
Network Working Group B. Trammell, Ed.
Internet-Draft M. Kuehlewind, Ed.
Intended status: Informational ETH Zurich
Expires: April 30, 2017 October 27, 2016

mPlane Protocol Specification
draft-trammell-mplane-protocol-02

Abstract

 This document defines the mPlane protocol for coordination of
 heterogeneous network measurement Components: probes and repositories
 that measure, analyze, and store network measurements, data derived
 from measurements, and other ancillary data about elements of the
 network. The mPlane architecture is defined in terms of
 relationships between Components and Clients which communicate using
 the mPlane protocol defined in this document.

 This revision of the document describes Version 2 of the mPlane
 protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Trammell & Kuehlewind Expires April 30, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft mPlane Protocol October 2016

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Changes from Revision -00 (Protocol version 1) 4
1.2. Changes from Revision -01 4

2. Terminology . 4
3. Overview of the mPlane Architecture 5
3.1. Key Architectural Principles and Features 6
3.1.1. Flexibility and Extensibility 6
3.1.2. Schema-centric Measurement Definition 7
3.1.3. Iterative Measurement Support 7
3.1.4. Weak Imperativeness 7

3.2. Entities and Relationships 8
3.2.1. Components and Clients 9
3.2.2. Probes and Repositories 9

3.3. Message Types and Message Exchange Sequences 9
3.4. Integrating Measurement Tools into mPlane 11
3.5. From Architecture to Protocol Specification 11

4. Protocol Information Model 11
4.1. Element Registry . 12
4.1.1. Structured Element Names 13
4.1.2. Primitive Types 14
4.1.3. Augmented Registry Information 15

4.2. Message Types . 15
4.2.1. Capability and Withdrawal 16
4.2.2. Specification and Interrupt 16
4.2.3. Result . 16
4.2.4. Receipt and Redemption 16
4.2.5. Exception . 17
4.2.6. Envelope . 17

4.3. Message Sections . 18
4.3.1. Message Type and Verb 19
4.3.2. Version . 20
4.3.3. Registry . 20
4.3.4. Label . 20
4.3.5. Temporal Scope (When) 21
4.3.6. Parameters . 22
4.3.7. Metadata . 23
4.3.8. Result Columns and Values 24
4.3.9. Export . 24
4.3.10. Link . 25
4.3.11. Token . 25

Trammell & Kuehlewind Expires April 30, 2017 [Page 2]

Internet-Draft mPlane Protocol October 2016

4.3.12. Contents . 26
4.4. Message Uniqueness and Idempotence 26
4.4.1. Message Schema 26
4.4.2. Message Identity 27

4.5. Designing Measurement and Repository Schemas 27
5. Representations and Session Protocols 28
5.1. JSON representation 28
5.1.1. Textual representations of element values 29

 5.1.2. Example mPlane Capabilities and Specifications in
 JSON . 30

5.2. mPlane over WebSockets over TLS 36
5.2.1. mPlane PKI for WebSockets 37
5.2.2. Capability Advertisement for WebSockets 37
5.2.3. mPlane Link and Export URLs for WebSockets 37

6. Deployment Considerations 38
6.1. Supervisors and Federation 38
6.1.1. Component Registration 40
6.1.2. Client Authentication 40

 6.1.3. Capability Composition and Specification
 Decomposition . 40

6.2. Indirect Export . 40
6.3. Error Handling in mPlane Workflows 41

7. Security Considerations 42
8. IANA Considerations . 42
9. Contributors . 42
10. Acknowledgments . 43
11. Informative References 43

 Authors' Addresses . 44

1. Introduction

 This document describes the mPlane architecture and protocol, which
 is designed to provide control and coordination of heterogeneous
 network measurement tools. It is based heavily on the mPlane
 project's deliverable 1.4 [D14], and is submitted for the information
 of the Internet engineering community. Section 3 gives an overview
 of the mPlane architecture, Section 4 defines the protocol
 information model, and Section 5 defines the representations of this
 data model and session protocols over which mPlane is supported.

 Present work is focused on mPlane represented in JSON using
 WebSockets [RFC6455] as a session protocol.

 This revision of the document describes Version 2 of the mPlane
 protocol.

https://datatracker.ietf.org/doc/html/rfc6455

Trammell & Kuehlewind Expires April 30, 2017 [Page 3]

Internet-Draft mPlane Protocol October 2016

1.1. Changes from Revision -00 (Protocol version 1)

 o WebSockets has been added as a session protocol for the mPlane
 protocol. Message flow has been modified to fit.

 o Redemptions have been expanded to allow temporally-scoped partial
 redemption of long-running measurements.

 o The "object" primitive type has been added to allow structured
 objects to be represented directly in mPlane messages using the
 underlying representation.

 o A number of obsolete features have been deprecated based on
 implementation and pilot deployment experience, and removed from
 the protocol description:

 * HTTPS as a session protocol, as it is a poor fit for mPlane's
 exchanges

 * Callback control, as it is no longer needed without the
 limitations of HTTPS as a session protocol

 * The Indirection message type, as the same functionality is
 available for all message types using the link section.

 * Repeating measurements, as their functionality has been
 replaced by partial redemption

 o References to the "core" registry have been removed, as all
 element registries must in any case be explicitly defined in
 mPlane Capabilities, Specifications, and Results. An eventual
 proposed standard mPlane protocol would refer to an IANA-managed
 core registry.

1.2. Changes from Revision -01

 o Editorial changes only.

2. Terminology

 [EDITOR'S NOTE: these terms are not necessarily capitalized within
 the document at this time. Fix this.]

 Client: An entity which implements the mPlane protocol, receives
 Capabilities published by one or more Components, and sends
 Specifications to those Component(s) to perform measurements and
 analysis. See Section 3.2.1.

Trammell & Kuehlewind Expires April 30, 2017 [Page 4]

Internet-Draft mPlane Protocol October 2016

 Component: An entity which implements the mPlane protocol specified
 within this document, advertises its Capabilities and accepts
 Specifications which request the use of those Capabilities. The
 measurements, analyses, storage facilities and other services
 provided by a Component are completely defined by its
 Capabilities. See Section 3.2.1.

 mPlane Message: The atomic unit of exchange in the mPlane protocol.
 The treatment of a message at a Client or Component receiving it
 is based upon its type; see Section 4.2.

 Capability: An mPlane message that contains a statement of a
 Component's ability and willingness to perform a specific
 operation, conveyed from a Component to a Client. A Capability
 does not represent a guarantee that the specific operation can or
 will be performed at a specific point in time. See Section 4.2.1

 Specification: An mPlane message that contains a statement of a
 Client's desire that a Component should perform a specific
 operation, conveyed from a Client to a Component. It can be
 conceptually viewed as a Capability whose parameters have been
 filled in with values. See Section 4.2.2.

 Result: An mPlane message containing a statement produced by a
 Component that a particular measurement was taken and the given
 values were observed, or that a particular operation or analysis
 was performed and a the given values were produced. It can be
 conceptually viewed as a Specification whose result columns have
 been filled in with values. See Section 4.2.3.

 Element: An identifier for a parameter or result column in a
 Capability, Specification, or Result, binding a name to a
 primitive type. Elements are contained in registries that contain
 the vocabulary from which mPlane Capabilities, Specifications, and
 Results can be built. See Section 4.1.

3. Overview of the mPlane Architecture

 mPlane is built around an architecture in which Components provide
 network measurement services and access to stored measurement data
 which they advertise via Capabilities completely describing these
 services and data. A Client makes use of these Capabilities by
 sending Specifications that respond to them back to the Components.
 Components may then either return Results directly to the Clients or
 sent to some third party via indirect export using an external
 protocol. The Capabilities, Specifications, and Results are carried
 over the mPlane protocol, defined in detail in this document. An

Trammell & Kuehlewind Expires April 30, 2017 [Page 5]

Internet-Draft mPlane Protocol October 2016

 mPlane measurement infrastructure is built up from these basic
 blocks.

 Components can be roughly classified into probes which generate
 measurement data and repositories which store and analyze measurement
 data, though the difference between a probe and a repository in the
 architecture is merely a matter of the Capabilities it provides.
 Components can be pulled together into an infrastructure by a
 supervisor (see Section 6.1), which presents a Client interface to
 subordinate Components and a Component interface to superordinate
 Clients, aggregating Capabilities into higher-level measurements and
 distributing Specifications to perform them.

 The mPlane protocol is, in essence, a self-describing, error- and
 delay- tolerant remote procedure call (RPC) protocol between Clients
 and Components: each Capability exposes an entry point in the API
 provided by the Component; each Specification embodies an API call;
 and each Result returns the results of an API call. This arrangement
 is shown in Figure 1 below.

 +=================================+
 | |
 +-->| Client |
 | | |<-+
 | +=================================+ |
 | n | | |
 Capability | Specification Result
 | | m V |
 | +=================================+ |
 | | |--+
 +---| Component |
 | |
 +=================================+

 Figure 1: The simplest form of the mPlane architecture

3.1. Key Architectural Principles and Features

 mPlane differs from a simple RPC facility in several important ways,
 detailed in the subsections below.

