
TAPS Working Group B. Trammell
Internet-Draft ETH Zurich
Intended status: Informational C. Perkins
Expires: April 30, 2017 University of Glasgow
 T. Pauly
 Apple Inc.
 M. Kuehlewind
 ETH Zurich
 October 27, 2016

Post Sockets, An Abstract Programming Interface for the Transport Layer
draft-trammell-post-sockets-00

Abstract

 This document describes Post Sockets, an asynchronous abstract
 programming interface for the atomic transmission of objects in an
 explicitly multipath environment. Post replaces connections with
 long-lived associations between endpoints, with the possibility to
 cache cryptographic state in order to reduce amortized connection
 latency. We present this abstract interface as an illustration of
 what is possible with present developments in transport protocols
 when freed from the strictures of the current sockets API.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Trammell, et al. Expires April 30, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/draft-trammell-post-sockets-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Post Sockets October 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Abstractions and Terminology 5
2.1. Association . 5
2.2. Listener . 5
2.3. Remote . 6
2.4. Local . 6
2.5. Path . 6
2.6. Object . 7
2.7. Stream . 9

3. Abstract Programming Interface 9
3.1. Active Association Creation 10
3.2. Listener and Passive Association Creation 11
3.3. Sending Objects . 12
3.4. Receiving Objects . 12
3.5. Creating and Destroying Streams 13
3.6. Events . 13
3.7. Paths and Path Properties 14
3.8. Address Resolution 14

4. Acknowledgments . 15
5. Informative References 15

 Authors' Addresses . 16

1. Introduction

 The BSD Unix Sockets API's SOCK_STREAM abstraction, by bringing
 network sockets into the UNIX programming model, allowing anyone who
 knew how to write programs that dealt with sequential-access files to
 also write network applications, was a revolution in simplicity. It
 would not be an overstatement to say that this simple API is the
 reason the Internet won the protocol wars of the 1980s. SOCK_STREAM
 is tied to the Transmission Control Protocol (TCP), specified in 1981
 [RFC0793]. TCP has scaled remarkably well over the past three and a
 half decades, but its total ubiquity has hidden an uncomfortable
 fact: the network is not really a file, and stream abstractions are
 too simplistic for many modern application programming models.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc0793

Trammell, et al. Expires April 30, 2017 [Page 2]

Internet-Draft Post Sockets October 2016

 In the meantime, the nature of Internet access is evolving. Many
 end-user devices are connected to the Internet via multiple
 interfaces, which suggests it is time to promote the "path" by which
 a host is connected to a first-order object; we call this "path
 primacy".

 Implicit multipath communication is available for these multihomed
 nodes in the present Internet architecture with the Multipath TCP
 extension (MPTCP) [RFC6824]. Since many multihomed nodes are
 connected to the Internet through access paths with widely different
 properties with respect to bandwidth, latency and cost, adding
 explicit path control to MPTCP's API would be useful in many
 situations. Path primacy for cooperation with path elements is also
 useful in single-homed architectures, such as the mechanism proposed
 by the Path Layer UDP Substrate (PLUS) effort (see
 [I-D.trammell-plus-statefulness] and
 [I-D.trammell-plus-abstract-mech]).

 Another trend straining the traditional layering of the transport
 stack associated with the SOCK_STREAM interface is the widespread
 interest in ubiquitous deployment of encryption to guarantee
 confidentiality, authenticity, and integrity, in the face of
 pervasive surveillance [RFC7258]. Layering the most widely deployed
 encryption technology, Transport Layer Security (TLS), strictly atop
 TCP (i.e., via a TLS library such as OpenSSL that uses the sockets
 API) requires the encryption-layer handshake to happen after the
 transport-layer handshake, which increases connection setup latency
 on the order of one or two round-trip times, an unacceptable delay
 for many applications. Integrating cryptographic state setup and
 maintenance into the path abstraction naturally complements efforts
 in new protocols (e.g. QUIC [I-D.hamilton-quic-transport-protocol])
 to mitigate this strict layering.

