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Abstract

   This document describes a simple state machine for stateful network
   devices on a path between two endpoints to associate state with
   traffic traversing them on a per-flow basis, as well as abstract
   signaling mechanisms for driving the state machine.  This state
   machine is intended to replace the de-facto use of the TCP state
   machine or incomplete forms thereof by stateful network devices in a
   transport-independent way, while still allowing for fast state
   timeout of non-established or undesirable flows.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 3, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
3.  State Machine . . . . . . . . . . . . . . . . . . . . . . . .   4
3.1.  Uniflow States  . . . . . . . . . . . . . . . . . . . . .   6
3.2.  Biflow States . . . . . . . . . . . . . . . . . . . . . .   6
3.3.  Additional States and Actions . . . . . . . . . . . . . .   7

4.  Abstract Signaling Mechanisms . . . . . . . . . . . . . . . .   7
4.1.  Flow Identification . . . . . . . . . . . . . . . . . . .   8
4.2.  Association and Confirmation Signaling  . . . . . . . . .   8
4.3.  Stop Signaling  . . . . . . . . . . . . . . . . . . . . .  10

5.  Deployment Considerations . . . . . . . . . . . . . . . . . .  10
5.1.  Middlebox Deployment  . . . . . . . . . . . . . . . . . .  11
5.2.  Endpoint Deployment . . . . . . . . . . . . . . . . . . .  11

6.  Signal mappings for transport protocols . . . . . . . . . . .  11
6.1.  Signal mapping for TCP  . . . . . . . . . . . . . . . . .  11
6.2.  Signal mapping for QUIC . . . . . . . . . . . . . . . . .  12

7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  13
8.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
9.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  13
10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  13
10.1.  Normative References . . . . . . . . . . . . . . . . . .  13
10.2.  Informative References . . . . . . . . . . . . . . . . .  14

   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  15

1.  Introduction

   The boundary between the network and transport layers was originally
   defined to be that between information used (and potentially
   modified) hop-by-hop, and that used end-to-end.  End-to-end
   information in the transport layer is associated with state at the
   endpoints, but processing of network-layer information was assumed to
   be stateless.

   The widespread deployment of stateful middleboxes in the Internet,
   such as network address and port translators (NAPT), firewalls that
   model the TCP state machine to distinguish packets belonging from
   desirable flows from backscatter and random attack traffic, and
   devices which keep per-flow state for reporting and monitoring
   purposes (e.g.  IPFIX [RFC7011] Metering Processes), has broken this
   assumption, and made it more difficult to deploy non-TCP transport
   protocols in the Internet.

https://datatracker.ietf.org/doc/html/rfc7011
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   The deployment of new transport protocols encapsulated in UDP with
   encrypted transport headers (such as QUIC
   [I-D.hamilton-quic-transport-protocol]) will present a challenge to
   the operation of these devices, and their ubquity likewise threatens
   to impair the deployability of these protocols.  There are two main
   causes for this problem: first, stateful devices often use an
   internal model of the TCP state machine to determine when TCP flows
   start and end, allowing them to manage state for these flows; for UDP
   flows, they must rely on timeouts.  These timeouts are generally
   short relative to those for TCP [IMC-GATEWAYS], requiring UDP-
   encapsulated transports either to generate unproductive keepalive
   traffic for long-lived sessions, or to tolerate connectivity problems
   and the necessity of reconnection due to loss of on-path state.

   This document presents an abstract solution to this problem by
   defining a transport-independent state machine to be implemented at
   per-flow state- keeping middleboxes as a replacement for incomplete
   TCP state modeling.  A key concept behind this approach is that
   encryption of transport protocol headers allows a transport protocol
   to separate its wire image - what it looks like to devices on path -
   from its internal semantics.  We advocate the creation of a minimal
   wire image for these protocols that exposes enough information to
   drive the state machine presented.  Present and future evolution of
   encrypted transport protocols can then happen behind this wire image,
   and Middleboxes implementing this state machine can use signals from
   a UDP encapsulation common to a set of encrypted transport protocols
   can have equivalent state information to that provided by TCP,
   reducing the friction between deployed middleboxes and these new
   transport protocols.

2.  Terminology

   In this document, the term "flow" is defined to be compatible with
   the definition given in [RFC7011]: A flow is defined as a set of
   packets passing a device on the network during a certain time
   interval.  All packets belonging to a particular Flow have a set of
   common properties.  Each property is defined as the result of
   applying a function to the values of:

   1.  one or more network layer header fields (e.g., destination IP
       address) or transport layer header fields (e.g., destination port
       number) that the device has access to;

   2.  one or more characteristics of the packet itself (e.g., number of
       MPLS labels, etc.);

   3.  one or more of the fields derived from packet treatment at the
       device (e.g., next-hop IP address, the output interface, etc.).

https://datatracker.ietf.org/doc/html/rfc7011
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   A packet is defined as belonging to a flow if it completely satisfies
   all the defined properties of the flow.