3.1.1. Flexibility and Extensibility

 First, given the heterogeneity of the measurement tools and
 techniques applied, it is necessary for the protocol to be as
 flexible and extensible as possible. Therefore, the architecture in
 its simplest form consists of only two entities and one relationship,
 as shown in the diagram below: n Clients connect to m Components via

Trammell & Kuehlewind Expires April 30, 2017 [Page 6]

Internet-Draft mPlane Protocol October 2016

 the mPlane protocol. Anything which can speak the mPlane protocol
 and exposes Capabilities thereby is a Component; anything which can
 understand these Capabilities and send Specifications to invoke them
 is a Client. Everything a Component can do, from the point of view
 of mPlane, is entirely described by its Capabilities. Capabilities
 are even used to expose optional internal features of the protocol
 itself, and provide a method for built-in protocol extensibility.

3.1.2. Schema-centric Measurement Definition

 Second, given the flexibility required above, the key to measurement
 interoperability is the comparison of data types. Each Capability,
 Specification, and Result contains a schema, comprising the set of
 parameters required to execute a measurement or query and the columns
 in the data set that results. From the point of view of mPlane, the
 schema completely describes the measurement. This implies that when
 exposing a measurement using mPlane, the developer of a Component
 must build each Capabilities it advertises such that the semantics of
 the measurement are captured by the set of columns in its schema.
 The elements from which schemas can be built are captured in a type
 registry. The mPlane platform provides a core registry for common
 measurement use cases within the project, and the registry facility
 is itself fully extensible as well, for supporting new applications
 without requiring central coordination beyond the domain or set of
 domains running the application.

3.1.3. Iterative Measurement Support

 Third, the exchange of messages in the protocol was chosen to support
 iterative measurement in which the aggregated, high-level results of
 a measurement are used as input to a decision process to select the
 next measurement. Specifically, the protocol blends control messages
 (Capabilities and Specifications) and data messages (Results) into a
 single workflow.

3.1.4. Weak Imperativeness

 Fourth, the mPlane protocol is weakly imperative. A Capability
 represents a willingness and an ability to perform a given
 measurement or execute a query, but not a guarantee or a reservation
 to do so. Likewise, a Specification contains a set of parameters and
 a temporal scope for a measurement a Client wishes a Component to
 perform on its behalf, but execution of Specifications is best-
 effort. A Specification is not an instruction which must Result
 either in data or in an error. This property arises from our
 requirement to support large-scale measurement infrastructures with
 thousands of similar Components, including resource- and
 connectivity-limited probes such as smartphones and customer-premises

Trammell & Kuehlewind Expires April 30, 2017 [Page 7]

Internet-Draft mPlane Protocol October 2016

 equipment (CPE) like home routers. These may be connected to a
 supervisor only intermittently. In this environment, the operability
 and conditions in which the probes find themselves may change more
 rapidly than can be practicably synchronized with a central
 supervisor; requiring reliable operation would compromise scalability
 of the architecture.

 To support weak imperativeness, each message in the mPlane protocol
 is self- contained, and contains all the information required to
 understand the message. For instance, a Specification contains the
 complete information from the Capability which it responds to, and a
 Result contains its Specification. In essence, this distributes the
 state of the measurements running in an infrastructure across all
 Components, and any state resynchronization that is necessary after a
 disconnect happens implicitly as part of message exchange. The
 failure of a Component during a large-scale measurement can be
 detected and corrected after the fact, by examining the totality of
 the generated data.

 This distribution of state throughout the measurement infrastructure
 carries with it a distribution of responsibility: a Component holding
 a Specification is responsible for ensuring that the measurement or
 query that the Specification describes is carried out, because the
 Client or supervisor which has sent the Specification does not
 necessarily keep any state for it.

 Error handling in a weakly imperative environment is different to
 that in traditional RPC protocols. The exception facility provided
 by mPlane is designed only to report on failures of the handling of
 the protocol itself. Each Component and Client makes its best effort
 to interpret and process any authorized, well-formed mPlane protocol
 message it receives, ignoring those messages which are spurious or no
 longer relevant. This is in contrast with traditional RPC protocols,
 where even common exceptional conditions are signaled, and
 information about missing or otherwise defective data must be
 correlated from logs about measurement control. This traditional
 design pattern is not applicable in infrastructures where the
 supervisor has no control over the functionality and availability of
 its associated probes.

3.2. Entities and Relationships

 The entities in the mPlane protocol and the relationships among them
 are described in more detail in the subsections below.

Trammell & Kuehlewind Expires April 30, 2017 [Page 8]

Internet-Draft mPlane Protocol October 2016

3.2.1. Components and Clients

 Specifically, a Component is any entity which implements the mPlane
 protocol specified within this document, advertises its Capabilities
 and accepts Specifications which request the use of those
 Capabilities. The measurements, analyses, storage facilities and
 other services provided by a Component are completely defined by its
 Capabilities.

 Conversely, a Client is any entity which implements the mPlane
 protocol, receives Capabilities published by one or more Components,
 and sends Specifications to those Component(s) to perform
 measurements and analysis.

 Every interaction in the mPlane protocol takes place between a
 Component and a Client. Indeed, the simplest instantiation of the
 mPlane architecture consists of one or more Clients taking
 Capabilities from one or more Components, and sending Specifications
 to invoke those Capabilities, as shown in Figure 1. An mPlane domain
 may consist of as little as a single Client and a single Component.
 In this arrangement, mPlane provides a measurement-oriented RPC
 mechanism.

3.2.2. Probes and Repositories

 Measurement Components can be roughly divided into two categories:
 probes and repositories. Probes perform measurements, and
 repositories provide access to stored measurements, analysis of
 stored measurements, or other access to related external data
 sources. External databases and data sources (e.g., routing looking
 glasses, WHOIS services, DNS, etc.) can be made available to mPlane
 Clients through repositories acting as gateways to these external
 sources, as well.

 Note that this categorization is very rough: what a Component can do
 is completely described by its Capabilities, and some Components may
 combine properties of both probes and repositories.

3.3. Message Types and Message Exchange Sequences

 The basic messages in the mPlane protocol are Capabilities,
 Specifications, and Results, as described above. The full protocol
 contains other message types as well. Withdrawals cancel
 Capabilities (i.e., indicate that the Component is no longer capable
 or willing to perform a given measurement) and interrupts cancel
 Specifications (i.e., indicate that the Component should stop
 performing the measurement). Receipts can be given in lieu of
 Results for not-yet completed measurements or queries, and

Trammell & Kuehlewind Expires April 30, 2017 [Page 9]

Internet-Draft mPlane Protocol October 2016

 redemptions can be used to retrieve Results referred to by a receipt.
 Exceptions can be sent by Clients or Components at any time to signal
 protocol-level errors to their peers.

 The following sequences of messages are possible within the mPlane
 protocol:

 Client Component
 |<---------- Capability -| (direct response)
 |- Specification ------->|
 |<-------------- Result -|
 | |
 |<---------- Capability -| (delayed response)
 |- Specification ------->|
 |<------------- Receipt -|
 | . . . |
 |- (Redemption) -------->|
 |<-------------- Result -|
 | |
 |<---------- Capability -| (indirect export)
 |- Specification ------->|
 |<------------- Receipt -|
 |.... indirect export ...|
 |- (Interrupt) --------->|
 | |
 |<---------- Capability -| (eventual withdrawal)
 | . . . |
 |<---------- Withdrawal -|

 Figure 2: Possible sequences of messages in the mPlane protocol

 In the nominal sequence, a Capability leads to a Specification leads
 to a Result, where Results may be transmitted by some other protocol.
 All the paths through the sequence of messages are shown in the
 diagram above; message types are described in detail in Section 4.2.

 Separate from the sequence of messages, the mPlane protocol supports
 two connection establishment patterns:

 o Client-initiated, in which Clients connect directly to Components
 at known, stable URLs. Client-initiated workflows are intended
 for use between Clients and supervisors, for access to
 repositories, and for access to probes embedded within a network
 infrastructure.

 o Component-initiated, in which Components initiate connections to
 Clients. Component-initiated workflows are intended for use
 between Components without stable routable addresses and

Trammell & Kuehlewind Expires April 30, 2017 [Page 10]

Internet-Draft mPlane Protocol October 2016

 supervisors, e.g. for small probes on embedded devices, mobile
 devices, or software probes embedded in browsers on personal
 computers behind network-address translators (NATs) or firewalls
 which prevent a Client from establishing a connection to them.

 Within a given mPlane domain, these patterns can be combined (along
 with indirect export and direct access) to facilitate complex
 interactions among Clients and Components according to the
 requirements imposed by the application and the deployment of
 Components in the network.

3.4. Integrating Measurement Tools into mPlane

 mPlane's flexibility and the self-description of measurements
 provided by the Capability-Specification-Result cycle was designed to
 allow a wide variety of existing measurement tools, both probes and
 repositories, to be integrated into an mPlane domain. In both cases,
 the key to integration is to define a Capability for each of the
 measurements the tool can perform or the queries the repository needs
 to make available within an mPlane domain. Each Capability has a set
 of parameters - information required to run the measurement or the
 query - and a set of result columns - information which the
 measurement or query returns.

 The parameters and result columns make up the measurement's schema,
 and are chosen from an extensible registry of elements. Practical
 details are given in Section 4.5.

3.5. From Architecture to Protocol Specification

 The remainder of this document builds the protocol Specification
 based on this architecture from the bottom up. First, we define the
 protocol's information model from the element registry through the
 types of mPlane messages and the sections they are composed of. We
 then define a concrete representation of this information model using
 Javascript Object Notation (JSON, [RFC7159]), and define bindings to
 WebSockets [RFC6455]} over TLS as a session protocol.

