
Network Working Group M. Kuehlewind
Internet-Draft B. Trammell
Intended status: Informational ETH Zurich
Expires: June 3, 2017 J. Hildebrand
 November 30, 2016

Transport-Independent Path Layer State Management
draft-trammell-plus-statefulness-01

Abstract

 This document describes a simple state machine for stateful network
 devices on a path between two endpoints to associate state with
 traffic traversing them on a per-flow basis, as well as abstract
 signaling mechanisms for driving the state machine. This state
 machine is intended to replace the de-facto use of the TCP state
 machine or incomplete forms thereof by stateful network devices in a
 transport-independent way, while still allowing for fast state
 timeout of non-established or undesirable flows.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 3, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Kuehlewind, et al. Expires June 3, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft PLUS Statefulness November 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. State Machine . 4
3.1. Uniflow States . 6
3.2. Biflow States . 6
3.3. Additional States and Actions 7

4. Abstract Signaling Mechanisms 7
4.1. Flow Identification 8
4.2. Association and Confirmation Signaling 8
4.3. Stop Signaling . 10

5. Deployment Considerations 10
5.1. Middlebox Deployment 11
5.2. Endpoint Deployment 11

6. Signal mappings for transport protocols 11
6.1. Signal mapping for TCP 11
6.2. Signal mapping for QUIC 12

7. IANA Considerations . 13
8. Security Considerations 13
9. Acknowledgments . 13
10. References . 13
10.1. Normative References 13
10.2. Informative References 14

 Authors' Addresses . 15

1. Introduction

 The boundary between the network and transport layers was originally
 defined to be that between information used (and potentially
 modified) hop-by-hop, and that used end-to-end. End-to-end
 information in the transport layer is associated with state at the
 endpoints, but processing of network-layer information was assumed to
 be stateless.

 The widespread deployment of stateful middleboxes in the Internet,
 such as network address and port translators (NAPT), firewalls that
 model the TCP state machine to distinguish packets belonging from
 desirable flows from backscatter and random attack traffic, and
 devices which keep per-flow state for reporting and monitoring
 purposes (e.g. IPFIX [RFC7011] Metering Processes), has broken this
 assumption, and made it more difficult to deploy non-TCP transport
 protocols in the Internet.

https://datatracker.ietf.org/doc/html/rfc7011

Kuehlewind, et al. Expires June 3, 2017 [Page 2]

Internet-Draft PLUS Statefulness November 2016

 The deployment of new transport protocols encapsulated in UDP with
 encrypted transport headers (such as QUIC
 [I-D.hamilton-quic-transport-protocol]) will present a challenge to
 the operation of these devices, and their ubquity likewise threatens
 to impair the deployability of these protocols. There are two main
 causes for this problem: first, stateful devices often use an
 internal model of the TCP state machine to determine when TCP flows
 start and end, allowing them to manage state for these flows; for UDP
 flows, they must rely on timeouts. These timeouts are generally
 short relative to those for TCP [IMC-GATEWAYS], requiring UDP-
 encapsulated transports either to generate unproductive keepalive
 traffic for long-lived sessions, or to tolerate connectivity problems
 and the necessity of reconnection due to loss of on-path state.

 This document presents an abstract solution to this problem by
 defining a transport-independent state machine to be implemented at
 per-flow state- keeping middleboxes as a replacement for incomplete
 TCP state modeling. A key concept behind this approach is that
 encryption of transport protocol headers allows a transport protocol
 to separate its wire image - what it looks like to devices on path -
 from its internal semantics. We advocate the creation of a minimal
 wire image for these protocols that exposes enough information to
 drive the state machine presented. Present and future evolution of
 encrypted transport protocols can then happen behind this wire image,
 and Middleboxes implementing this state machine can use signals from
 a UDP encapsulation common to a set of encrypted transport protocols
 can have equivalent state information to that provided by TCP,
 reducing the friction between deployed middleboxes and these new
 transport protocols.