 From these three starting points - more flexible abstraction, path
 primacy, and encryption by default - we define the Post-Socket
 Application Programming Interface (API), described in detail in this
 work. Post is designed to be language, transport protocol, and
 architecture independent, allowing applications to be written to a
 common abstract interface, easily ported among different platforms,
 and used even in environments where transport protocol selection may
 be done dynamically, as proposed in the IETF's Transport Services
 wotking group (see https://datatracker.ietf.org/wg/taps/charter).

 Post replaces the traditional SOCK_STREAM abstraction with an Object
 abstraction, which can be seen as a generalization of the Stream
 Control Transmission Protocol's [RFC4960] SOCK_SEQPACKET service.
 Objects can be small (e.g. messages in message-oriented protocols) or
 large (e.g. an HTTP response containing header and body). It

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/wg/taps/charter
https://datatracker.ietf.org/doc/html/rfc4960

Trammell, et al. Expires April 30, 2017 [Page 3]

Internet-Draft Post Sockets October 2016

 replaces the notions of a socket address and connected socket with an
 Association with a remote endpoint via set of Paths. Implementation
 and wire format for transport protocol(s) implementing the Post API
 are explicitly out of scope for this work; these abstractions need
 not map directly to implementation-level concepts, and indeed with
 various amounts of shimming and glue could be implemented with
 varying success atop any sufficiently flexible transport protocol.

 For compatibility with situations where only strictly stream-oriented
 transport protocols are available, applications with data streams
 that cannot be easily split into Objects at the sender, and and for
 easy porting of the great deal of existing stream-oriented
 application code to Post, Post also provides a SOCK_STREAM compatible
 abstraction, unimaginatively named Stream.

 The key features of Post as compared with the existing sockets API
 are:

 o Explicit Object orientation, with framing and atomicity guarantees
 for Object transmission.

 o Asynchronous reception, allowing all receiver-side interactions to
 be event-driven.

 o Explicit support for multipath transport protocols and network
 architectures.

 o Long-lived Associations, whose lifetimes may not be bound to
 underlying transport connections. This allows associations to
 cache state and cryptographic key material to enable fast (0-rtt)
 resumption of communication.

 This work is the synthesis of many years of Internet transport
 protocol research and development. It is heavily inspired by
 concepts from the Stream Control Transmission Protocol (SCTP)
 [RFC4960], TCP Minion [I-D.iyengar-minion-protocol],
 MinimaLT[MinimaLT], and various bulk object transports.

 We present Post Sockets as an illustration of what is possible with
 present developments in transport protocols when freed from the
 strictures of the current sockets API. While much of the work for
 building parts of the protocols needed to implement Post are already
 ongoing in other IETF working groups (e.g. TAPS, MPTCP, QUIC, TLS),
 we argue that an abstract programming interface unifying access all
 these efforts is necessary to fully exploit their potential.

https://datatracker.ietf.org/doc/html/rfc4960

Trammell, et al. Expires April 30, 2017 [Page 4]

Internet-Draft Post Sockets October 2016

2. Abstractions and Terminology

 gratuitously colorful SVG goes here; see slide six of

https://www.ietf.org/proceedings/96/slides/slides-96-taps-2.pdf

 in the meantime

 Figure 1: Abstractions and relationships in Post Sockets

 Post is based on a small set of abstractions, the relationships among
 which are shown in Figure Figure 1 and detailed in this section.

2.1. Association

 An Association is a container for all the state necessary for a local
 endpoint to communicate with a remote endpoint in an explicitly
 multipath environment. It contains a set of Paths, certificate(s)
 for identifying the remote endpoint, certificate(s) and key(s) for
 identifying the local endpoint to the remote endpoint, and any cached
 cryptographic state for the communication to the remote endpoint. An
 Association may have one or more Streams active at any given time.
 Objects are sent to Associations, as well.