4. Protocol Information Model

 The mPlane protocol is message-oriented, built on the representation-
 and session-protocol-independent exchange of messages between Clients
 and Components. This section describes the information model,
 starting from the element registry which defines the elements from
 which Capabilities can be built, then detailing each type of message,
 and the sections that make these messages up. It then provides
 advice on using the information model to model measurements and
 queries.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc6455

Trammell & Kuehlewind Expires April 30, 2017 [Page 11]

Internet-Draft mPlane Protocol October 2016

4.1. Element Registry

 An element registry makes up the vocabulary by which mPlane
 Components and Clients can express the meaning of parameters,
 metadata, and result columns for mPlane statements. A registry is
 represented as a JSON [RFC7159] object with the following keys:

 o registry-format: currently "mplane-0", determines the supported
 features of the registry format.

 o registry-uri: the URI identifying the registry. The URI must be
 dereferencable to retrieve the canonical version of this registry.

 o registry-revision: a serial number starting with 0 and incremented
 with each revision to the content of the registry.

 o includes: a list of URLs to retrieve additional registries from.
 Included registries will be evaluated in depth-first order, and
 elements with identical names will be replaced by registries
 parsed later.

 o elements: a list of objects, each of which has the following three
 keys:

 * name: The name of the element.

 o prim: The name of the primitive type of the element, from the list
 of primitives in Section 4.1.2.

 * desc: An English-language description of the meaning of the
 element.

 Since the element names will be used as keys in mPlane messages,
 mPlane binds to JSON, and JSON mandates lowercase key names, element
 names must use only lowercase letters.

 An example registry with two elements and no includes follows:

https://datatracker.ietf.org/doc/html/rfc7159

Trammell & Kuehlewind Expires April 30, 2017 [Page 12]

Internet-Draft mPlane Protocol October 2016

 { "registry-format": "mplane-0",
 "registry-uri", "https://example.com/mplane/registry/core",
 "registry-revision": 0,
 "includes": [],
 "elements": [
 { "name": "full.structured.name",
 "prim": "string",
 "desc": "A representation of foo..."
 },
 { "name": "another.structured.name",
 "prim": "string",
 "desc": "A representation of bar..."
 },
]
 }

 Fully qualified element names consist of the element's name as an
 anchor after the URI from which the element came, e.g.
 "https://example.com/mplane/registry/core#full.structured.name".
 Elements within the type registry are considered globally equal based
 on their fully qualified names. However, within a given mPlane
 message, elements are considered equal based on unqualified names.

4.1.1. Structured Element Names

 To ease understanding of mPlane type registries, element names are
 structured by convention; that is, an element name is made up of the
 following structural parts in order, separated by the dot ('.')
 character:

 o basename: exactly one, the name of the property the element
 specifies or measures. All elements with the same basename
 describe the same basic property. For example, all elements with
 basename '"source"' relate to the source of a packet, flow, active
 measurement, etc.; and elements with basename '"delay"'' relate to
 the measured delay of an operation.

 o modifier: zero or more, additional information differentiating
 elements with the same basename from each other. Modifiers may
 associate the element with a protocol layer, or a particular
 variety of the property named in the basename. All elements with
 the same basename and modifiers refer to exactly the same
 property. Examples for the "delay" basename include "oneway" and
 "twoway", differentiating whether a delay refers to the path from
 the source to the destination or from the source to the source via
 the destination; and "icmp" and "tcp", describing the protocol
 used to measure the delay.

Trammell & Kuehlewind Expires April 30, 2017 [Page 13]

Internet-Draft mPlane Protocol October 2016

 o units: zero or one, present if the quantity can be measured in
 different units.

 o aggregation: zero or one, if the property is a metric derived from
 multiple singleton measurements. Supported aggregations are:

 * "min": minimum value

 * "max": maximum value

 * "mean": mean value

 * "sum": sum of values

 * "NNpct" (where NN is a two-digit number 01-99): percentile

 * "median": shorthand for and equivalent to "50pct".

 * "count": count of values aggregated

 When mapping mPlane structured names into contexts in which dots have
 special meaning (e.g. SQL column names or variable names in many
 programming languages), the dots may be replaced by underscores
 ('_'). When using external type registries (e.g. the IPFIX
 Information Element Registry), element names are not necessarily
 structured.

4.1.2. Primitive Types

 The mPlane protocol supports the following primitive types for
 elements in the type registry:

 o string: a sequence of Unicode characters

 o natural: an unsigned integer

 o real: a real (floating-point) number

 o bool: a true or false (boolean) value

 o time: a timestamp, expressed in terms of UTC. The precision of
 the timestamp is taken to be unambiguous based on its
 representation.

 o address: an identifier of a network-level entity, including an
 address family. The address family is presumed to be implicit in
 the format of the message, or explicitly stored. Addresses may
 represent specific endpoints or entire networks.

Trammell & Kuehlewind Expires April 30, 2017 [Page 14]

Internet-Draft mPlane Protocol October 2016

 o url: a uniform resource locator

 o object: a structured object, serialized according to the
 serialization rules of the underlying representation.

4.1.3. Augmented Registry Information

 Additional keys beyond prim, desc, and name may appear in an mPlane
 registry to augment information about each element. The following
 additional registry keys have been found useful by some implementors
 of the protocol:

 o units: If applicable, string describing the units in which the
 element is expressed; equal to the units part of a structured name
 if present.

 o ipfix-eid: The element ID of the equivalent IPFIX [RFC7011]
 Information Element.

 o ipfix-pen: The SMI Private Enterprise Number of the equivalent
 IPFIX [RFC7011] Information Element, if any.

4.2. Message Types

 Workflows in mPlane are built around the Capability - Specification -
 Result cycle. Capabilities, Specifications, and Results are kinds of
 statements: a Capability is a statement that a Component can perform
 some action (generally a measurement); a Specification is a statement
 that a Client would like a Component to perform the action advertised
 in a Capability; and a Result is a statement that a Component
 measured a given set of values at a given point in time according to
 a Specification.

 Other types of messages outside this nominal cycle are referred to as
 notifications. Types of notifications include Withdrawals,
 Interrupts, Receipts, Redemptions, and Exceptions. These notify
 Clients or Components of conditions within the measurement
 infrastructure itself, as opposed to directly containing information
 about measurements or observations.

 Messages may also be grouped together into a single envelope message.
 Envelopes allow multiple messages to be represented within a single
 message, for example multiple Results pertaining to the same Receipt;
 and multiple Capabilities or Specifications to be transferred in a
 single transaction in the underlying session protocol.

 The following types of messages are supported by the mPlane protocol:

https://datatracker.ietf.org/doc/html/rfc7011
https://datatracker.ietf.org/doc/html/rfc7011

Trammell & Kuehlewind Expires April 30, 2017 [Page 15]

Internet-Draft mPlane Protocol October 2016

4.2.1. Capability and Withdrawal

 A Capability is a statement of a Component's ability and willingness
 to perform a specific operation, conveyed from a Component to a
 Client. It does not represent a guarantee that the specific
 operation can or will be performed at a specific point in time.

 A withdrawal is a notification of a Component's inability or
 unwillingness to perform a specific operation. It cancels a
 previously advertised Capability. A withdrawal can also be sent in
 reply to a Specification which attempts to invoke a Capability no
 longer offered.

4.2.2. Specification and Interrupt

 A Specification is a statement that a Component should perform a
 specific operation, conveyed from a Client to a Component. It can be
 conceptually viewed as a Capability whose parameters have been filled
 in with values.

 An interrupt is a notification that a Component should stop
 performing a specific operation, conveyed from Client to Component.
 It terminates a previously sent Specification. If the Specification
 uses indirect export, the indirect export will simply stop running.
 If the Specification has pending Results, those Results are returned
 in response to the interrupt.

4.2.3. Result

 A Result is a statement produced by a Component that a particular
 measurement was taken and the given values were observed, or that a
 particular operation or analysis was performed and a the given values
 were produced. It can be conceptually viewed as a Specification
 whose Result columns have been filled in with values. Note that, in
 keeping with the stateless nature of the mPlane protocol, a Result
 contains the full set of parameters from which it was derived.

 Note that not every Specification will lead to a Result being
 returned; for example, in case of indirect export, only a receipt
 which can be used for future interruption will be returned, as the
 results will be conveyed to a third Component using an external
 protocol.

4.2.4. Receipt and Redemption

 A receipt is returned instead of a Result by a Component in response
 to a Specification which either:

Trammell & Kuehlewind Expires April 30, 2017 [Page 16]

Internet-Draft mPlane Protocol October 2016

 o will never return results, as it initiated an indirect export, or

 o will not return results immediately, as the operation producing
 the results will have a long run time.

 Receipts have the same content Specification they are returned for.
 A Component may optionally add a token section, which can be used in
 future redemptions or interruptions by the Client. The content of
 the token is an opaque string generated by the Component.

 A redemption is sent from a Client to a Component for a previously
 received receipt to attempt to retrieve delayed results. It may
 contain only the token section, the token and temporal scope, or all
 sections of the received receipt.

 When the temporal scope of a redemption for a running measurement is
 different than the temporal scope of the original Specification, it
 is treated by the Component as a partial redemption: all rows
 resulting from the measurement within the specified temporal scope
 are returned as a Result. Otherwise, a Component responds with a
 Result only when the measurement is complete; otherwise, another
 receipt is returned.

 Note that redemptions are optional: when a Component has a Result
 available for a Client after some period of time, it may send it
 immediately, without waiting for a redemption to retrieve it.