2. Terminology

 In this document, the term "flow" is defined to be compatible with
 the definition given in [RFC7011]: A flow is defined as a set of
 packets passing a device on the network during a certain time
 interval. All packets belonging to a particular Flow have a set of
 common properties. Each property is defined as the result of
 applying a function to the values of:

 1. one or more network layer header fields (e.g., destination IP
 address) or transport layer header fields (e.g., destination port
 number) that the device has access to;

 2. one or more characteristics of the packet itself (e.g., number of
 MPLS labels, etc.);

 3. one or more of the fields derived from packet treatment at the
 device (e.g., next-hop IP address, the output interface, etc.).

https://datatracker.ietf.org/doc/html/rfc7011

Kuehlewind, et al. Expires June 3, 2017 [Page 3]

Internet-Draft PLUS Statefulness November 2016

 A packet is defined as belonging to a flow if it completely satisfies
 all the defined properties of the flow.

 A bidirectional flow or biflow is defined as compatible with
 [RFC5103], by joining the "forward direction" flow with the "reverse
 direction" flow, derived by reversing the direction of directional
 fields (ports and IP addresses). Biflows are only relevant at
 devices positioned so as to see all the packets in both directions of
 the biflow, generally on the endpoint side of the service demarcation
 point for either endpoint as defined in the reference path given in
 [RFC7398].

3. State Machine

 A transport-independent state machine for on-path devices is shown in
 Figure 1. It was designed to have the following properties:

 o A device on path that can see traffic in both directions between
 two endpoints knows that each side of an association wishes that
 association to continue. This allows firewalls to delegate policy
 decisions about accepting or continuing an association to the
 servers they protect.

 o A device on path that can see traffic in both directions between
 two endpoints knows that each device can receive traffic at the
 source address it provides. This allows firewalls to provide
 protection against trivially spoofed packets.

 Both of these properties hold with current firewalls and network
 address translation devices observing the flags and sequence/
 acknowledgment numbers exposed by TCP.

 It relies on five states, three configurable timeouts, and a set of
 signals defined in Section 4. The states are defined as follows:

 o zero: there is no state for a given flow at the device

 o uniflow: at least one packet has been seen in one direction

 o associating: at least one packet has been seen in one direction,
 and an indication that the receiving endpoint wishes to continue
 the association has been seen in the other direction.

 o associated: a flow in associating state has further demonstrated
 that the initial sender can receive packets at its given source
 address.

https://datatracker.ietf.org/doc/html/rfc5103
https://datatracker.ietf.org/doc/html/rfc7398

Kuehlewind, et al. Expires June 3, 2017 [Page 4]

Internet-Draft PLUS Statefulness November 2016

 o closing: an association is shutting down due to an explicit close
 signal.

 We refer to the zero and uniflow states as "uniflow states", as they
 are relevant both for truly unidirectional flows, as well as in
 situations where an on-path device can see only one side of a
 communication. We refer to the remaining three states as "biflow
 states", as they are only applicable to true bidirectional flows,
 where the on-path device can see both sides of the communication.

 .- -.
 ' +==============+ pkt(s->d) +==========+ '
 ' // \\-------------->/ \--+ '
 ' ((zero)) (uniflow) |pkt(s->d) '
 ' \\ //<--------------\ /<-+ '
 ' +==============+ TO_IDLE/close +==========+ '
 '- - -|- - - ^ - ^ - - - - - - - - - - - - - -|- - - - - - - -'
 | \ \ | association
 TO_CLOSING | \ \ V signal
 +==========+ \ \ TO_IDLE +==========+
 / \ \ +-------------------/ \
 (closing) \ (associating)
 \ / \ \ /
 +==========+ \ TO_ASSOCIATED +==========+
 ^ \ |
 close | \ | confirmation
 signal | +==========+ | signal
 | / \ |
 | (associated) |
 +--------------\ /<------------+
 +==========+
 | ^
 +------+
 pkt(s<->d)

 Figure 1: Transport-Independent State Machine for Stateful On-Path
 Devices

 The three timeouts are defined as follows:

 o TO_IDLE, the unidirectional idle timeout, can be considered
 equivalent to the idle timeout for transport protocols where the
 device has no information about session start and end (e.g. most
 UDP protocols).