 Note that, in contrast to current SOCK_STREAM sockets, Associations
 are meant to be relatively long-lived. The lifetime of an
 Association is not bound to the lifetime of any transport-layer
 connection between the two endpoints; connections may be opened or
 closed as necessary to support the Streams and Object transmissions
 required by the application, and the application need not be bothered
 with the underlying connectivity state unless this is important to
 the application's semantics.

 Paths may be dynamically added or removed from an association, as
 well, as connectivity between the endpoints changes. Cryptographic
 identifiers and state for endpoints may also be added and removed as
 necessary due to certificate lifetimes, key rollover, and revocation.

2.2. Listener

 In many applications, there is a distinction between the active
 opener (or connection initiator, often a client), and the passive
 opener (often a server). A Listener represents an endpoint's
 willingness to start Associations in this passive opener/server role.
 It is, in essence, a one-sided, Path-less Association from which
 fully-formed Associations can be created.

https://www.ietf.org/proceedings/96/slides/slides-96-taps-2.pdf

Trammell, et al. Expires April 30, 2017 [Page 5]

Internet-Draft Post Sockets October 2016

 Listeners work very much like sockets on which the listen(2) call has
 been called in the SOCK_STREAM API.

2.3. Remote

 A Remote represents all the information required to establish and
 maintain a connection with the far end of an Association: network-
 layer address, transport-layer port, information about public keys or
 certificate authorities used to identify the remote on connection
 establishment, etc. Each Association is associated with a single
 Remote, either explicitly by the application (when created by active
 open) or by the Listener (when created by passive open). The
 resolution of Remotes from higher-layer information (URIs, hostnames)
 is architecture-dependent.

2.4. Local

 A Local represents all the information about the local endpoint
 necessary to establish an Association or a Listener: interface and
 port designators, as well as certificates and associated private
 keys.

2.5. Path

 A Path represents a local and remote endpoint address, an optional
 set of intermediary path elements between the local and remote
 endpoint addresses, and a set of properties associated with the path.

 The set of available properties is a function of the underlying
 network-layer protocols used to expose the properties to the
 endpoint. However, the following core properties are generally
 useful for applications and transport layer protocols to choose among
 paths for specific Objects:

 o Maximum Transmission Unit (MTU): the maximum size of an Object's
 payload (subtracting transport, network, and link layer overhead)
 which will likely fit into a single frame. Derived from signals
 sent by path elements, where available, and/or path MTU discovery
 processes run by the transport layer.

 o Latency Expectation: expected one-way delay along the Path.
 Generally provided by inline measurements performed by the
 transport layer, as opposed to signaled by path elements.

 o Loss Probability Expectation: expected probability of a loss of
 any given single frame along the Path. Generally provided by
 inline measurements performed by the transport layer, as opposed
 to signaled by path elements.

Trammell, et al. Expires April 30, 2017 [Page 6]

Internet-Draft Post Sockets October 2016

 o Available Data Rate Expectation: expected maximum data rate along
 the Path. May be derived from passive measurements by the
 transport layer, or from signals from path elements.

 o Reserved Data Rate: Committed, reserved data rate for the given
 Association along the Path. Requires a bandwidth reservation
 service in the underlying transport and network layer protocol.

 o Path Element Membership: Identifiers for some or all nodes along
 the path, depending on the capabilities of the underlying network
 layer protocol to provide this.

 Path properties are generally read-only. MTU is a property of the
 underlying link-layer technology on each link in the path; latency,
 loss, and rate expectations are dynamic properties of the network
 configuration and network traffic conditions; path element membership
 is a function of network topology. In an explicitly multipath
 architecture, application and transport layer requirements are met by
 having multiple paths with different properties to select from. Post
 can also provide signaling to the path, but this signaling is derived
 from information provided to the Object abstraction, below.

 Note that information about the path and signaling to path elements
 could be provided by a facility such as PLUS
 [I-D.trammell-plus-abstract-mech].