   A bidirectional flow or biflow is defined as compatible with
   [RFC5103], by joining the "forward direction" flow with the "reverse
   direction" flow, derived by reversing the direction of directional
   fields (ports and IP addresses).  Biflows are only relevant at
   devices positioned so as to see all the packets in both directions of
   the biflow, generally on the endpoint side of the service demarcation
   point for either endpoint as defined in the reference path given in
   [RFC7398].

3.  State Machine

   A transport-independent state machine for on-path devices is shown in
   Figure 1.  It was designed to have the following properties:

   o  A device on path that can see traffic in both directions between
      two endpoints knows that each side of an association wishes that
      association to continue.  This allows firewalls to delegate policy
      decisions about accepting or continuing an association to the
      servers they protect.

   o  A device on path that can see traffic in both directions between
      two endpoints knows that each device can receive traffic at the
      source address it provides.  This allows firewalls to provide
      protection against trivially spoofed packets.

   Both of these properties hold with current firewalls and network
   address translation devices observing the flags and sequence/
   acknowledgment numbers exposed by TCP.

   It relies on five states, three configurable timeouts, and a set of
   signals defined in Section 4.  The states are defined as follows:

   o  zero: there is no state for a given flow at the device

   o  uniflow: at least one packet has been seen in one direction

   o  associating: at least one packet has been seen in one direction,
      and an indication that the receiving endpoint wishes to continue
      the association has been seen in the other direction.

   o  associated: a flow in associating state has further demonstrated
      that the initial sender can receive packets at its given source
      address.

https://datatracker.ietf.org/doc/html/rfc5103
https://datatracker.ietf.org/doc/html/rfc7398
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   o  closing: an association is shutting down due to an explicit close
      signal.

   We refer to the zero and uniflow states as "uniflow states", as they
   are relevant both for truly unidirectional flows, as well as in
   situations where an on-path device can see only one side of a
   communication.  We refer to the remaining three states as "biflow
   states", as they are only applicable to true bidirectional flows,
   where the on-path device can see both sides of the communication.

       .- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.
       '    +==============+    pkt(s->d)    +==========+              '
       '   //              \\-------------->/            \--+          '
       '  ((      zero      ))             (    uniflow   ) |pkt(s->d) '
       '   \\              //<--------------\            /<-+          '
       '    +==============+  TO_IDLE/close  +==========+              '
       '- - -|- - -  ^ - ^  - - - - - - - - - - - - - -|- - - - - - - -'
             |        \   \                            |  association
  TO_CLOSING |         \   \                           V  signal
       +==========+     \   \      TO_IDLE        +==========+
      /            \     \   +-------------------/            \
     (    closing   )     \                     (  associating )
      \            /       \                     \            /
       +==========+         \ TO_ASSOCIATED       +==========+
             ^               \                         |
      close  |                \                        |  confirmation
     signal  |               +==========+              |  signal
             |              /            \             |
             |             (  associated  )            |
             +--------------\            /<------------+
                             +==========+
                               |      ^
                               +------+
                              pkt(s<->d)

    Figure 1: Transport-Independent State Machine for Stateful On-Path
                                  Devices

   The three timeouts are defined as follows:

   o  TO_IDLE, the unidirectional idle timeout, can be considered
      equivalent to the idle timeout for transport protocols where the
      device has no information about session start and end (e.g. most
      UDP protocols).
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   o  TO_ASSOCIATED, the bidirectional idle timeout, can be considered
      equivalent to the timeout for transport protocols where the device
      has information about session start and end (e.g.  TCP).

   o  TO_CLOSING is the closing timeout: how long the device will
      account additional packets to a flow after observing a stop
      signal, ensuring a reordered stop signal doesn't create a new
      flow.

   Selection of timeouts is a configuration and implementation detail,
   but generally TO_CLOSING <= TO_IDLE << TO_ASSOCIATED; see
   [IMC-GATEWAYS].

3.1.  Uniflow States

   Every packet received by a device keeping per-flow state must
   associate that packet with a flow (see Section 4.1).  When a device
   receives a packet associated with a flow it has no state for, and it
   is configured to forward the packet instead of dropping it, it moves
   that flow from the zero state into the uniflow state and starts a
   timer TO_IDLE.  It resets this timer for any additional packet it
   forwards in the same direction as long as the flow remains in the
   uniflow state.  When timer TO_IDLE expires on a flow in the uniflow
   state, the device drops state for the flow and performs any
   processing associated with doing so: tearing down NAT bindings,
   closing associated firewall pinholes, exporting flow information, and
   so on.  The device may also drop state on a stop signal, if observed.