4.2.5. Exception

 An exception is sent from a Client to a Component or from a Component
 to a Client to signal an exceptional condition within the
 infrastructure itself. They are not meant to signal exceptional
 conditions within a measurement performed by a Component; see

Section 6.3 for more. An exception contains only two sections: an
 optional token referring back to the message to which the exception
 is related (if any), and a message section containing free-form,
 preferably human readable information about the exception.

4.2.6. Envelope

 An envelope is used to contain other messages. Message containment
 is necessary in contexts in which multiple mPlane messages must be
 grouped into a single transaction in the underlying session protocol.
 It is legal to group any kind of message, and to mix messages of
 different types, in an envelope. However, in the current revision of
 the protocol, envelopes are primarily intended to be used for three
 distinct purposes:

Trammell & Kuehlewind Expires April 30, 2017 [Page 17]

Internet-Draft mPlane Protocol October 2016

 o To group multiple Capabilities together within a single message
 (e.g., all the Capabilities a given Component has).

 o To return multiple Results for a single receipt or Specification.

 o To group multiple Specifications into a single message.

4.3. Message Sections

 Each message is made up of sections, as described in the subsection
 below. The following table shows the presence of each of these
 sections in each of the message types supported by mPlane: "req"
 means the section is required, "opt" means it is optional, and "tok"
 means it may be replaced by reference via a token when available
 (i.e., in withdrawals and redemptions); see the subsection on each
 message section for details.

Trammell & Kuehlewind Expires April 30, 2017 [Page 18]

Internet-Draft mPlane Protocol October 2016

 +----------------+---------+-------+--------+---------+----------+
 | Section | Cap. | Spec. | Result | Receipt | Envelope |
 +----------------+---------+-------+--------+---------+----------+
 | Verb | req | req | req. | req. | |
 | | | | | | |
 | Content Type | | | | | req |
 | | | | | | |
 | "version" | req | req | req | req | req |
 | | | | | | |
 | "registry" | req | req | req | opt | |
 | | | | | | |
 | "label" | opt | opt | opt | opt | opt |
 | | | | | | |
 | "when" | req | req | req | req | |
 | | | | | | |
 | "parameters" | req/tok | req | req | opt/tok | |
 | | | | | | |
 | "metadata" | opt/tok | opt | opt | opt/tok | |
 | | | | | | |
 | "results" | req/tok | req | req | opt/tok | |
 | | | | | | |
 | "resultvalues" | | | req | | |
 | | | | | | |
 | "export" | opt | opt | opt | opt | |
 | | | | | | |
 | "link" | opt | opt | | | |
 | | | | | | |
 | "token" | opt | opt | opt | opt | opt |
 | | | | | | |
 | "contents" | | | | | req |
 +----------------+---------+-------+--------+---------+----------+

 Table 1: Message Sections for Each Message Type

 Withdrawals take the same sections as Capabilities; and redemptions
 and interrupts take the same sections as receipts. Exceptions are
 not shown in this table.

4.3.1. Message Type and Verb

 The verb is the action to be performed by the Component. The
 following verbs are supported by the base mPlane protocol, but
 arbitrary verbs may be specified by applications:

 o "measure": Perform a measurement

 o "query": Query a database about a past measurement

Trammell & Kuehlewind Expires April 30, 2017 [Page 19]

Internet-Draft mPlane Protocol October 2016

 o "collect": Receive Results via indirect export

 o "callback": Used for callback control in Component-initiated
 workflows

 In the JSON representation of mPlane messages, the verb is the value
 of the key corresponding to the message's type, represented as a
 lowercase string (e.g. "Capability", "Specification", "result" and
 so on).

 Roughly speaking, probes implement "measure" Capabilities, and
 repositories implement "query" and "collect" Capabilities. Of
 course, any single Component can implement Capabilities with any
 number of different verbs.

 Within the SDK, the primary difference between "measure" and "query"
 is that the temporal scope of a "measure" Specification is taken to
 refer to when the measurement should be scheduled, while the temporal
 scope of a "query" Specification is taken to refer to the time window
 (in the past) of a query.

 Envelopes have no verb; instead, the value of the "envelope" key is
 the kind of messages the envelope contains, or "message" if the
 envelope contains a mixture of different unspecified kinds of
 messages.

4.3.2. Version

 The "version" section contains the version of the mPlane protocol to
 which the message conforms, as an integer serially incremented with
 each new protocol revision. This section is required in all
 messages. This document describes version 2 of the protocol.

4.3.3. Registry

 The "registry" section contains the URL identifying the element
 registry used by this message, and from which the registry can be
 retrieved. This section is required in all messages containing
 element names (statements, and receipts/redemptions/interrupts not
 using tokens for identification; see the "token" section).

4.3.4. Label

 The "label" section of a statement contains a human-readable label
 identifying it, intended solely for use when displaying information
 about messages in user interfaces. Results, receipts, redemptions,
 and interrupts inherit their label from the Specification from which
 they follow; otherwise, Client and Component software can arbitrarily

Trammell & Kuehlewind Expires April 30, 2017 [Page 20]

Internet-Draft mPlane Protocol October 2016

 assign labels . The use of labels is optional in all messages, but as
 labels do greatly ease human-readability of arbitrary messages within
 user interfaces, their use is recommended.

 mPlane Clients and Components should never use the label as a unique
 identifier for a message, or assume any semantic meaning in the label
 - the test of message equality and relatedness is always based upon
 the schema and values as in Section 4.4.

4.3.5. Temporal Scope (When)

 The "when" section of a statement contains its temporal scope.

 A temporal scope refers to when a measurement can be run (in a
 Capability), when it should be run (in a Specification), or when it
 was run (in a Result). Temporal scopes can be either absolute or
 relative, and may have an optional period, referring to how often
 single measurements should be taken.

 The general form of a temporal scope (in BNF-like syntax) is as
 follows:

 when = <singleton> | # A single point in time
 <range> | # A range in time
 <range> ' / ' <duration> # A range with a period

 singleton = <iso8601> | # absolute singleton
 'now' # relative singleton

 range = <iso8601> ' ... ' <iso8601> | # absolute range
 <iso8601> ' + ' <duration> | # relative range
 'now' ' ... ' <iso8061> | # definite future
 'now' ' + ' <duration> | # relative future
 <iso8601> ' ... ' 'now' | # definite past
 'past ... now' | # indefinite past
 'now ... future' | # indefinite future
 <iso8601> ' ... ' 'future' | # absolute indefinite future
 'past ... future' | # forever

 duration = [<n> 'd'] # days
 [<n> 'h'] # hours
 [<n> 'm'] # minute
 [<n> 's'] # seconds

 iso8601 = <n> '-' <n> '-' <n> [' ' <n> ':' <n> ':' <n> ['.' <n>]]

 All absolute times are always given in UTC and expressed in ISO8601
 format with variable precision.

Trammell & Kuehlewind Expires April 30, 2017 [Page 21]

Internet-Draft mPlane Protocol October 2016

 In Capabilities, if a period is given it represents the minimum
 period supported by the measurement; this is done to allow rate
 limiting. If no period is given, the measurement is not periodic. A
 Capability with a period can only be fulfilled by a Specification
 with period greater than or equal to the period in the Capability.
 Conversely, a Capability without a period can only be fulfilled by a
 Specification without a period.

 Within a Result, only absolute ranges are allowed within the temporal
 scope, and refers to the time range of the measurements contributing
 to the Result. Note that the use of absolute times here implies that
 the Components and Clients within a domain should have relatively
 well-synchronized clocks, e.g., to be synchronized using the Network
 Time Protocol [RFC5905] in order for Results to be temporally
 meaningful.

 So, for example, an absolute range in time might be expressed as:

 "when: 2009-02-20 13:02:15 ... 2014-04-04 04:27:19"

 A relative range covering three and a half days might be:

 "when: 2009-04-04 04:00:00 + 3d12h"

 In a Specification for running an immediate measurement for three
 hours every seven and a half minutes:

 "when: now + 3h / 7m30s"

 In a Capability noting that a Repository can answer questions about
 the past:

 "when: past ... now".

 In a Specification requesting that a measurement run from a specified
 point in time until interrupted:

 "when: 2017-11-23 18:30:00 ... future"

4.3.6. Parameters

 The "parameters" section of a message contains an ordered list of the
 parameters for a given measurement: values which must be provided by
 a Client to a Component in a Specification to convey the specifics of
 the measurement to perform. Each parameter in an mPlane message is a
 key-value pair, where the key is the name of an element from the
 element registry. In Specifications and Results, the value is the
 value of the parameter. In Capabilities, the value is a constraint

https://datatracker.ietf.org/doc/html/rfc5905

Trammell & Kuehlewind Expires April 30, 2017 [Page 22]

Internet-Draft mPlane Protocol October 2016

 on the possible values the Component will accept for the parameter in
 a subsequent Specification.