2.6. Object

 Post provides two ways to send data over an Association. We start
 with the Object abstraction, as a fundamental insight behind the
 interface is that most applications fundamentally deal in object
 transport.

 An Object is an atomic unit of communication between applications; or
 in other words, an ordered collection of bytes B0..Bm, such that
 every byte Bn depends on every other byte in the Object. An object
 that cannot be delivered in its entirety within the constraints of
 the network connectivity and the requirements of the application is
 not delivered at all.

 Objects can represent both relatively small structures, such as
 messages in application-layer protocols built around datagram or
 message exchange, as well as relatively large structures, such files
 of arbitrary size in a filesystem. Objects larger than the MTU on
 the Path on which they are sent will be segmented into multiple
 frames. Multiple objects that will fit into a single frame may be
 concatenated into one frame. There is no preference for transmitting
 the multiple frames for a given Object in any particular order, or by

Trammell, et al. Expires April 30, 2017 [Page 7]

Internet-Draft Post Sockets October 2016

 default, that objects will be delivered in the order sent by the
 application. This implies that both the sending and receiving
 endpoint, whether in the application layer or the transport layer,
 must guarantee storage for the full size of an object.

 Three object properties allow applications fine control ordering and
 reliability requirements in line with application semantics. An
 Object may have a "lifetime" - a wallclock duration before which the
 object must be available to the application layer at the remote end.
 If a lifetime cannot be met, the object is discarded as soon as
 possible; therefore, Objects with lifetimes are implicitly sent non-
 reliably, and lifetimes are used to prioritize Object delivery.
 Lifetimes may be signaled to path elements by the underlying
 transport, so that path elements that realize a lifetime cannot be
 met can discard frames containing the object instead of forwarding
 them.

 Second, Objects may have a "niceness" - a category in an unbounded
 hierarchy most naturally represented as a non-negative integer. By
 default, Objects are in niceness class 0, or highest priority.
 Niceness class 1 Objects will yield to niceness class 0 objects,
 class 2 to class 1, and so on. Niceness may be translated to a
 priority signal for exposure to path elements (e.g. DSCP codepoint)
 to allow prioritization along the path as well as at the sender and
 receiver. This inversion of normal schemes for expressing priority
 has a convenient property: priority increases as both niceness and
 deadline decrease.

 An object may have both a niceness and a lifetime - objects with
 higher niceness classes will yield to lower classes if resource
 constraints mean only one can meet the lifetime.

 Third, an Object may have "antecedents" - other Objects on which it
 depends, which must be delivered before it (the "successor") is
 delivered. The sending transport uses deadlines, niceness, and
 antecedents, along with information about the properties of the Paths
 available, to determine when to send which object down which Path.

 When an application has hard semantic requirements that all the
 frames of a given object be sent down a given Path or Paths, these
 hard constraints can also be expressed by the application.

 After calling the send function, the application can register event
 handlers to be informed of the transmission status of the object; the
 object can either be acknowledged (i.e., it has been received in full
 by the remote endpoint) or expired (its lifetime ran out before it
 was acknowledged).

Trammell, et al. Expires April 30, 2017 [Page 8]

Internet-Draft Post Sockets October 2016

2.7. Stream

 The Stream abstraction is provided for two reasons. First, since it
 is the most like the existing SOCK_STREAM interface, it is the
 simplest abstraction to be used by applications ported to Post to
 take advantages of Path primacy. Second, some environments have
 connectivity so impaired (by local network operation policy and/or
 accidental middlebox interference) that only stream- based transport
 protocols are available, and applications should have the option to
 use streams directly in these situations.

 A Stream is a sequence of bytes B0 .. Bm such that the reception (and
 delivery to the receiving application of) Bn always depends on Bn-1.
 This property is inherited from the BSD UNIX file abstraction, which
 in turn inherited it from the physical limitations of sequential
 access media (stacks of punch cards, paper and/or magnetic tape).

