
Network Working Group B. Trammell
Internet-Draft C. Fehlmann
Intended status: Experimental ETH Zurich
Expires: August 2, 2019 January 29, 2019

RAINS (Another Internet Naming Service) Protocol Specification
draft-trammell-rains-protocol-05

Abstract

 This document defines an alternate protocol for Internet name
 resolution, designed as a prototype to facilitate conversation about
 the evolution or replacement of the Domain Name System protocol. It
 attempts to answer the question: "how would we design DNS knowing
 what we do now," on the background of a set of properties of an
 idealized Internet naming service.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 2, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Trammell & Fehlmann Expires August 2, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft RAINS January 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. About This Document 5

2. Terminology . 6
3. An Ideal Internet Naming Service 7
3.1. Interfaces . 8
3.2. Properties . 9
3.2.1. Meaningfulness 9
3.2.2. Distinguishability 9
3.2.3. Minimal Structure 9
3.2.4. Federation of Authority 9
3.2.5. Uniqueness of Authority 10
3.2.6. Transparency of Authority 10
3.2.7. Revocability of Authority 10
3.2.8. Consensus on Root of Authority 10
3.2.9. Authenticity of Delegation 11
3.2.10. Authenticity of Response 11
3.2.11. Authenticity of Negative Response 11
3.2.12. Dynamic Consistency 11
3.2.13. Explicit Inconsistency 12
3.2.14. Global Invariance 12
3.2.15. Availability . 12
3.2.16. Lookup Latency 13
3.2.17. Bandwidth Efficiency 13
3.2.18. Query Linkability 13
3.2.19. Explicit Tradeoff 13
3.2.20. Trust in Infrastructure 14

3.3. Observations . 14
 3.3.1. Delegation and redirection are separate operations . 14
 3.3.2. Unicode alone may not be sufficient for
 distinguishable names 14
 3.3.3. Implicit inconsistency makes global invariance
 challenging to verify 15

4. RAINS Protocol Architecture 15
5. Information and Data Model 16
5.1. Messages . 18
5.1.1. Message Section structure 19

5.2. Assertions . 20
5.2.1. Singular Assertions 21
5.2.2. Shards . 22
5.2.3. Zones . 24
5.2.4. P-Shards . 24
5.2.5. Dynamic Assertion Validity 26
5.2.6. Semantic of nonexistence proofs 27

Trammell & Fehlmann Expires August 2, 2019 [Page 2]

Internet-Draft RAINS January 2019

5.2.7. Context in Assertions 27
5.2.8. Zone-Reflexive Singular Assertions 28
5.2.9. Address Assertions 28

5.3. Object Types and Encodings 29
5.3.1. Name Alias . 31
5.3.2. IPv6 Address . 31
5.3.3. IPv4 Address . 31
5.3.4. Redirection . 31
5.3.5. Delegation . 31
5.3.6. Nameset . 32
5.3.7. Certificate Information 33
5.3.8. Service Information 35
5.3.9. Registrar Information 35
5.3.10. Registrant Information 35
5.3.11. Infrastructure Key 36
5.3.12. External Key . 36
5.3.13. Next Delegation Public Key 36

5.4. Hash Functions . 36
5.5. Queries . 37
5.5.1. Query Options . 39
5.5.2. Confirmation Queries 40
5.5.3. Context in Queries 40
5.5.4. Address Queries 41

5.6. Notifications . 42
5.7. Signatures . 43
5.7.1. Canonicalization 45
5.7.2. EdDSA signature and public key format 46

5.8. Tokens . 47
5.9. Capabilities . 48

6. RAINS Protocol . 49
6.1. Transport Bindings 49
6.1.1. TLS over TCP . 49
6.1.2. Heartbeat Messages 50

6.2. Protocol Dynamics . 50
6.2.1. Message Processing 50
6.2.2. Message Transmission 54

6.3. Client Protocol . 55
6.4. Publication Protocol 55
6.5. Enforcing Assertion Consistency 55

7. Operational Considerations 56
7.1. Discovering RAINS servers 57
7.2. Bootstrapping RAINS Services 57
7.3. Cooperative Delegation Distribution 57
7.4. Assertion Lifetime Management 58
7.5. Secret Key Management 58
7.6. Public Key Management 58
7.6.1. Key Phase and Key Rotation 59
7.6.2. Next Key Assertions 59

Trammell & Fehlmann Expires August 2, 2019 [Page 3]