   Some devices will only see one side of a communication, e.g. if they
   are placed in a portion of a network with asymmetric routing.  These
   devices use only the zero and uniflow states (as marked in Figure 1.)
   In addition, true uniflows - protocols which are solely
   unidirectional (e.g. some applications over UDP) - will also use only
   the uniflow-only states.  In either case, current devices generally
   don't associate much state with observed uniflows, and an idle
   timeout is generally sufficient to expire this state.

3.2.  Biflow States

   A uniflow transitions to the associating state when the device
   observes an association signal, and further to the associated state
   when the device observes a subsequent confirmation signal; see

Section 4.2 for details.  If the flow has not transitioned to from
   the associating to the associated state after TO_IDLE, the device
   drops state for the flow.

   After transitioning to the associated state, the device starts a
   timer TO_ASSOCIATED.  It resets this timer for any packet it forwards
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   in either direction.  The associated state represents a fully
   established bidirectional communication.  When timer TO_ASSOCIATED
   expires, the device assumes that the flow has shut down without
   signaling as such, and drops state for the flow, performing any
   associated processing.  When a stop signal (see {{stop- signaling}})
   is observed in either direction, the flow transitions to the closing
   state.

   When a flow enters the closing state, it starts a timer TO_CLOSING.
   While the stop signal should be the last packet on a flow, the
   TO_CLOSING timer ensures that reordered packets after the stop signal
   will be accounted to the flow.  When this timer expires, the device
   drops state for the flow, performing any associated processing.

3.3.  Additional States and Actions

   This document is concerned only with states and transitions common to
   transport- and function- independent state maintenance.  Devices may
   augment the transitions in this state diagram depending on their
   function.  For example, a firewall that decides based on some
   information beyond the signals used by this state machine to shut
   down a flow may transition it directly to a blacklist state on
   shutdown.  Or, a firewall may fail to forward additional packets in
   the uniflow state until an association signal is observed.

4.  Abstract Signaling Mechanisms

   The state machine in Section 3 requires four signals: a new flow
   signal, the first packet observed in a flow in the zero state; an
   association signal, allowing a device to verify that an endpoint
   wishes a bidirectional communication to be established or to
   continue; a confirmation signal, allowing a device to confirm that
   the initiator of a flow is reachable at its purported source address;
   and a stop signal, noting that an endpoint wishes to stop a
   bidirectional communication.  Additional related signals may also be
   useful, depending on the function a device provides.  There are a few
   different ways to implement these signals; here, we explore the
   properties of some potential implementations.

   We assume the following general requirements for these signals;
   parallel to those given in [draft-trammell-plus-abstract-mech]:

   o  At least the endpoints can verify the integrity of the signals
      exposed, and shut down a transport association when that
      verification fails, in order to reduce the incentive for on-path
      devices to attempt to spoof these signals.

https://datatracker.ietf.org/doc/html/draft-trammell-plus-abstract-mech
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   o  Endpoints and devices on path can probabilistically verify that a
      originator of a signal is on-path.

4.1.  Flow Identification

   In order to keep per-flow state, each device using this state machine
   must have a function it can apply to each packet to be able to
   extract common properties to identify the flow it is associated with.
   In general, the set of properties used for flow identification on
   presently deployed devices includes the source and destination IP
   address, the source and destination transport layer port number, the
   transport protocol number.  The differentiated services field
   [RFC2474] may also be included in the set of properties defining a
   flow, since it may indicate different forwarding treatment.

   However, other protocols may use additional bits in their own headers
   for flow identification.  In any case, a protocol implementing
   signaling for this state machine must specify the function used for
   flow identification.

4.2.  Association and Confirmation Signaling

   An association signal indicates that the endpoint that received the
   first packet seen by the device is interested in continuing
   conversation with the sending endpoint.  This signal is roughly an
   in-band analogue to consent signaling in ICE [RFC7675] that is
   carried to every device along the path.

   A confirmation signal indicates that the endpoint that sent the first
   packet seen by the device is reachable at its purported source
   address, and is necessary to prevent spoofed or reflected packets
   from driving the state machine into the associated state.  It is
   roughly equivalent to the final ACK in the TCP three-way handshake.

   These two signals are related to each other, in that association
   requires the receiving endpoint of the first packet to prove it has
   seen that packet (or a subsequent packet), and to acknowledge it
   wants to continue the association; while confirmation requires the
   sending endpoint to prove it has seen the association token.