Kuehlewind, et al. Expires June 3, 2017 [Page 5]

Internet-Draft PLUS Statefulness November 2016

 o TO_ASSOCIATED, the bidirectional idle timeout, can be considered
 equivalent to the timeout for transport protocols where the device
 has information about session start and end (e.g. TCP).

 o TO_CLOSING is the closing timeout: how long the device will
 account additional packets to a flow after observing a stop
 signal, ensuring a reordered stop signal doesn't create a new
 flow.

 Selection of timeouts is a configuration and implementation detail,
 but generally TO_CLOSING <= TO_IDLE << TO_ASSOCIATED; see
 [IMC-GATEWAYS].

3.1. Uniflow States

 Every packet received by a device keeping per-flow state must
 associate that packet with a flow (see Section 4.1). When a device
 receives a packet associated with a flow it has no state for, and it
 is configured to forward the packet instead of dropping it, it moves
 that flow from the zero state into the uniflow state and starts a
 timer TO_IDLE. It resets this timer for any additional packet it
 forwards in the same direction as long as the flow remains in the
 uniflow state. When timer TO_IDLE expires on a flow in the uniflow
 state, the device drops state for the flow and performs any
 processing associated with doing so: tearing down NAT bindings,
 closing associated firewall pinholes, exporting flow information, and
 so on. The device may also drop state on a stop signal, if observed.

 Some devices will only see one side of a communication, e.g. if they
 are placed in a portion of a network with asymmetric routing. These
 devices use only the zero and uniflow states (as marked in Figure 1.)
 In addition, true uniflows - protocols which are solely
 unidirectional (e.g. some applications over UDP) - will also use only
 the uniflow-only states. In either case, current devices generally
 don't associate much state with observed uniflows, and an idle
 timeout is generally sufficient to expire this state.

3.2. Biflow States

 A uniflow transitions to the associating state when the device
 observes an association signal, and further to the associated state
 when the device observes a subsequent confirmation signal; see

Section 4.2 for details. If the flow has not transitioned to from
 the associating to the associated state after TO_IDLE, the device
 drops state for the flow.

 After transitioning to the associated state, the device starts a
 timer TO_ASSOCIATED. It resets this timer for any packet it forwards

Kuehlewind, et al. Expires June 3, 2017 [Page 6]

Internet-Draft PLUS Statefulness November 2016

 in either direction. The associated state represents a fully
 established bidirectional communication. When timer TO_ASSOCIATED
 expires, the device assumes that the flow has shut down without
 signaling as such, and drops state for the flow, performing any
 associated processing. When a stop signal (see {{stop- signaling}})
 is observed in either direction, the flow transitions to the closing
 state.

 When a flow enters the closing state, it starts a timer TO_CLOSING.
 While the stop signal should be the last packet on a flow, the
 TO_CLOSING timer ensures that reordered packets after the stop signal
 will be accounted to the flow. When this timer expires, the device
 drops state for the flow, performing any associated processing.

3.3. Additional States and Actions

 This document is concerned only with states and transitions common to
 transport- and function- independent state maintenance. Devices may
 augment the transitions in this state diagram depending on their
 function. For example, a firewall that decides based on some
 information beyond the signals used by this state machine to shut
 down a flow may transition it directly to a blacklist state on
 shutdown. Or, a firewall may fail to forward additional packets in
 the uniflow state until an association signal is observed.

4. Abstract Signaling Mechanisms

 The state machine in Section 3 requires four signals: a new flow
 signal, the first packet observed in a flow in the zero state; an
 association signal, allowing a device to verify that an endpoint
 wishes a bidirectional communication to be established or to
 continue; a confirmation signal, allowing a device to confirm that
 the initiator of a flow is reachable at its purported source address;
 and a stop signal, noting that an endpoint wishes to stop a
 bidirectional communication. Additional related signals may also be
 useful, depending on the function a device provides. There are a few
 different ways to implement these signals; here, we explore the
 properties of some potential implementations.