Internet-Draft RAINS January 2019

8. Experimental Design and Evaluation 60
9. Security Considerations 60
9.1. Integrity and Confidentiality Protection 60

10. IANA Considerations . 61
11. Acknowledgments . 61
12. References . 61
12.1. Normative References 61
12.2. Informative References 63

 Authors' Addresses . 65

1. Introduction

 This document defines an experimental protocol for providing Internet
 name resolution services, as a replacement for the Domain Name System
 (DNS), called RAINS (a recursive acronym expanding to RAINS, Another
 Internet Naming Service). It is designed as a prototype to
 facilitate conversation about the evolution or replacement of the
 Domain Name System protocol, and was developed as a name resolution
 system for the SCION ("Scalability, Control, and Isolation on Next-
 Generation Networks") future Internet architecture [SCION]. It
 attempts to answer the question: "how would we design the DNS knowing
 what we do now," on the background of the properties of an ideal
 naming service defined in Section 3.

 Its architecture Section 4 is largely compatible with DNS: names in
 RAINS are organized into zones, associated with authorities, and
 parts of zones can be delegated to subordinate authorities, just as
 in DNS; RAINS names follow many of the same conventions as DNS names
 (with the exception that RAINS is Unicode native, and mandates UTF-8
 encoding); and RAINS servers provide services broadly equivalent to
 recursive, caching, and authoritative DNS servers.

 However, its design does take several radical departures from DNS as
 presently defined and implemented:

 o Its information model and data model are separately defined from
 the protocol, allowing for more natural layering of RAINS messages
 atop other session and presentation layer protocols than, for
 example, DNS over HTTPS [RFC8484].

 o Delegation from a superordinate zone to a subordinate zone is done
 solely with cryptography: a superordinate defines the key(s),
 created by the subordinate, that are valid for signing assertions
 in the subordinate during a particular time interval. Assertions
 about names can therefore safely be served from any
 infrastructure.

https://datatracker.ietf.org/doc/html/rfc8484

Trammell & Fehlmann Expires August 2, 2019 [Page 4]

Internet-Draft RAINS January 2019

 o All time references in RAINS are absolute: instead of a time to
 live, each assertion's temporal validity is defined by the
 temporal validity of the signature(s) on it.

 o All assertions have validity within a specific context. A context
 is essentially a namespace owned by some authority. The global
 context, analogous to the root and everything under it in DNS, is
 a special case of context whose authority is the root itself.
 Other contexts can be created by any authority under the global
 context; context is implemented through the rules for chaining
 signatures to verify validity of an assertion. The use of context
 explicitly separates global usage of RAINS from local usage
 thereof, and allows other application-specific naming constraints
 to be bound to names; see Section 5.2.7. Queries are valid in one
 or more contexts, with specific rules for determining which
 assertions answer which queries; see Section 5.5.3.

 o There is explicit information about registrars and registrants
 available in the naming system at runtime: in other words, RAINS
 integrates parts of the functionality of WHOIS [RFC3912] and RDAP
 [RFC7482], allowing inline access to registry and registrar
 information together with naming queries; see Section 5.3.9 and

Section 5.3.10.

 o Sets of valid characters and rules for valid names are defined on
 a per-zone basis, and can be verified at runtime; see

Section 5.3.6.

 o RAINS provides separate namespaces for reverse lookup and a
 dedicated data type for assertions about addresses, as opposed to
 rooting reverse lookup in the .arpa top-level domain; see

Section 5.2.9.

 Instead of using a custom binary framing as DNS, RAINS uses Concise
 Binary Object Representation (CBOR) [RFC7049], partially in an effort
 to make implementations easier to verify and less likely to contain
 potentially dangerous parser bugs [PARSER-BUGS]. As with DNS, CBOR
 messages can be carried atop any number of substrate protocols.
 RAINS is presently defined to use TLS over persistent TCP connections
 (see Section 6). However, the information model was defined to allow
 the easy defnition of alternate presentations in the future.

1.1. About This Document

 The source of this document is available in the repository
https://github.com/britram/rains-prototype, and a rendered working

 copy is available at https://britram.github.io/rains-prototype. Open

https://datatracker.ietf.org/doc/html/rfc3912
https://datatracker.ietf.org/doc/html/rfc7482
https://datatracker.ietf.org/doc/html/rfc7049
https://github.com/britram/rains-prototype
https://britram.github.io/rains-prototype

Trammell & Fehlmann Expires August 2, 2019 [Page 5]

Internet-Draft RAINS January 2019

 issues can be seen and discussed at https://github.com/britram/rains-
prototype/issues.