   Transport-independent, path-verifiable association and confirmation
   signaling can be implemented using three values carried in the packet
   headers: an association token, a confirmation nonce, and an echo
   token.

   The association token is a cryptographically random value generated
   by the endpoint initiating a connection, and is carried on packets in
   the uniflow state.  When a receiving endpoint wishes to send an

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc7675
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   association signal, it generates an echo token from the association
   token using a well-known, defined function (e.g. a truncated SHA-256
   hash), and generates a cryptographically random confirmation nonce.
   The initiating endpoint sends a confirmation signal on the next
   packet it sends after receiving the confirmation nonce, by applying a
   function to the echo token and the confirmation nonce, and sending
   the result as a new association token.

   Devices on path verify that the echo token corresponds to a
   previously seen association token to recognize an association signal,
   and recognize that an association token corresponds to a previously
   seen echo token and confirmation nonce to recognize an association
   signal.

   These signals could be exposed on only first few packets of a
   connection (those corresponding to the cryptographic and/or transport
   state handshakes in the overlying protocols).  In this case, an on-
   path device would need to observe the start of the flow to establish
   state.  They could also be present on every packet in the flow,
   allowing state to be re-established even in the middle of a flow with
   longer idle periods than the TO_ESTABLISHED timeout value.  In this
   case, the series of exposed association tokens, echo tokens, and
   confirmation nonces can be observed to derive a running round-trip
   time estimate for the flow.

   If the association token and confirmation nonce are predictable, off-
   path devices can spoof association and confirmation signals.  In
   choosing the number of bits for an association token, there is a
   tradeoff between per-packet overhead and state overhead at on-path
   devices, and assurance that an association token is hard to guess.
   This tradeoff must be evaluated at protocol design time.

   There are a few considerations in choosing a function (or functions)
   to generate the echo token from the association token, to verify an
   echo token given an association token, and to derive a next
   association token from the echo token and confirmation nonce.  The
   functions could be extremely simple (e.g., identity for the echo
   token and addition for the nonce) for ease of implementation even in
   extremely constrained environments.  Using one-way functions (e.g.,
   truncated SHA-256 hash to derive echo token from association token;
   XOR followed by truncated SHA-256 hash to derive association token
   from echo token and confirmation nonce) requires slightly more work
   from on-path devices, but the primitives will be available at any
   endpoint using an encrypted transport protocol.  In any case, a
   concrete implementation of association and confirmation signaling
   must choose a set of functions, or mechanism for unambiguously
   choosing one, at both endpoints as well as along the path.
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4.3.  Stop Signaling

   A stop signal is directly carried or otherwise encoded in the
   protocol header to indicate that a flow is ending, whether normally
   or abnormally, and that state associated with the flow should be torn
   down.  Upon decoding a stop signal, a device on path should move the
   flow from uniflow state to null, or from biflow state to closing.

   Transports should send a stop signal only on the last packet sent in
   a bidirectional flow.  The closing timeout TO_CLOSING is intended to
   ensure that any packets reordered in delivery are accounted to the
   flow before state for it is dropped.

   We assume the encoding of a stop signal into a packet header, as with
   all other signals, is integrity protected end-to-end.  Stop signals,
   as association signals, could be forged by one on-path device to dupe
   other devices into moving flows into the closing state.  However,
   state will be re-established by the continuing flow (and resulting
   association signals) after the closing timeout, and an endpoint
   receiving a spoofed stop signal could enter a fast re-establishment
   phase of the upper layer transport protocol to minimize disruption,
   further reducing the incentive to attackers to spoof stop signals.

   Alternatively, the stop signal could be designed to authenticate
   itself.  Each endpoint could reveal a stop hash during the initial
   association, which is the result of a chosen cryptographic hash
   function applied to a stop token which that endpoint keeps secret.
   An endpoint wishing to end the association then reveals the stop
   token, which can be verified both by the far endpoint and devices on
   path which have cached the stop hash to be authentic.

5.  Deployment Considerations

   The state machine defined in this document is most useful when
   implemented in a single instantiation (wire format for signals, and
   selection of functions for deriving values to be exposed and
   verified) by multiple transport protocols.  It is intended for use
   with protocols that encrypt their transport- layer headers, and that
   are encapsulated within UDP, as is the case with QUIC
   [I-D.hamilton-quic-transport-protocol].  Definition of that
   instantiation is out of scope for the present revision of this
   document.

