerling, M. and P. Aitken, "IP Flow

Information Export (IPFIX) Implementation

Guidelines", RFC 5153, April 2008.

[RFC5470]

Sadasivan, G., Brownlee, N., Claise, B. and

J. Quittek, "Architecture for IP Flow

Information Export", RFC 5470, March 2009.

[RFC5472]

Zseby, T., Boschi, E., Brownlee, N. and B.

Claise, "IP Flow Information Export (IPFIX)

Applicability", RFC 5472, March 2009.

[RFC5476]

Claise, B., Johnson, A. and J. Quittek,

"Packet Sampling (PSAMP) Protocol

Specifications", RFC 5476, March 2009.

[RFC5610]

Boschi, E., Trammell, B., Mark, L. and T.

Zseby, "Exporting Type Information for IP

Flow Information Export (IPFIX) Information

Elements", RFC 5610, July 2009.

[RFC5655]

Trammell, B., Boschi, E., Mark, L., Zseby, T.

and A. Wagner, "Specification of the IP Flow

Information Export (IPFIX) File Format", RFC

5655, October 2009.

[RFC5835]

Morton, A. and S. Van den Berghe, "Framework

for Metric Composition", RFC 5835, April

2010.

http://tools.ietf.org/html/rfc5101
http://tools.ietf.org/html/rfc5101
http://tools.ietf.org/html/rfc5101
http://tools.ietf.org/html/rfc5102
http://tools.ietf.org/html/rfc5102
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3917
http://tools.ietf.org/html/rfc3917
http://tools.ietf.org/html/rfc5103
http://tools.ietf.org/html/rfc5103
http://tools.ietf.org/html/rfc5103
http://tools.ietf.org/html/rfc5153
http://tools.ietf.org/html/rfc5153
http://tools.ietf.org/html/rfc5153
http://tools.ietf.org/html/rfc5470
http://tools.ietf.org/html/rfc5470
http://tools.ietf.org/html/rfc5472
http://tools.ietf.org/html/rfc5472
http://tools.ietf.org/html/rfc5476
http://tools.ietf.org/html/rfc5476
http://tools.ietf.org/html/rfc5610
http://tools.ietf.org/html/rfc5610
http://tools.ietf.org/html/rfc5610
http://tools.ietf.org/html/rfc5655
http://tools.ietf.org/html/rfc5655
http://tools.ietf.org/html/rfc5835
http://tools.ietf.org/html/rfc5835

[RFC5982]

Kobayashi, A. and B. Claise, "IP Flow

Information Export (IPFIX) Mediation: Problem

Statement", RFC 5982, August 2010.

[RFC6183]

Kobayashi, A., Claise, B., Muenz, G. and K.

Ishibashi, "IP Flow Information Export

(IPFIX) Mediation: Framework", RFC 6183,

April 2011.

[RFC6235]
Boschi, E. and B. Trammell, "IP Flow

Anonymization Support", RFC 6235, May 2011.

[I-D.claise-ipfix-

mediation-

protocol]

Claise, B, Kobayashi, A and B Trammell,

"Specification of the Protocol for IPFIX

Mediations", Internet-Draft draft-claise-

ipfix-mediation-protocol-04, July 2011.

[I-D.trammell-

ipfix-ie-doctors]

Trammell, B and B Claise, "Guidelines for

Authors and Reviewers of IPFIX Information

Elements", Internet-Draft draft-trammell-

ipfix-ie-doctors-03, October 2011.

[I-D.ietf-ipfix-

configuration-

model]

Muenz, G, Claise, B and P Aitken,

"Configuration Data Model for IPFIX and

PSAMP", Internet-Draft draft-ietf-ipfix-

configuration-model-10, July 2011.

[I-D.ietf-ipfix-

flow-selection-

tech]

D'Antonio, S, Zseby, T, Henke, C and L

Peluso, "Flow Selection Techniques",

Internet-Draft draft-ietf-ipfix-flow-

selection-tech-09, November 2011.