2. Terminology

 The terms MUST, MUST NOT, SHOULD, SHOULD NOT, and MAY, when they
 appear in all-capitals, are to be interpreted as defined in
 [RFC2119].

 In addition, the following terms are used in this document as
 defined:

 o Subject: A name or address about which Assertions can be made.

 o Object: A type/value pair of information about a name within an
 Assertion.

 o Assertion: A signed statement about the existence or nonexistence
 of a mapping from a Subject name and Context to an Object at a
 given point in time. It is either a Singular Assertion, Shard, or
 Zone.

 o Singular Assertion: A mapping between a Subject and one or several
 Objects, signed by the Authority for the namespace containing that
 Subject. See Section 5.2.

 o Authority: An entity that has the right to determine which
 Assertions exist within its Zone

 o Delegation: An Assertion proving that an Authority has given the
 right to make Assertions about names within the part of a
 namespace identified by a Subject to a subordinate Authority.
 This subordinate Authority holds a secret key which can generate
 signatures verifiable using a public key associated with a
 delegation to the Zone.

 o Zone: A portion of a namespace rooted at a given point in the
 namespace hierarchy. A Zone contains all the Assertions about
 Subjects tha exist within its part of the namespace.

 o Address Assertion: A mapping between a Subject representing an
 address or address prefix, signed by the Authority for the prefix
 containing the Subject. See Section 5.2.9.

 o Query: An expression of interest in certain types of objects
 pertaining to a Subject name in one or more contexts. See

Section 5.5.

https://github.com/britram/rains-prototype/issues
https://github.com/britram/rains-prototype/issues
https://datatracker.ietf.org/doc/html/rfc2119

Trammell & Fehlmann Expires August 2, 2019 [Page 6]

Internet-Draft RAINS January 2019

 o Context: Additional information about the scope in which an
 Assertion or Query is valid. See Section 5.2.7 and Section 5.5.3.

 o Shard: A group of assertions common to a zone and valid at a given
 point in time, scoped to a lexicographic range of Subject names
 within the Zone, for purposes of proving nonexistence of an
 Assertion. Shards may be encoded to provide either absolute proof
 or probabilistic assurance of nonexistence. See Section 5.2.2 and

Section 5.2.4.

 o RAINS Message: Unit of exchange in the RAINS protocol, containing
 Assertions, Queries, and/or Notifications. See Section 5.1.

 o Notification: A RAINS-internal message section carrying
 information about the operation of the protocol itself. See

Section 5.6.

 o Authority Service: A service provided by a RAINS Server for
 publishing Assertions by an Authority. See Section 4.

 o Query Service: A service provided by a RAINS Server for answering
 Queries on behalf of a RAINS Client. See Section 4.

 o Intermediary Service: A service provided by a RAINS Server for
 answering Queries and providing temporary storage for Assertions
 on behalf of other RAINS Servers. See Section 4.

 o RAINS Server: A server that supports the RAINS Protocol, and
 provides one or more services on behalf of other RAINS Servers
 and/or RAINS Clients. See Section 4.

 o RAINS Client: A client that uses the Query Service of one or more
 RAINS Servers to retrieve Assertions on behalf of applications
 that e.g. wish to connect to named services in the Internet.

3. An Ideal Internet Naming Service

 We begin by returning to first principles, to determine the
 dimensions of the design space of desirable properties of an
 Internet-scale naming service. We recognize that the choices made in
 the evolution of the DNS since its initial design are only one path
 through the design space of Internet-scale naming services. Many
 other naming services have been proposed, though none has been
 remotely as successful for general-purpose use in the Internet. The
 following subsections outline the space more generally. It is, of
 course, informed by decades of experience with the DNS, but
 identifies a few key gaps which we then aim to address directly with
 the design of RAINS.

Trammell & Fehlmann Expires August 2, 2019 [Page 7]

Internet-Draft RAINS January 2019

Section 3.1 defines the set of operations a naming service should
 provide for queriers and authorities, Section 3.2 defines a set of
 desirable properties of the provision of this service, and

Section 3.3 examines implications of these properties.