 A Stream is bound to an Association. Writing a byte to the stream
 will cause it to be received by the remote, in order, or will cause
 an error condition and termination of the stream if the byte cannot
 be delivered. Due to the strong sequential dependence on a stream,
 streams must always be reliable and ordered. If frames containing
 Stream data are lost, these must be retransmitted or reconstructed
 using an error correction technique. If frames containing Stream
 data arrive out of order, the remote end must buffer them until the
 unordered frames are received and reassembled.

 As with Objects, Streams may have a niceness for prioritization.
 When mixing Stream and Object data on the same Path in an
 association, the niceness classes for Streams and Objects are
 interleaved; e.g. niceness 2 Stream frames will yield to niceness 1
 Object frames.

 The underlying transport protocol may make whatever use of the Paths
 and known properties of those Paths it sees fit when transporting a
 Stream.

3. Abstract Programming Interface

 We now turn to the design of an abstract programming interface to
 provide a simple interface to Post's abstractions, constrained by the
 following design principles:

 o Flexibility is paramount. So is simplicity. Applications must be
 given as many controls and as much information as they may need,
 but they must be able to ignore controls and information
 irrelevant to their operation. This implies that the "default"

Trammell, et al. Expires April 30, 2017 [Page 9]

Internet-Draft Post Sockets October 2016

 interface must be no more complicated than BSD sockets, and must
 do something reasonable.

 o A new API cannot be bound to a single transport protocol and
 expect wide deployment. As the API is transport-independent and
 may support runtime transport selection, it must impose the
 minimum possible set of constraints on its underlying transports,
 though some API features may require underlying transport features
 to work optimally. It must be possible to implement Post over
 vanilla TCP in the present Internet architecture.

 o Reception is an inherently asynchronous activity. While the API
 is designed to be as platform-independent as possible, one key
 insight it is based on is that an object receiver's behavior in a
 packet-switched network is inherently asynchronous, driven by the
 receipt of packets, and that this asynchronicity must be reflected
 in the API. The actual implementation of receive and event
 callbacks will need to be aligned to the method a given platform
 provides for asynchronous I/O.

 The API we define consists of three classes (listener, association,
 and stream), four entry points (listen(), associate(), send(), and
 open_stream()) and a set of callbacks for handling events at each
 endpoint. The details are given in the subsections below.

3.1. Active Association Creation

 Associations can be created two ways: actively by a connection
 initiator, and passively by a Listener that accepts a connection.
 Connection initiation uses the associate() entry point:

 association = associate(local, remote, receive_handler)

 where:

 o local: a resolved Local (see Section 3.8) describing the local
 identity and interface(s) to use

 o remote: a resolved Remote (see Section 3.8) to associate with

 o receive_handler: a callback to be invoked when new objects are
 received; see Section 3.4

 The returned association has the following additional properties:

 o paths: a set of Paths that the Association can currently use to
 transport Objects. When the underlying transport connection is
 closed, this set will be empty. For explicitly multipath

Trammell, et al. Expires April 30, 2017 [Page 10]

Internet-Draft Post Sockets October 2016

 architectures and transports, this set may change dynamically
 during the lifetime of an association, even while it remains
 connected.

 Since the existence of an association does not necessarily imply
 current connection state at both ends of the Association, these
 objects are durable, and can be cached, migrated, and restored, as
 long as the mappings to their event handlers are stable. An attempts
 to send an object or open a stream on a dormant, previously actively-
 opened association will cause the underlying transport connection
 state to be resumed.

3.2. Listener and Passive Association Creation

 In order to accept new Association requests from clients, a server
 must create a Listener object, using the listen() entry point:

 listener = listen(local, accept_handler)

 where:

 o local: resolved Local (see Section 3.8) describing the local
 identity and interface(s) to use for Associations created by this
 listener.

 o accept_handler: callback to be invoked each time an association is
 requested by a remote, to finalize setting the association up.
 Platforms may provide a default here for supporting synchronous
 association request handling via an object queue.