 Four kinds of constraints are currently supported for mPlane
 parameters:

 o No constraint: all values are allowed. This is signified by the
 special constraint string '"*"'.

 o Single value constraint: only a single value is allowed. This is
 intended for use for Capabilities which are conceivably
 configurable, but for which a given Component only supports a
 single value for a given parameter due to its own out-of-band
 configuration or the permissions of the Client for which the
 Capability is valid. For example, the source address of an active
 measurement of a single-homed probe might be given as
 '"source.ip4: 192.0.2.19"'.

 o Set constraint: multiple values are allowed, and are explicitly
 listed, separated by the '","' character. For example, a multi-
 homed probe allowing two potential source addresses on two
 different networks might be given as '"source.ip4: 192.0.2.19,
 192.0.3.21"'.

 o Range constraint: multiple values are allowed, between two ordered
 values, separated by the special string '"..."'. Range
 constraints are inclusive. A measurement allowing a restricted
 range of source ports might be expressed as '"source.port: 32768
 ... 65535"'

 o Prefix constraint: multiple values are allowed within a single
 network, as specified by a network address and a prefix. A prefix
 constraint may be satisfied by any network of host address
 completely contained within the prefix. An example allowing
 probing of any host within a given /24 might be '"destination.ip4:
 192.0.2.0/24"'.

 Parameter and constraint values must be a representation of an
 instance of the primitive type of the associated element.

4.3.7. Metadata

 The "metadata" section contains measurement metadata: key-value pairs
 associated with a Capability inherited by its Specification and
 Results. Metadata can also be thought of as immutable parameters.
 This is intended to represent information which can be used to make
 decisions at the Client as to the applicability of a given Capability
 (e.g. details of algorithms used or implementation-specific

Trammell & Kuehlewind Expires April 30, 2017 [Page 23]

Internet-Draft mPlane Protocol October 2016

 information) as well as to make adjustments at post-measurement
 analysis time when contained within Results.

 An example metadata element might be '"measurement.identifier: qof"',
 which identifies the underlying tool taking measurements, such that
 later analysis can correct for known peculiarities in the
 implementation of the tool. Another example might be
 '"location.longitude = 8.55272"', which while not particularly useful
 for analysis purposes, can be used to draw maps of measurements.

4.3.8. Result Columns and Values

 Results are represented using two sections: "results" which identify
 the elements to be returned by the measurement, and "resultvalues"
 which contains the actual values. "results" appear in all statements,
 while "resultvalues" appear only in Result messages.

 The "results" section contains an ordered list of result columns for
 a given measurement: names of elements which will be returned by the
 measurement. The result columns are identified by the names of the
 elements from the element registry.

 The "resultvalues" section contains an ordered list of ordered lists
 (or, rather, a two dimensional array) of values of results for a
 given measurement, in row-major order. The columns in the result
 values appear in the same order as the columns in the "results"
 section.

 Values for each column must be a representation of an instance of the
 primitive type of the associated result column element.

4.3.9. Export

 The "export" section contains a URL or partial URL for indirect
 export. Its meaning depends on the kind and verb of the message:

 o For Capabilities with the "collect" verb, the "export" section
 contains the URL of the collector which can accept indirect export
 for the schema defined by the "parameters" and "results" sections
 of the Capability, using the protocol identified by the URL's
 schema.

 o For Capabilities with any verb other than "collect", the "export"
 section contains either the URL of a collector to which the
 Component can indirectly export results, or a URL schema
 identifying a protocol over which the Component can export to
 arbitrary collectors.

Trammell & Kuehlewind Expires April 30, 2017 [Page 24]

Internet-Draft mPlane Protocol October 2016

 o For Specifications with any verb other than "collect", the
 "export" section contains the URL of a collector to which the
 Component should indirectly export results. A receipt will be
 returned for such Specifications.

 If a Component can indirectly export or indirectly collect using
 multiple protocols, each of those protocols must be identified by its
 own Capability; Capabilities with an "export" section can only be
 used by Specifications with a matching "export" section.

4.3.10. Link

 The "link" section contains the URL to which messages in the next
 step in the workflow (i.e. a Specification for a Capability, a Result
 or receipt for a Specification) can be sent, providing indirection.
 The link URL must currently have the schema "wss", and refers to the
 URL to which to initiate a connection.

 If present in a Capability, the Client must send Specifications for
 the given Capability to the Component at the URL given in order to
 use the Capability, connecting to the URL if no connection is
 currently established. If present in a Specification, the Component
 must send Results for the given Specification back to the Client at
 the URL given, connecting to the URL if no connection is currently
 established.

4.3.11. Token

 The "token" section contains an arbitrary string by which a message
 may be identified in subsequent communications in an abbreviated
 fashion. Unlike labels, tokens are not necessarily intended to be
 human-readable; instead, they provide a way to reduce redundancy on
 the wire by replacing the parameters, metadata, and results sections
 in messages within a workflow, at the expense of requiring more state
 at Clients and Components. Their use is optional.

 Tokens are scoped to the association between the Component and Client
 in which they are first created; i.e., at a Component, the token will
 be associated with the Client's identity, and vice-versa at a Client.
 Tokens should be created with sufficient entropy to avoid collision
 from independent processes at the same Client or token reuse in the
 case of Client or Component state loss at restart.

 If a Capability contains a token, it may be subsequently withdrawn by
 the same Component using a withdrawal containing the token instead of
 the parameters, metadata, and results sections.

Trammell & Kuehlewind Expires April 30, 2017 [Page 25]

Internet-Draft mPlane Protocol October 2016

 If a Specification contains a token, it may be answered by the
 Component with a receipt containing the token instead of the
 parameters, metadata, and results sections. A Specification
 containing a token may likewise be interrupted by the Client with an
 interrupt containing the token. A Component must not answer a
 Specification with a token with a receipt or Result containing a
 different token, but the token may be omitted in subsequent receipts
 and Results.

 If a receipt contains a token, it may be redeemed by the same Client
 using a redemption containing the token instead of the parameters,
 metadata, and results sections.

4.3.12. Contents

 The "contents" section appears only in envelopes, and is an ordered
 list of messages. If the envelope's kind identifies a message kind,
 the contents may contain only messages of the specified kind,
 otherwise if the kind is "message", the contents may contain a mix of
 any kind of message.

4.4. Message Uniqueness and Idempotence

 Messages in the mPlane protocol are intended to support state
 distribution: Capabilities, Specifications, and Results are meant to
 be complete declarations of the state of a given measurement. In
 order for this to hold, it must be possible for messages to be
 uniquely identifiable, such that duplicate messages can be
 recognized. With one important exception (i.e., Specifications with
 relative temporal scopes), messages are idempotent: the receipt of a
 duplicate message at a Client or Component is a null operation.

4.4.1. Message Schema

 The combination of elements in the "parameters" and "results"
 sections, together with the registry from which these elements are
 drawn, is referred to as a message's schema. The schema of a
 measurement can be loosely thought of as the definition of the table,
 rows of which the message represents.

 The schema contributes not only to the identity of a message, but
 also to the semantic interpretation of the parameter and result
 values. The meanings of element values in mPlane are dependent on
 the other elements present in the message; in other words, the key to
 interpreting an mPlane message is that the unit of semantic identity
 is a message. For example, the element '"destination.ip4"' as a
 parameter means "the target of a given active measurement" when
 together with elements describing an active metric (e.g.

Trammell & Kuehlewind Expires April 30, 2017 [Page 26]

Internet-Draft mPlane Protocol October 2016

 '"delay.twoway.icmp.us"'), but "the destination of the packets in a
 flow" when together with other elements in result columns describing
 a passively-observed flow.

 The interpretation of the semantics of an entire message is
 application-specific. The protocol does not forbid the transmission
 of messages representing semantically meaningless or ambiguous
 schemas.

4.4.2. Message Identity

 A message's identity is composed of its schema, together with its
 temporal scope, metadata, parameter values, and indirect export
 properties. Concretely, the full content of the "registry", "when",
 "parameters", "metadata", "results", and "export" sections taken
 together comprise the message's identity.

 One convenience feature complicates this somewhat: when the temporal
 scope is not absolute, multiple Specifications may have the same
 literal temporal scope but refer to different measurements. In this
 case, the current time at the Client or Component when a message is
 invoked must be taken as part of the message's identity as well.
 Implementations may use hashes over the values of the message's
 identity sections to uniquely identify messages; e.g. to generate
 message tokens.

4.5. Designing Measurement and Repository Schemas

 As noted, the key to integrating a measurement tool into an mPlane
 infrastructure is properly defining the schemas for the measurements
 and queries it performs, then defining those schemas in terms of
 mPlane Capabilities. Specifications and Results follow naturally
 from Capabilities, and the mPlane SDK allows Python methods to be
 bound to Capabilities in order to execute them. A schema should be
 defined such that the set of parameters, the set of result columns,
 and the verb together naturally and uniquely define the measurement
 or the query being performed. For simple metrics, this is achieved
 by encoding the entire meaning of the metric in its name. For
 example, "delay.twoway.icmp.us" as a result column together with
 "source.ip4" and "destination.ip4" as parameters uniquely defines a
 single ping measurement, measured via ICMP, expressed in
 microseconds.

 Aggregate measurements are defined by returning metrics with
 aggregations: "delay.twoway.icmp.min.us", "delay.twoway.icmp.max.us",
 "delay.twoway.icmp.mean.us", and "delay.twoway.icmp.count.us" as
 result columns represent aggregate ping measurements with multiple
 samples.

Trammell & Kuehlewind Expires April 30, 2017 [Page 27]

Internet-Draft mPlane Protocol October 2016

 Note that mPlane Results may contain multiple rows. In this case,
 the parameter values in the Result, taken from the Specification,
 apply to all rows. In this case, the rows are generally
 differentiated by the values in one or more result columns; for
 example, the "time" element can be used to represent time series, or
 the "hops.ip" different elements along a path between source and
 destination, as in a traceroute measurement.