 We assume the following general requirements for these signals;
 parallel to those given in [draft-trammell-plus-abstract-mech]:

 o At least the endpoints can verify the integrity of the signals
 exposed, and shut down a transport association when that
 verification fails, in order to reduce the incentive for on-path
 devices to attempt to spoof these signals.

https://datatracker.ietf.org/doc/html/draft-trammell-plus-abstract-mech

Kuehlewind, et al. Expires June 3, 2017 [Page 7]

Internet-Draft PLUS Statefulness November 2016

 o Endpoints and devices on path can probabilistically verify that a
 originator of a signal is on-path.

4.1. Flow Identification

 In order to keep per-flow state, each device using this state machine
 must have a function it can apply to each packet to be able to
 extract common properties to identify the flow it is associated with.
 In general, the set of properties used for flow identification on
 presently deployed devices includes the source and destination IP
 address, the source and destination transport layer port number, the
 transport protocol number. The differentiated services field
 [RFC2474] may also be included in the set of properties defining a
 flow, since it may indicate different forwarding treatment.

 However, other protocols may use additional bits in their own headers
 for flow identification. In any case, a protocol implementing
 signaling for this state machine must specify the function used for
 flow identification.

4.2. Association and Confirmation Signaling

 An association signal indicates that the endpoint that received the
 first packet seen by the device is interested in continuing
 conversation with the sending endpoint. This signal is roughly an
 in-band analogue to consent signaling in ICE [RFC7675] that is
 carried to every device along the path.

 A confirmation signal indicates that the endpoint that sent the first
 packet seen by the device is reachable at its purported source
 address, and is necessary to prevent spoofed or reflected packets
 from driving the state machine into the associated state. It is
 roughly equivalent to the final ACK in the TCP three-way handshake.

 These two signals are related to each other, in that association
 requires the receiving endpoint of the first packet to prove it has
 seen that packet (or a subsequent packet), and to acknowledge it
 wants to continue the association; while confirmation requires the
 sending endpoint to prove it has seen the association token.

 Transport-independent, path-verifiable association and confirmation
 signaling can be implemented using three values carried in the packet
 headers: an association token, a confirmation nonce, and an echo
 token.

 The association token is a cryptographically random value generated
 by the endpoint initiating a connection, and is carried on packets in
 the uniflow state. When a receiving endpoint wishes to send an

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc7675

Kuehlewind, et al. Expires June 3, 2017 [Page 8]

Internet-Draft PLUS Statefulness November 2016

 association signal, it generates an echo token from the association
 token using a well-known, defined function (e.g. a truncated SHA-256
 hash), and generates a cryptographically random confirmation nonce.
 The initiating endpoint sends a confirmation signal on the next
 packet it sends after receiving the confirmation nonce, by applying a
 function to the echo token and the confirmation nonce, and sending
 the result as a new association token.

 Devices on path verify that the echo token corresponds to a
 previously seen association token to recognize an association signal,
 and recognize that an association token corresponds to a previously
 seen echo token and confirmation nonce to recognize an association
 signal.

 These signals could be exposed on only first few packets of a
 connection (those corresponding to the cryptographic and/or transport
 state handshakes in the overlying protocols). In this case, an on-
 path device would need to observe the start of the flow to establish
 state. They could also be present on every packet in the flow,
 allowing state to be re-established even in the middle of a flow with
 longer idle periods than the TO_ESTABLISHED timeout value. In this
 case, the series of exposed association tokens, echo tokens, and
 confirmation nonces can be observed to derive a running round-trip
 time estimate for the flow.

 If the association token and confirmation nonce are predictable, off-
 path devices can spoof association and confirmation signals. In
 choosing the number of bits for an association token, there is a
 tradeoff between per-packet overhead and state overhead at on-path
 devices, and assurance that an association token is hard to guess.
 This tradeoff must be evaluated at protocol design time.