   The following subsections discuss incentives for deployment of this
   state machine both at middleboxes and at endpoints.
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5.1.  Middlebox Deployment

   The state machine defined herein is designed to replace TCP state-
   tracking for firewalls and NAT devices.  When encrypted transport
   protocols encapsulated in UDP adopt a set of signals and a wire
   format for those signals to drive this state machine, these
   middleboxes could continue using TCP-like logic to handle those UDP
   flows.  Recognizing the wire format used by those signals would allow
   these middleboxes to distinguish "UDP with an encrypted transport"
   from undifferentiated UDP, and to treat the former case more like
   TCP, providing longer timeouts for established flows, as well as
   stateful defense against spoofed or reflected garbage traffic.

5.2.  Endpoint Deployment

   An encrypted, UDP-encapsulated transport protocol has two primary
   incentives to expose these signals.  First, allowing firewalls on
   networks that generally block UDP (about 3-5% of Internet-connected
   networks, depending on the study) to distinguish "UDP with an
   encrypted transport" traffic from other UDP traffic may result in
   less blocking of that traffic.  Second, the difference between the
   timeouts TO_IDLE and TO_ASSOCIATED, as well as the continuous state
   establishment possible with some instantiations of the association
   and confirmation signals, would allow these transport protocols to
   send less unproductive keepalive traffic for long-lived, sparse
   flows.

   While both of these advantages require middleboxes on path to
   recognize and use the signals driving this state machine, we note
   that content providers driving the deployment of this protocols are
   also operators of their own content provision networks, and that many
   of the benefits of encrypted- encapsulated transport firewalls will
   accrue to them, giving these content providers incentives to deploy
   both endpoints and middleboxes.

6.  Signal mappings for transport protocols

   We now show how this state machine can be driven by signals available
   in TCP and QUIC.

6.1.  Signal mapping for TCP

   A mapping of TCP flags to transitions in to the state machine in
Section 3 shows how devices currently using a model of the TCP state

   machine can be converted to use this state machine.

   TCP [RFC0793] provides start-of-flow association only.  A packet with
   the SYN and ACK flags set in the absence of the FIN or RST flags, and

https://datatracker.ietf.org/doc/html/rfc0793
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   an in-window acknowledgment number, is synonymous with the
   association signal.  A packet with the ACK flag set in the absence of
   the FIN or RST flags after an initial SYN, and an in-window
   acknowledgment number, is synonymous with the confirmation signal.
   For a typical TCP flow:

   1.  The initial SYN places the flow into uniflow state,

   2.  The SYN-ACK sent in reply acts as a association signal and places
       the flow into associating state,

   3.  The ACK sent in reply acts as a confirmatio signal and places the
       flow into associated state,

   4.  Any RST moves the flow into closing state, or

   5.  The final FIN-ACK (not the first half-close FIN) moves the flow
       into closing state.

   Note that generating a stop signal from FIN does require additional
   TCP state modeling to prevent moving into the closing state on a
   half-close.

   Note also that the association and stop signals derived from the TCP
   header are not integrity protected, and association and confirmation
   signals based on in-window ACK are not particularly resistant to off-
   path attacks [IMC-TCP].  The state machine is therefore more
   susceptible to manipulation when used with vanilla TCP as when with a
   transport protocol providing full integrity protection for its
   headers end-to-end.

6.2.  Signal mapping for QUIC

   QUIC [I-D.hamilton-quic-transport-protocol] is a moving target;
   however, signals for driving this state machine are fundamentally
   compatible with the protocol's design and could easily be added to
   the protocol specification.

   Specifically, as of this writing, QUIC's 64-bit connection ID,
   together with integrity protection of the connection ID provided by
   QUIC's cryptographic protocol [I-D.thomson-quic-tls], could be used
   as an association and echo token as in Section 4.2.  A confirmation
   nonce, or equivalent mechanism, is presently missing and would have
   to be added.  The addition of a public reset signal that would act as
   a stop signal as in Section 4.3 is presently under discussion on the
   QUIC mailing list; one proposal for self-authenticating public reset
   inspired the addition of a comparable mechanism to Section 4.3 of
   this document.
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7.  IANA Considerations

   This document has no actions for IANA.

8.  Security Considerations

   This document defines a state machine for transport-independent state
   management on middleboxes, using in-band signaling, to replace the
   commonly- implemented current practice of incomplete TCP state
   modeling on these devices.  It defines new signals for state
   management.  While these signals can be spoofed by any device on path
   that observes traffic in both directions, we presume the presence of
   end-to-end integrity protection of these signals provided by the
   upper-layer transport driving them.  This allows such spoofing to be
   detected and countered by endpoints, reducing the threat from on-path
   devices to connection disruption, which such devices are trivially
   placed to perform in any case.
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