 For measurements taken instantaneously, the verb "measure" should be
 used; for direct queries from repositories, the verb "query" should
 be used. Other actions that cannot be differentiated by schema alone
 should be differentiated by a custom verb.

 When integrating a repository into an mPlane infrastructure, only a
 subset of the queries the repository can perform will generally be
 exposed via the mPlane interface. Consider a generic repository
 which provides an SQL interface for querying data; wrapping the
 entire set of possible queries in specific Capabilities would be
 impossible, while providing direct access to the underlying SQL (for
 instance, by creating a custom registry with a "query.sql" string
 element to be used as a parameter) would make it impossible to
 differentiate Capabilities by schema (thereby making the
 interoperability benefits of mPlane integration pointless). Instead,
 specific queries to be used by Clients in concert with Capabilities
 provided by other Components are each wrapped within a separate
 Capability, analogous to stored procedure programming in many
 database engines. Of course, Clients which do speak the precise
 dialect of SQL necessary can integrate directly with the repository
 separate from the Capabilities provided over mPlane.

5. Representations and Session Protocols

 The mPlane protocol is built atop an abstract data model in order to
 support multiple representations and session protocols. The
 canonical representation supported by the present SDK involves JSON
 [RFC7159] objects transported via Websockets [RFC6455] over TLS
 [RFC5246] (known by the "wss" URL schema).

5.1. JSON representation

 In the JSON representation, an mPlane message is a JSON object,
 mapping sections by name to their contents. The name of the message
 type is a special section key, which maps to the message's verb, or
 to the message's content type in the case of an envelope.

 Each section name key in the object has a value represented in JSON
 as follows:

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc5246

Trammell & Kuehlewind Expires April 30, 2017 [Page 28]

Internet-Draft mPlane Protocol October 2016

 o "version" : an integer identifying the mPlane protocol version
 used by the message.

 o "registry" : a URL identifying the registry from which element
 names are taken.

 o "label" : an arbitrary string.

 o "when" : a string containing a temporal scope, as described in
Section 4.3.5.

 o "parameters" : a JSON object mapping (non-qualified) element
 names, either to constraints or to parameter values, as
 appropriate, and as described in Section 4.3.6.

 o "metadata" : a JSON object mapping (non-qualified) element names
 to metadata values.

 o "results" : an array of element names.

 o "resultvalues" : an array of arrays of element values in row major
 order, where each row array contains values in the same order as
 the element names in the "results" section.

 o "export" : a URL for indirect export.

 o "link" : a URL for message indirection.

 o "token" : an arbitrary string.

 o "contents" : an array of objects containing messages.

5.1.1. Textual representations of element values

 Each primitive type is represented as a value in JSON as follows,
 following the Textual Representation of IPFIX Abstract Data Types
 defined in [RFC7373].

 Natural and real values are represented in JSON using native JSON
 representation for numbers.

 Booleans are represented by the reserved words "true" and "false".

 Strings and URLs are represented as JSON strings, subject to JSON
 escaping rules.

 Addresses are represented as dotted quads for IPv4 addresses as they
 would be in URLs, and canonical IPv6 textual addresses as in section

https://datatracker.ietf.org/doc/html/rfc7373

Trammell & Kuehlewind Expires April 30, 2017 [Page 29]

Internet-Draft mPlane Protocol October 2016

 2.2 of [RFC4291] as updated by section 4 of [RFC5952]. When
 representing networks, addresses may be suffixed as in CIDR notation,
 with a '"/"' character followed by the mask length in bits n,
 provided that the least significant 32 - n or 128 - n bits of the
 address are zero, for IPv4 and IPv6 respectively.

 Timestamps are represented in [RFC3339] and ISO 8601, with two
 important differences. First, all mPlane timestamps are are
 expressed in terms of UTC, so time zone offsets are neither required
 nor supported, and are always taken to be 0. Second, fractional
 seconds are represented with a variable number of digits after an
 optional decimal point after the fraction.

 Objects are represented as JSON objects.

5.1.2. Example mPlane Capabilities and Specifications in JSON

 To illustrate how mPlane messages are encoded, we consider first two
 Capabilities for a very simple application - ping - as mPlane JSON
 Capabilities. The following Capability states that the Component can
 measure ICMP two-way delay from 192.0.2.19 to anywhere on the IPv4
 Internet, with a minimum delay between individual pings of 1 second,
 returning aggregate statistics:

 {
 "capability": "measure",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "ping-aggregate",
 "when": "now ... future / 1s",
 "parameters": {"source.ip4": "192.0.2.19",
 "destination.ip4": "*"},
 "results": ["delay.twoway.icmp.us.min",
 "delay.twoway.icmp.us.mean",
 "delay.twoway.icmp.us.50pct",
 "delay.twoway.icmp.us.max",
 "delay.twoway.icmp.count"]
 }

 In contrast, the following Capability would return timestamped
 singleton delay measurements given the same parameters:

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc5952#section-4
https://datatracker.ietf.org/doc/html/rfc3339

Trammell & Kuehlewind Expires April 30, 2017 [Page 30]

Internet-Draft mPlane Protocol October 2016

 {
 "capability": "measure",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "ping-singletons",
 "when": "now ... future / 1s",
 "parameters": {"source.ip4": "192.0.2.19",
 "destination.ip4": "*"},
 "results": ["time",
 "delay.twoway.icmp.us"]
 }

 A Specification is merely a Capability with filled-in parameters,
 e.g.:

 {
 "specification": "measure",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "ping-aggregate-three-thirtythree",
 "token": "0f31c9033f8fce0c9be41d4942c276e4",
 "when": "now + 30s / 1s",
 "parameters": {"source.ip4": "192.0.2.19",
 "destination.ip4": "192.0.3.33"},
 "results": ["delay.twoway.icmp.us.min",
 "delay.twoway.icmp.us.mean",
 "delay.twoway.icmp.us.50pct",
 "delay.twoway.icmp.us.max",
 "delay.twoway.icmp.count"]
 }

 Results are merely Specifications with result values filled in and an
 absolute temporal scope:

Trammell & Kuehlewind Expires April 30, 2017 [Page 31]

Internet-Draft mPlane Protocol October 2016

{
 "result": "measure",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "ping-aggregate-three-thirtythree",
 "token": "0f31c9033f8fce0c9be41d4942c276e4",
 "when": 2014-08-25 14:51:02.623 ... 2014-08-25 14:51:32.701 / 1s",
 "parameters": {"source.ip4": "192.0.2.19",
 "destination.ip4": "192.0.3.33"},
 "results": ["delay.twoway.icmp.us.min",
 "delay.twoway.icmp.us.mean",
 "delay.twoway.icmp.us.50pct",
 "delay.twoway.icmp.us.max",
 "delay.twoway.icmp.count"],
 "resultvalues": [[23901,
 29833,
 27619,
 66002,
 30]]
}

 More complex measurements can be modeled by mapping them back to
 tables with multiple rows. For example, a traceroute Capability
 would be defined as follows:

 {
 "capability": "measure",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "traceroute",
 "when": "now ... future / 1s",
 "parameters": {"source.ip4": "192.0.2.19",
 "destination.ip4": "*",
 "hops.ip.max": "0..32"},
 "results": ["time",
 "intermediate.ip4",
 "hops.ip",
 "delay.twoway.icmp.us"]
 }

 with a corresponding Specification:

Trammell & Kuehlewind Expires April 30, 2017 [Page 32]

Internet-Draft mPlane Protocol October 2016

 {
 "specification": "measure",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "traceroute-three-thirtythree",
 "token": "2f4123588b276470b3641297ae85376a",
 "when": "now",
 "parameters": {"source.ip4": "192.0.2.19",
 "destination.ip4": "192.0.3.33",
 "hops.ip.max": 32},
 "results": ["time",
 "intermediate.ip4",
 "hops.ip",
 "delay.twoway.icmp.us"]
 }

 and an example result:

 {
 "result": "measure",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "traceroute-three-thirtythree",
 "token": "2f4123588b276470b3641297ae85376a,
 "when": "2014-08-25 14:53:11.019 ... 2014-08-25 14:53:12.765",
 "parameters": {"source.ip4": "192.0.2.19",
 "destination.ip4": "192.0.3.33",
 "hops.ip.max": 32},
 "results": ["time",
 "intermediate.ip4",
 "hops.ip",
 "delay.twoway.icmp.us"],
 "resultvalues": [["2014-08-25 14:53:11.019", "192.0.2.1",
 1, 162],
 ["2014-08-25 14:53:11.220", "217.147.223.101",
 2, 15074],
 ["2014-08-25 14:53:11.570", "77.109.135.193",
 3, 30093],
 ["2014-08-25 14:53:12.091", "77.109.135.34",
 4, 34979],
 ["2014-08-25 14:53:12.310", "192.0.3.1",
 5, 36120],
 ["2014-08-25 14:53:12.765", "192.0.3.33",
 6, 36202]
]

 }

Trammell & Kuehlewind Expires April 30, 2017 [Page 33]

Internet-Draft mPlane Protocol October 2016

 Indirect export to a repository with subsequent query requires three
 Capabilities: one in which the repository advertises its ability to
 accept data over a given external protocol, one in which the probe
 advertises its ability to export data of the same type using that
 protocol, and one in which the repository advertises its ability to
 answer queries about the stored data. Returning to the aggregate
 ping measurement, first let's consider a repository which can accept
 these measurements via direct POST of mPlane Result messages:

 {
 "capability": "collect",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "ping-aggregate-collect",
 "when": "past ... future",
 "export": "wss://repository.example.com:4343/",
 "parameters": {"source.ip4": "*",
 "destination.ip4": "*"},
 "results": ["delay.twoway.icmp.us.min",
 "delay.twoway.icmp.us.mean",
 "delay.twoway.icmp.us.50pct",
 "delay.twoway.icmp.us.max",
 "delay.twoway.icmp.count"]
 }

 This Capability states that the repository at
 "wss://repository.example.com:4343/" will accept mPlane Result
 messages matching the specified schema, without any limitations on
 time. Note that this schema matches that of the export Capability
 provided by the probe:

 {
 "capability": "measure",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "ping-aggregate-export",
 "when": "now ... future / 1s",
 "export": "wss",
 "parameters": {"source.ip4": "192.0.2.19",
 "destination.ip4": "*"},
 "results": ["delay.twoway.icmp.us.min",
 "delay.twoway.icmp.us.mean",
 "delay.twoway.icmp.us.50pct",
 "delay.twoway.icmp.us.max",
 "delay.twoway.icmp.count"]
 }

Trammell & Kuehlewind Expires April 30, 2017 [Page 34]

Internet-Draft mPlane Protocol October 2016

 which differs only from the previous probe Capability in that it
 states that Results can be exported via the "wss" protocol.
 Subsequent queries can be sent to the repository in response to the
 query Capability:

 {
 "capability": "query",
 "version": 0,
 "registry": "https://example.com/mplane/registry/core",
 "label": "ping-aggregate-query",
 "when": "past ... future",
 "link": "wss://repo.example.com:4343/",
 "parameters": {"source.ip4": "*",
 "destination.ip4": "*"},
 "results": ["delay.twoway.icmp.us.min",
 "delay.twoway.icmp.us.mean",
 "delay.twoway.icmp.us.50pct",
 "delay.twoway.icmp.us.max",
 "delay.twoway.icmp.count"]
 }

 The examples in this section use the following registry:

 { "registry-format": "mplane-0",
 "registry-uri", "https://example.com/mplane/registry/core",
 "registry-revision": 0,
 "includes": [],
 "elements": [
 { "name": "time",
 "prim": "time",
 "desc": "Time at which a single observation was taken"
 },
 { "name": "source.ip4",
 "prim": "address",
 "desc": "Source (or probe) IPv4 address"
 },
 { "name": "destination.ip4",
 "prim": "address",
 "desc": "Destination (or target) IPv4 address"
 },
 { "name": "intermediate.ip4",
 "prim": "address",
 "desc": "IPv4 address of intermediate node on a path"
 },
 { "name": "hops.ip",
 "prim": "natural",
 "desc": "IP-layer hops to identified node"
 },

Trammell & Kuehlewind Expires April 30, 2017 [Page 35]

Internet-Draft mPlane Protocol October 2016

 { "name": "hops.ip.max",
 "prim": "natural",
 "desc": "Maximum number of IP-layer hops to measure"
 },
 { "name": "delay.twoway.icmp.us",
 "prim": "natural",
 "desc": "Singleton two-way delay as measured via ICMP Echo"
 },
 { "name": "delay.twoway.icmp.us.min",
 "prim": "natural",
 "desc": "Minimum two-way delay as measured via ICMP Echo"
 },
 { "name": "delay.twoway.icmp.us.50pct",
 "prim": "natural",
 "desc": "Median two-way delay as measured via ICMP Echo"
 },
 { "name": "delay.twoway.icmp.us.mean",
 "prim": "natural",
 "desc": "Mean two-way delay as measured via ICMP Echo"
 },
 { "name": "delay.twoway.icmp.us.max",
 "prim": "natural",
 "desc": "Maximum two-way delay as measured via ICMP Echo"
 },
 { "name": "delay.twoway.icmp.us.count",
 "prim": "natural",
 "desc": "Count of two-way delay samples ... "
 },
]
 }

5.2. mPlane over WebSockets over TLS

 The default session protocol for mPlane is WebSockets [RFC6455].
 Once a WebSockets handshake between Client and Component is complete,
 messages are simply exchanged as outlined in Section 4.2 as JSON
 objects in WebSockets text frames over the channel.

 When WebSockets is used as a session protocol for mPlane, it MUST be
 used over TLS for mPlane message exchanges. Both TLS Clients and
 servers MUST present certificates for TLS mutual authentication.
 mPlane Components MUST use the certificate presented by the mPlane
 Client to determine the Client's identity, and therefore the
 Capabilities which it is authorized to invoke. mPlane Clients MUST
 use the certificate presented by the mPlane Component to authenticate
 the Results received. mPlane Clients and Components MUST NOT use
 network-layer address or name (e.g. derived from DNS PTR queries)
 information to identify peers.

https://datatracker.ietf.org/doc/html/rfc6455

Trammell & Kuehlewind Expires April 30, 2017 [Page 36]

Internet-Draft mPlane Protocol October 2016

 mPlane Components may either act as WebSockets servers, for Client-
 initiated connection establishment, or as WebSockets Clients, for
 Component-initiated connection establishment. In either case, it is
 the responsibility of the connection initiator to re-establish
 connection in case it is lost. In this case, the entity acting as
 WebSockets server SHOULD maintain a queue of pending mPlane messages
 to identified peers to be sent on reconnection.

5.2.1. mPlane PKI for WebSockets

 The Clients and Components within an mPlane domain generally share a
 single certificate issuer, specific to a single mPlane domain.
 Issuing a certificate to a Client or Component then grants it
 membership within the domain. Any Client or Component within the
 domain can then communicate with Components and Clients within that
 domain. In a domain containing one or more supervisors, all Clients
 and Components within the domain can connect to a supervisor. This
 deployment pattern can be used to scale mPlane domains to large
 numbers of Clients and Components without needing to specifically
 configure each Client and Component identity at the supervisor.

 In the case of interdomain federation, where supervisors connect to
 each other, each supervisor will have its own issuer. In this case,
 each supervisor must be configured to trust each remote domain's
 issuer, but only to identify that domain's supervisor. This
 compartmentalization is necessary to keep one domain from authorizing
 Clients within another domain.

5.2.2. Capability Advertisement for WebSockets

 When a connection is first established between a Client and a
 Component, regardless of whether the Client or the Component
 initiates the connection, the Component sends an envelope containing
 all the Capabilities it wishes to advertise to the Client, based on
 the Client's identity.

5.2.3. mPlane Link and Export URLs for WebSockets

 Components acting as WebSockets servers (for Client-initiated
 connection establishment) are identified in the Link sections of
 Capabilities and receipts by URLs with the "wss:" schema. Similarly,
 Clients acting as WebSockets servers (for Component-initated
 connection establishment) are identified in the Link sections of
 Specifications by URLs with the "wss:" schema.

 When the "wss:" schema appears in the export section of the
 Capability, this represents the Component's willingness to establish
 a WebSockets connection over which mPlane Result messages will be

Trammell & Kuehlewind Expires April 30, 2017 [Page 37]

Internet-Draft mPlane Protocol October 2016

 pushed. A "wss:" schema URL in a Specification export section,
 similarly, directs the Component to the WebSockets server to push
 Results to.

 Path information in WebSockets URLs is presently unused by the mPlane
 protocol, but path information MUST be conserved. mPlane Clients and
 Components acting as WebSockets servers can use path information as
 they see fit, for example to separate Client and Component workflows
 on the same server (as on a supervisor), to run mPlane and other
 protocols over WebSockets on the same server, and/or to pass
 cryptographic tokens for additional context separation or
 authorization purposes. Future versions of the mPlane protocol may
 use path information in WebSockets URLs, but this path information
 will be relative to this conserved "base" URL, as opposed to relative
 to the root.

6. Deployment Considerations

 This section outlines considerations for building larger-scale
 infrastructures from the building blocks defined in this document.

6.1. Supervisors and Federation

 For simple infrastructures, a set of Components may be controlled
 directly by a Client. However, in more complex infrastructures
 providing support for multiple Clients, a supervisor can mediate
 between Clients and Components. This supervisor is responsible for
 collecting Capabilities from a set of Components, and providing
 Capabilities based on these to its Clients. From the point of view
 of the mPlane protocol, a supervisor is merely a combined Component
 and Client. The logic binding Client and Component interfaces within
 the supervisor is application-specific, as it involves the following
 operations according to the semantics of each application:

 o translating lower-level Capabilities from subordinate Components
 into higher-level (composed) Capabilities, according to the
 application's semantics

 o translating higher-level Specifications from subordinate
 Components into lower-level (decomposed) Specifications

 o relaying or aggregating Results from subordinate Components to
 supervisor Clients

 This arrangement is shown in Figure 3.

Trammell & Kuehlewind Expires April 30, 2017 [Page 38]

Internet-Draft mPlane Protocol October 2016

 | |
 | Client |
 | |

 ^ n| |
 Capability | | | Specification
 | |1 v

 .-| Component |-.
 | ---------------- |
 | supervisor |
 | ________________ |
 | Client |/

 ^ 1| |
 Capability | | | Specification
 | |m v

 | |
 | Component |
 | |

 Figure 3: Simple mPlane architecture with a supervisor

 The set of Components which respond to Specifications from a single
 supervisor is referred to as an mPlane domain. Domain membership is
 also determined by the issuer of the certificates identifying the
 Clients, Components, and supervisor. Within a given domain, each
 Client and Component connects to only one supervisor. Underlying
 measurement Components and Clients may indeed participate in multiple
 domains, but these are separate entities from the point of view of
 the architecture. Interdomain measurement is supported by federation
 among supervisors: a local supervisor delegates measurements in a
 remote domain to that domain's supervisor.