 The accept_handler has the following prototype:

 accepted = accept_handler(listener, local, remote)

 where:

 o local: a resolved Local on which the association request was
 received.

 o remote: a resolved Remote from which the association request was
 received.

 o accepted: flag, true if the handler decided to accept the request,
 false otherwise.

 The accept_handler() calls the accept() entry point to finally create
 the association:

Trammell, et al. Expires April 30, 2017 [Page 11]

Internet-Draft Post Sockets October 2016

 association = accept(listener, local, remote, receive_handler)

3.3. Sending Objects

 Objects are sent using the send() entry point:

 send(association, bytes, [lifetime], [niceness], [oid],
 [antecedent_oids], [paths])}

 where:

 o association: the association to send the object on

 o bytes: sequence of bytes making up the object. For platforms
 without bounded byte arrays, this may be implemented as a pointer
 and a length.

 o lifetime: lifetime of the object in milliseconds. This parameter
 is optional and defaults to infinity (for fully reliable object
 transport).

 o niceness: the object's niceness class. This parameter is optional
 and defaults to zero (for lowest niceness / highest priority)

 o oid: opaque identifier for an object, assigned by the application.
 Used to refer to this object as a subsequently sent object's
 antecedent, or in an ack or expired handler (see Section 3.6).
 Optional, defaults to null.

 o antecedent_oids: set of object identifiers on which this object
 depends and which must be sent before this object. Optional,
 defaults to empty, meaning this object has no antecedent
 constraints.

 o paths: set of paths, as a subset of those available to the
 association, to explicitly use for this object. Optional,
 defaults to empty, meaning all paths are acceptable.

 Calls to send are non-blocking; a synchronous send which blocks on
 remote acknowledgment or expiry of an object can be implemented by a
 call to send() followed by a wait on the ack or expired events (see

Section 3.6).

3.4. Receiving Objects

 An application receives objects via its receive_handler callback,
 registered at association creation time. This callback has the
 following prototype:

Trammell, et al. Expires April 30, 2017 [Page 12]

Internet-Draft Post Sockets October 2016

 receive_handler(association, bytes)

 where: - association: the association the object was received from.
 - bytes: the sequence of bytes making up the object.

 For ease of porting synchronous datagram applications,
 implementations may make a default receive handler available, which
 allows messages to be synchronously polled from a per-association
 object queue. If this default is available, the entry point for the
 polling call is:

 bytes = receive_next(association)

3.5. Creating and Destroying Streams

 A stream may be created on an association via the open_stream() entry
 point:

 stream = open_stream(association, [sid])

 where:

 o association: the association to open the stream on

 o sid: opaque identifier for a stream. For transport protocols
 which do not support multiple streaming, this argument has no
 effect.

 A stream with a given sid must be opened by both sides before it can
 be used.

 The stream object returned should act like a file descriptor or
 bidirectional I/O object, according to the conventions of the
 platform implementing Post.

3.6. Events

 Message reception is a specific case of an event that can occur on an
 association. Other events are also available, and the application
 can register event handlers for each of these. Event handlers are
 registered via the handle() entry point:

 handle(association, event, handler) or

 handle(oid, event, handler)

 where

Trammell, et al. Expires April 30, 2017 [Page 13]

Internet-Draft Post Sockets October 2016

 o association: the association to register a handler on, or

 o oid: the object identifier to register a handler on

 o event: an identifier of the event to register a handler on

 o handler: a callback to be invoked when the event occurs, or null
 if the event should be ignored.

 The following events are supported; every event handler takes the
 association on which it is registered as well as any additional
 arguments listed:

 o receive (bytes): an object has been received

 o path_up (path): a path is newly available

 o path_down (path): a path is no longer available

 o dormant: no more paths are available, the association is now
 dormant, and the connection will need to be resumed if further
 objects are to be sent

 o ack (oid): an object was successfully received by the remote

 o expired (oid): an object expired before being sent to the remote

 Handlers for the ack and expired events can be registered on an
 association (in which case they are called for all objects sent on
 the association) or on an oid (in which case they are only called for
 the oid).