 There are a few considerations in choosing a function (or functions)
 to generate the echo token from the association token, to verify an
 echo token given an association token, and to derive a next
 association token from the echo token and confirmation nonce. The
 functions could be extremely simple (e.g., identity for the echo
 token and addition for the nonce) for ease of implementation even in
 extremely constrained environments. Using one-way functions (e.g.,
 truncated SHA-256 hash to derive echo token from association token;
 XOR followed by truncated SHA-256 hash to derive association token
 from echo token and confirmation nonce) requires slightly more work
 from on-path devices, but the primitives will be available at any
 endpoint using an encrypted transport protocol. In any case, a
 concrete implementation of association and confirmation signaling
 must choose a set of functions, or mechanism for unambiguously
 choosing one, at both endpoints as well as along the path.

Kuehlewind, et al. Expires June 3, 2017 [Page 9]

Internet-Draft PLUS Statefulness November 2016

4.3. Stop Signaling

 A stop signal is directly carried or otherwise encoded in the
 protocol header to indicate that a flow is ending, whether normally
 or abnormally, and that state associated with the flow should be torn
 down. Upon decoding a stop signal, a device on path should move the
 flow from uniflow state to null, or from biflow state to closing.

 Transports should send a stop signal only on the last packet sent in
 a bidirectional flow. The closing timeout TO_CLOSING is intended to
 ensure that any packets reordered in delivery are accounted to the
 flow before state for it is dropped.

 We assume the encoding of a stop signal into a packet header, as with
 all other signals, is integrity protected end-to-end. Stop signals,
 as association signals, could be forged by one on-path device to dupe
 other devices into moving flows into the closing state. However,
 state will be re-established by the continuing flow (and resulting
 association signals) after the closing timeout, and an endpoint
 receiving a spoofed stop signal could enter a fast re-establishment
 phase of the upper layer transport protocol to minimize disruption,
 further reducing the incentive to attackers to spoof stop signals.

 Alternatively, the stop signal could be designed to authenticate
 itself. Each endpoint could reveal a stop hash during the initial
 association, which is the result of a chosen cryptographic hash
 function applied to a stop token which that endpoint keeps secret.
 An endpoint wishing to end the association then reveals the stop
 token, which can be verified both by the far endpoint and devices on
 path which have cached the stop hash to be authentic.

5. Deployment Considerations

 The state machine defined in this document is most useful when
 implemented in a single instantiation (wire format for signals, and
 selection of functions for deriving values to be exposed and
 verified) by multiple transport protocols. It is intended for use
 with protocols that encrypt their transport- layer headers, and that
 are encapsulated within UDP, as is the case with QUIC
 [I-D.hamilton-quic-transport-protocol]. Definition of that
 instantiation is out of scope for the present revision of this
 document.

 The following subsections discuss incentives for deployment of this
 state machine both at middleboxes and at endpoints.

Kuehlewind, et al. Expires June 3, 2017 [Page 10]

Internet-Draft PLUS Statefulness November 2016

5.1. Middlebox Deployment

 The state machine defined herein is designed to replace TCP state-
 tracking for firewalls and NAT devices. When encrypted transport
 protocols encapsulated in UDP adopt a set of signals and a wire
 format for those signals to drive this state machine, these
 middleboxes could continue using TCP-like logic to handle those UDP
 flows. Recognizing the wire format used by those signals would allow
 these middleboxes to distinguish "UDP with an encrypted transport"
 from undifferentiated UDP, and to treat the former case more like
 TCP, providing longer timeouts for established flows, as well as
 stateful defense against spoofed or reflected garbage traffic.

5.2. Endpoint Deployment

 An encrypted, UDP-encapsulated transport protocol has two primary
 incentives to expose these signals. First, allowing firewalls on
 networks that generally block UDP (about 3-5% of Internet-connected
 networks, depending on the study) to distinguish "UDP with an
 encrypted transport" traffic from other UDP traffic may result in
 less blocking of that traffic. Second, the difference between the
 timeouts TO_IDLE and TO_ASSOCIATED, as well as the continuous state
 establishment possible with some instantiations of the association
 and confirmation signals, would allow these transport protocols to
 send less unproductive keepalive traffic for long-lived, sparse
 flows.