 In addition to Capability composition and Specification
 decomposition, supervisors are responsible for Client and Component
 registration and authentication, as well as access control based on
 identity information provided by the session protocol (WebSockets) in
 the general case.

 The general responsibilities of a supervisor are elaborated in the
 subsections below:

Trammell & Kuehlewind Expires April 30, 2017 [Page 39]

Internet-Draft mPlane Protocol October 2016

6.1.1. Component Registration

 In order to be able to use Components to perform measurements, the
 supervisor must register the Components associated with it. For
 Client-initiated workflows - large repositories and the address of
 the Components is often a configuration parameter of the supervisor.
 Capabilities describing the available measurements and queries at
 large-scale Components can even be part of the supervisor's
 externally managed static configuration, or can be dynamically
 retrieved and updated from the Components or from a Capability
 discovery server.

 For Component-initiated workflows, Components connect to the
 supervisor and send Capabilities and withdrawals, which requires the
 supervisor to maintain a set of Capabilities associated with a set of
 Components currently part of the mPlane infrastructure it supervises.

6.1.2. Client Authentication

 For many Components - probes and simple repositories - very simple
 authentication often suffices, such that any Client with a
 certificate with an issuer recognized as valid is acceptable, and all
 Capabilities are available to. Larger repositories often need finer
 grained control, mapping specific peer certificates to identities
 internal to the repository's access control system (e.g. database
 users).

 In an mPlane infrastructure, it is therefore the supervisor's
 responsibility to map Client identities to the set of Capabilities
 each Client is authorized to access. This mapping is part of the
 supervisor's configuration.

6.1.3. Capability Composition and Specification Decomposition

 The most dominant responsibility of the supervisor is composing
 Capabilities from its subordinate Components into aggregate
 Capabilities, and decomposing Specifications from Clients to more-
 specific Specifications to pass to each Component. This operation is
 always application-specific, as the semantics of the composition and
 decomposition operations depend on the Capabilities available from
 the Components, the granularity of the Capabilities to be provided to
 the Clients.

6.2. Indirect Export

 Many common measurement infrastructures involve a large number of
 probes exporting large volumes of data to a (much) smaller number of
 repositories, where data is reduced and analyzed. Since (1) the

Trammell & Kuehlewind Expires April 30, 2017 [Page 40]

Internet-Draft mPlane Protocol October 2016

 mPlane protocol is not particularly well-suited to the bulk transfer
 of data and (2) fidelity is better ensured when minimizing
 translations between representations, the channel between the probes
 and the repositories is in this case external to mPlane. This
 indirect export channel runs either a standard export protocol such
 as IPFIX, or a proprietary protocol unique to the probe/repository
 pair. It coordinates an exporter which will produce and export data
 with a collector which will receive it. All that is necessary is
 that (1) the Client, exporter, and collector agree on a schema to
 define the data to be transferred and (2) the exporter and collector
 share a common protocol for export.

 Here, we consider a Client speaking to an exporter and a collector.
 The Client first receives an export Capability from the exporter
 (with verb "measure" and with a protocol identified in the "export"
 section) and a collection Capability from the collector (with the
 verb "collect" and with a URL in the "export" section describing
 where the exporter should export), either via a Client-initiated
 workflow or a Capability discovery server. The Client then sends a
 Specification to the exporter, which matches the schema and parameter
 constraints of both the export and collection Capabilities, with the
 collector's URL in the "export" section.

 The exporter initiates export to the collector using the specified
 protocol, and replies with a receipt that can be used to interrupt
 the export, should it have an indefinite temporal scope. In the
 meantime, it sends data matching the Capability's schema directly to
 the collector.

 This data, or data derived from the analysis thereof, can then be
 subsequently retrieved by a Client using a Client-initiated workflow
 to the collector.

6.3. Error Handling in mPlane Workflows

 Any Component may signal an error to its Client or supervisor at any
 time by sending an exception message. While the taxonomy of error
 messages is at this time left up to each individual Component, given
 the weakly imperative nature of the mPlane protocol, exceptions
 should be used sparingly, and only to notify Components and Clients
 of errors with the mPlane infrastructure itself.

 It is generally presumed that diagnostic information about errors
 which may require external human intervention to correct will be
 logged at each Component; the mPlane exception facility is not
 intended as a replacement for logging facilities (such as syslog).

Trammell & Kuehlewind Expires April 30, 2017 [Page 41]

Internet-Draft mPlane Protocol October 2016

 Specifically, Components using Component-initiated connection
 establishment should not use the exception mechanism for common error
 conditions (e.g., device losing connectivity for small network-edge
 probes) - Specifications sent to such Components are expected to be
 best-effort. Exceptions should also not be returned for
 Specifications which would normally not be delayed but are due to
 high load - receipts should be used in this case, instead. Likewise,
 Specifications which cannot be fulfilled because they request the use
 of Capabilities that were once available but are no longer should be
 answered with withdrawals.

 Exceptions should always be sent in reply to messages sent to
 Components or Clients which cannot be handled due to a syntactic or
 semantic error in the message itself.

7. Security Considerations

 The mPlane protocol allows the control of network measurement
 devices. The protocol itself uses WebSockets using TLS as a session
 layer. TLS mutual authentication must be used for the exchange of
 mPlane messages, as access control decisions about which Clients and
 Components are trusted for which Capabilities take identity
 information from the certificates TLS Clients and servers use to
 identify themselves. Current operational best security practices for
 the deployment of TLS-secured protocols must be followed for the
 deployment of mPlane.

 Indirect export, as a design feature, presents a potential for
 information leakage, as indirectly exported data is necessarily
 related to measurement data and control transported with the mPlane
 protocol. Though out of scope for this document, indirect export
 protocols used within an mPlane domain must be secured at least as
 well as the mPlane protocol itself.

8. IANA Considerations

 This document has no actions for IANA. Future versions of this
 document, should it become a standards-track Specification, may
 specify the initial contents of a core mPlane registry to be managed
 by IANA.

9. Contributors

 This document is based on Deliverable 1.4, the architecture and
 protocol Specification document produced by the mPlane project [D14],
 which is the work of the mPlane consortium, specifically Brian
 Trammell and Mirja Kuehlewind (the editors of this document), as well
 as Marco Mellia, Alessandro Finamore, Stefano Pentassuglia, Gianni De

Trammell & Kuehlewind Expires April 30, 2017 [Page 42]

Internet-Draft mPlane Protocol October 2016

 Rosa, Fabrizio Invernizzi, Marco Milanesio, Dario Rossi, Saverio
 Niccolini, Ilias Leontiadis, Tivadar Szemethy, Balas Szabo, Rolf
 Winter, Michael Faath, Benoit Donnet, and Dimitri Papadimitriou.

10. Acknowledgments

 Thanks to Lingli Deng and Robert Kisteleki for feedback leading to
 the improvement of this document and the protocol.

 This work is supported by the European Commission under grant
 agreement FP7-318627 mPlane and H2020-688421 MAMI, and by the Swiss
 State Secretariat for Education, Research, and Innovation under
 contract no. 15.0268. This support does not imply endorsement of the
 contents of this document.

11. Informative References

 [RFC3205] Moore, K., "On the use of HTTP as a Substrate", BCP 56,
RFC 3205, DOI 10.17487/RFC3205, February 2002,

 <http://www.rfc-editor.org/info/rfc3205>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <http://www.rfc-editor.org/info/rfc5952>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, DOI 10.17487/RFC6455, December 2011,

 <http://www.rfc-editor.org/info/rfc6455>.

https://datatracker.ietf.org/doc/html/bcp56
https://datatracker.ietf.org/doc/html/rfc3205
http://www.rfc-editor.org/info/rfc3205
https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc4291
http://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5905
http://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc5952
http://www.rfc-editor.org/info/rfc5952
https://datatracker.ietf.org/doc/html/rfc6455
http://www.rfc-editor.org/info/rfc6455

Trammell & Kuehlewind Expires April 30, 2017 [Page 43]

Internet-Draft mPlane Protocol October 2016

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,

RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <http://www.rfc-editor.org/info/rfc7011>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7373] Trammell, B., "Textual Representation of IP Flow
 Information Export (IPFIX) Abstract Data Types", RFC 7373,
 DOI 10.17487/RFC7373, September 2014,
 <http://www.rfc-editor.org/info/rfc7373>.

 [D14] Trammell, B., "mPlane Architecture Specification", April
 2015, <https://www.ict-

mplane.eu/sites/default/files//public/public-page/public-
deliverables//1095mplane-d14.pdf>.

Authors' Addresses

 Brian Trammell (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

 Mirja Kuehlewind (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

https://datatracker.ietf.org/doc/html/rfc7011
http://www.rfc-editor.org/info/rfc7011
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7373
http://www.rfc-editor.org/info/rfc7373
https://www.ict-mplane.eu/sites/default/files//public/public-page/public-deliverables//1095mplane-d14.pdf
https://www.ict-mplane.eu/sites/default/files//public/public-page/public-deliverables//1095mplane-d14.pdf
https://www.ict-mplane.eu/sites/default/files//public/public-page/public-deliverables//1095mplane-d14.pdf

Trammell & Kuehlewind Expires April 30, 2017 [Page 44]