3.7. Paths and Path Properties

 As defined in Section 2.5, the properties of a path include both the
 addresses of elements along the path as well as measurement-derived
 latency and capacity characteristics. The path_up and path_down
 events provide access to information about the paths available via
 the path argument to the event handler. This argument encapsulates
 these properties in a platform and transport-specific way, depending
 on the availability of information about the path.

3.8. Address Resolution

 Address resolution turns the name of a Remote into a resolved Remote
 object, which encapsulates all the information needed to connect
 (address, certificate parameters, cached cryptographic state, etc.);
 and an interface identifier on a local system to information needed

Trammell, et al. Expires April 30, 2017 [Page 14]

Internet-Draft Post Sockets October 2016

 to connect. Remote and local resolvers have the following entry
 points:

 remote = resolve(endpoint_name, configuration)

 local = resolve_local(endpoint_name, configuration)

 where:

 o endpoint_name: a name identifying the remote or local endpoint,
 including port

 o configuration: a platform-specific configuration object for
 configuring certificates, name resolution contexts, cached
 cryptographic state, etc.

4. Acknowledgments

 Many thanks to Laurent Chuat and Jason Lee at the Network Security
 Group at ETH Zurich for contributions to the initial design of Post
 Sockets.

 This work is partially supported by the European Commission under
 Horizon 2020 grant agreement no. 688421 Measurement and Architecture
 for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat
 for Education, Research, and Innovation under contract no. 15.0268.
 This support does not imply endorsement.

5. Informative References

 [I-D.hamilton-quic-transport-protocol]
 Hamilton, R., Iyengar, J., Swett, I., and A. Wilk, "QUIC:
 A UDP-Based Multiplexed and Secure Transport", draft-

hamilton-quic-transport-protocol-00 (work in progress),
 July 2016.

 [I-D.iyengar-minion-protocol]
 Jana, J., Cheshire, S., and J. Graessley, "Minion - Wire
 Protocol", draft-iyengar-minion-protocol-02 (work in
 progress), October 2013.

 [I-D.trammell-plus-abstract-mech]
 Trammell, B., "Abstract Mechanisms for a Cooperative Path
 Layer under Endpoint Control", draft-trammell-plus-

abstract-mech-00 (work in progress), September 2016.

https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-00
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-00
https://datatracker.ietf.org/doc/html/draft-iyengar-minion-protocol-02
https://datatracker.ietf.org/doc/html/draft-trammell-plus-abstract-mech-00
https://datatracker.ietf.org/doc/html/draft-trammell-plus-abstract-mech-00

Trammell, et al. Expires April 30, 2017 [Page 15]

Internet-Draft Post Sockets October 2016

 [I-D.trammell-plus-statefulness]
 Kuehlewind, M., Trammell, B., and J. Hildebrand,
 "Transport-Independent Path Layer State Management",

draft-trammell-plus-statefulness-00 (work in progress),
 October 2016.

 [MinimaLT]
 Petullo, W., Zhang, X., Solworth, J., Bernstein, D., and
 T. Lange, "MinimaLT, Minimal-latency Networking Through
 Better Security", May 2013.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <http://www.rfc-editor.org/info/rfc7258>.

Authors' Addresses

 Brian Trammell
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 United Kingdom

 Email: csp@cperkins.net

https://datatracker.ietf.org/doc/html/draft-trammell-plus-statefulness-00
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc4960
http://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc6824
http://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
http://www.rfc-editor.org/info/rfc7258

Trammell, et al. Expires April 30, 2017 [Page 16]

Internet-Draft Post Sockets October 2016

 Tommy Pauly
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

 Mirja Kuehlewind
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

Trammell, et al. Expires April 30, 2017 [Page 17]