 While both of these advantages require middleboxes on path to
 recognize and use the signals driving this state machine, we note
 that content providers driving the deployment of this protocols are
 also operators of their own content provision networks, and that many
 of the benefits of encrypted- encapsulated transport firewalls will
 accrue to them, giving these content providers incentives to deploy
 both endpoints and middleboxes.

6. Signal mappings for transport protocols

 We now show how this state machine can be driven by signals available
 in TCP and QUIC.

6.1. Signal mapping for TCP

 A mapping of TCP flags to transitions in to the state machine in
Section 3 shows how devices currently using a model of the TCP state

 machine can be converted to use this state machine.

 TCP [RFC0793] provides start-of-flow association only. A packet with
 the SYN and ACK flags set in the absence of the FIN or RST flags, and

https://datatracker.ietf.org/doc/html/rfc0793

Kuehlewind, et al. Expires June 3, 2017 [Page 11]

Internet-Draft PLUS Statefulness November 2016

 an in-window acknowledgment number, is synonymous with the
 association signal. A packet with the ACK flag set in the absence of
 the FIN or RST flags after an initial SYN, and an in-window
 acknowledgment number, is synonymous with the confirmation signal.
 For a typical TCP flow:

 1. The initial SYN places the flow into uniflow state,

 2. The SYN-ACK sent in reply acts as a association signal and places
 the flow into associating state,

 3. The ACK sent in reply acts as a confirmatio signal and places the
 flow into associated state,

 4. Any RST moves the flow into closing state, or

 5. The final FIN-ACK (not the first half-close FIN) moves the flow
 into closing state.

 Note that generating a stop signal from FIN does require additional
 TCP state modeling to prevent moving into the closing state on a
 half-close.

 Note also that the association and stop signals derived from the TCP
 header are not integrity protected, and association and confirmation
 signals based on in-window ACK are not particularly resistant to off-
 path attacks [IMC-TCP]. The state machine is therefore more
 susceptible to manipulation when used with vanilla TCP as when with a
 transport protocol providing full integrity protection for its
 headers end-to-end.

6.2. Signal mapping for QUIC

 QUIC [I-D.hamilton-quic-transport-protocol] is a moving target;
 however, signals for driving this state machine are fundamentally
 compatible with the protocol's design and could easily be added to
 the protocol specification.

 Specifically, as of this writing, QUIC's 64-bit connection ID,
 together with integrity protection of the connection ID provided by
 QUIC's cryptographic protocol [I-D.thomson-quic-tls], could be used
 as an association and echo token as in Section 4.2. A confirmation
 nonce, or equivalent mechanism, is presently missing and would have
 to be added. The addition of a public reset signal that would act as
 a stop signal as in Section 4.3 is presently under discussion on the
 QUIC mailing list; one proposal for self-authenticating public reset
 inspired the addition of a comparable mechanism to Section 4.3 of
 this document.

Kuehlewind, et al. Expires June 3, 2017 [Page 12]

Internet-Draft PLUS Statefulness November 2016

7. IANA Considerations

 This document has no actions for IANA.

8. Security Considerations

 This document defines a state machine for transport-independent state
 management on middleboxes, using in-band signaling, to replace the
 commonly- implemented current practice of incomplete TCP state
 modeling on these devices. It defines new signals for state
 management. While these signals can be spoofed by any device on path
 that observes traffic in both directions, we presume the presence of
 end-to-end integrity protection of these signals provided by the
 upper-layer transport driving them. This allows such spoofing to be
 detected and countered by endpoints, reducing the threat from on-path
 devices to connection disruption, which such devices are trivially
 placed to perform in any case.

9. Acknowledgments

 Thanks to Christian Huitema for discussions leading to this document,
 and to Andrew Yourtchenko for the feedback. The mechanism for using
 a revealed value to prove ownership of a stop token was inspired by
 Eric Rescorla's suggestion to use a fundamentally identical mechanism
 for the QUIC public reset.