Authors' Addresses

Brian Trammell Trammell Swiss Federal Institute of Technology Zurich

Gloriastrasse 35 8092 Zurich, Switzerland Phone: +41 44 632 70 13

EMail: trammell@tik.ee.ethz.ch

Arno Wagner Wagner Consecom AG Bleicherweg 64a 8002 Zurich,

Switzerland EMail: arno@wagner.name

Benoit Claise Claise Cisco Systems, Inc. De Kleetlaan 6a b1 1831

Diagem, Belgium Phone: +32 2 704 5622 EMail: bclaise@cisco.com

http://tools.ietf.org/html/rfc5982
http://tools.ietf.org/html/rfc5982
http://tools.ietf.org/html/rfc5982
http://tools.ietf.org/html/rfc6183
http://tools.ietf.org/html/rfc6183
http://tools.ietf.org/html/rfc6235
http://tools.ietf.org/html/rfc6235
http://tools.ietf.org/html/draft-claise-ipfix-mediation-protocol-04
http://tools.ietf.org/html/draft-claise-ipfix-mediation-protocol-04
http://tools.ietf.org/html/draft-trammell-ipfix-ie-doctors-03
http://tools.ietf.org/html/draft-trammell-ipfix-ie-doctors-03
http://tools.ietf.org/html/draft-trammell-ipfix-ie-doctors-03
http://tools.ietf.org/html/draft-ietf-ipfix-configuration-model-10
http://tools.ietf.org/html/draft-ietf-ipfix-configuration-model-10
http://tools.ietf.org/html/draft-ietf-ipfix-flow-selection-tech-09
mailto:trammell@tik.ee.ethz.ch
mailto:arno@wagner.name
mailto:bclaise@cisco.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. IPFIX Protocol Overview
	1.2. IPFIX Documents Overview
	2. Terminology
	3. Use Cases for IPFIX Aggregation
	4. Architecture for Flow Aggregation
	4.1. Aggregation within the IPFIX Architecture
	4.2. Intermediate Aggregation Process Architecture
	5. IP Flow Aggregation Operations
	5.1. Temporal Aggregation through Interval Distribution
	5.1.1. Distributing Values Across Intervals
	5.1.2. Time Composition
	5.2. Spatial Aggregation of Flow Keys
	5.2.1. Counting Original Flows
	5.2.2. Counting Distinct Key Values
	5.3. Spatial Aggregation of Non-Key Fields
	5.3.1. Counter Statistics
	5.3.2. Derivation of New Values from Flow Keys and non-Key fields
	5.4. Aggregation Combination
	6. Additional Considerations and Special Cases in Flow Aggregation
	6.1. Exact versus Approximate Counting during Aggregation
	6.2. Considerations for Aggregation of Sampled Flows
	6.3. Considerations for Aggregation of Heterogeneous Flows
	7. Export of Aggregated IP Flows using IPFIX
	7.1. Time Interval Export
	7.2. Flow Count Export
	7.2.1. originalFlowsPresent
	7.2.2. originalFlowsInitiated
	7.2.3. originalFlowsCompleted
	7.2.4. deltaFlowCount
	7.3. Distinct Host Export
	7.3.1. distinctCountOfSourceIPAddress
	7.3.2. distinctCountOfDestinationIPAddress
	7.3.3. distinctCountOfSourceIPv4Address
	7.3.4. distinctCountOfDestinationIPv4Address
	7.3.5. distinctCountOfSourceIPv6Address
	7.3.6. distinctCountOfDestinationIPv6Address
	7.4. Aggregate Counter Distribution Export
	7.4.1. Aggregate Counter Distribution Options Template
	7.4.2. valueDistributionMethod Information Element
	8. Examples
	8.1. Traffic Time-Series per Source
	8.2. Core Traffic Matrix
	8.3. Distinct Source Count per Destination Endpoint
	8.4. Traffic Time-Series per Source with Counter Distribution
	9. Security Considerations
	10. IANA Considerations
	11. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References
	Authors' Addresses