 This work is partially supported by the European Commission under
 Horizon 2020 grant agreement no. 688421 Measurement and Architecture
 for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat
 for Education, Research, and Innovation under contract no. 15.0268.
 This support does not imply endorsement.

10. References

10.1. Normative References

 [RFC5103] Trammell, B. and E. Boschi, "Bidirectional Flow Export
 Using IP Flow Information Export (IPFIX)", RFC 5103,
 DOI 10.17487/RFC5103, January 2008,
 <http://www.rfc-editor.org/info/rfc5103>.

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,

RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <http://www.rfc-editor.org/info/rfc7011>.

https://datatracker.ietf.org/doc/html/rfc5103
http://www.rfc-editor.org/info/rfc5103
https://datatracker.ietf.org/doc/html/rfc7011
http://www.rfc-editor.org/info/rfc7011

Kuehlewind, et al. Expires June 3, 2017 [Page 13]

Internet-Draft PLUS Statefulness November 2016

 [RFC7398] Bagnulo, M., Burbridge, T., Crawford, S., Eardley, P., and
 A. Morton, "A Reference Path and Measurement Points for
 Large-Scale Measurement of Broadband Performance",

RFC 7398, DOI 10.17487/RFC7398, February 2015,
 <http://www.rfc-editor.org/info/rfc7398>.

10.2. Informative References

 [draft-trammell-plus-abstract-mech]
 Trammell, B., "Abstract Mechanisms for a Cooperative Path
 Layer under Endpoint Control", September 2016.

 [I-D.hamilton-quic-transport-protocol]
 Hamilton, R., Iyengar, J., Swett, I., and A. Wilk, "QUIC:
 A UDP-Based Multiplexed and Secure Transport", draft-

hamilton-quic-transport-protocol-01 (work in progress),
 October 2016.

 [I-D.hardie-path-signals]
 Hardie, T., "Path signals", draft-hardie-path-signals-00
 (work in progress), October 2016.

 [I-D.thomson-quic-tls]
 Thomson, M. and R. Hamilton, "Using Transport Layer
 Security (TLS) to Secure QUIC", draft-thomson-quic-tls-01
 (work in progress), October 2016.

 [IMC-GATEWAYS]
 Hatonen, S., Nyrhinen, A., Eggert, L., Strowes, S.,
 Sarolahti, P., and M. Kojo, "An experimental study of home
 gateway characteristics (Proc. ACM IMC 2010)", October
 2010.

 [IMC-TCP] Luckie, M., Beverly, R., Wu, T., Allman, M., and k.
 claffy, "Resilience of Deployed TCP to Blind Attacks.
 (Proc. ACM IMC 2015)", October 2015.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <http://www.rfc-editor.org/info/rfc2474>.

https://datatracker.ietf.org/doc/html/rfc7398
http://www.rfc-editor.org/info/rfc7398
https://datatracker.ietf.org/doc/html/draft-trammell-plus-abstract-mech
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-01
https://datatracker.ietf.org/doc/html/draft-hardie-path-signals-00
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls-01
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc2474
http://www.rfc-editor.org/info/rfc2474

Kuehlewind, et al. Expires June 3, 2017 [Page 14]

Internet-Draft PLUS Statefulness November 2016

 [RFC7675] Perumal, M., Wing, D., Ravindranath, R., Reddy, T., and M.
 Thomson, "Session Traversal Utilities for NAT (STUN) Usage
 for Consent Freshness", RFC 7675, DOI 10.17487/RFC7675,
 October 2015, <http://www.rfc-editor.org/info/rfc7675>.

Authors' Addresses

 Mirja Kuehlewind
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Brian Trammell
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

 Joe Hildebrand

 Email: hildjj@cursive.net

https://datatracker.ietf.org/doc/html/rfc7675
http://www.rfc-editor.org/info/rfc7675

Kuehlewind, et al. Expires June 3, 2017 [Page 15]