3.1. Interfaces

 At its core, a naming service must provide a few basic functions for
 queriers that associate the subject of a query with information about
 that subject. The naming service provides the information necessary
 for a querier to establish a connection with some other entity in the
 Internet, given a name identifying it.

 o Name to Address: given a Subject name, the naming service returns
 a set of addresses associated with that name, if such an
 association exists. The association is determined by the
 authority for that name. Names may be associated with addresses
 in one or more address families (e.g. IP version 4, IP version
 6). A querier may specify which address families it is interested
 in. All address families are treated equally by the naming
 system. This mapping is implemented in the DNS protocol via the A
 and AAAA RRTYPES.

 o Address to Name: given an Subject address, the naming service
 returns a set of names associated with that address, if such an
 association exists. The association is determined by the
 authority for that address. This mapping is implemented in the
 DNS protocol via the PTR RRTYPE. IPv4 mappings exist within the
 in-addr.arpa. zone, and IPv6 mappings in the ip6.arpa. zone.
 These mappings imply a limited set of boundaries on which
 delegations may be made (octet boundaries for IPv4, nybble
 boundaries for IPv6).

 o Name to Name: given a Subject name, the naming service returns a
 set of object names associated with that name, if such an
 association exists. The association is determined by the
 authority for the subject name. This mapping is implemented in
 the DNS protocol via the CNAME RRTYPE. CNAME does not allow the
 association of multiple object names with a single subject, and
 CNAME may not combine with other RRTYPEs (e.g. NS, MX)
 arbitrarily.

 o Name to Auxiliary Information: given a Subject name, the naming
 service returns other auxiliary information associated with that
 name that is useful for establishing communication over the
 Internet with the entities associated with that name. Most of the
 other RRTYPES in the DNS protocol implement these sort of
 mappings.

Trammell & Fehlmann Expires August 2, 2019 [Page 8]

Internet-Draft RAINS January 2019

 A naming service also provides other interfaces besides the query
 interface. The interface it presents to an Authority allows updates
 to the set of Assertions and Delegations in that Authority's
 namespace. Updates consist of additions of, changes to, and
 deletions of Assertions and Delegations. In the present DNS, this
 interface consists of the publication of a new zone file with an
 incremented version number, but other authority interfaces are
 possible.

3.2. Properties

 The following properties are desirable in a naming service providing
 the functions in Section 3.1.

3.2.1. Meaningfulness

 A naming service must provide the ability to name objects that its
 human users find more meaningful than the objects themselves.

3.2.2. Distinguishability

 A naming service must make it possible to guarantee that two
 different names are easily distinguishable from each other by its
 human users.

3.2.3. Minimal Structure

 A naming service should impose as little structure on the names it
 supports as practical in order to be universally applicable. Naming
 services that impose a given organizational structure on names will
 not translate well to societies where that organizational structure
 is not prevalent.

3.2.4. Federation of Authority

 An Authority can delegate some part of its namespace to some other
 subordinate Authority. This property allows the naming service to
 scale to the size of the Internet, and leads to a tree-structured
 namespace, where each Delegation is itself identified with a Subject
 at a given level in the namespace.

 In the DNS protocol, this federation of authority is implemented
 through delegation using the NS RRTYPE, redirecting queries to
 subordinate authorities recursively to the final authority. When
 DNSSEC is used, the DS RRTYPE is used to verify this delegation.

Trammell & Fehlmann Expires August 2, 2019 [Page 9]

Internet-Draft RAINS January 2019

3.2.5. Uniqueness of Authority

 For a given Subject, there is a single Authority that has the right
 to determine the Assertions and/or Delegations for that subject. The
 unitary authority for the root of the namespace tree may be special,
 though; see Section 3.2.8.

 In the DNS protocol as deployed, unitary authority is approximated by
 the entity identified by the SOA RRTYPE. The existence of
 registrars, which use the Extensible Provisioning Protocol (EPP)
 [RFC5730] to modify entries in the zones under the authority of a
 top-level domain registry, complicates this somewhat.

3.2.6. Transparency of Authority

 A querier can determine the identity of the Authority for a given
 Assertion. An Authority cannot delegate its rights or
 responsibilities with respect to a subject without that Delegation
 being exposed to the querier.

 In DNS, the authoritative name server(s) to which a query is
 delegated via the NS RRTYPE are known. However, we note that in the
 case of authorities which delegate the ability to write to the zone
 to other entities (i.e., the registry-registrar relationship), the
 current DNS provides no facility for a querier to understand on whose
 behalf an authoritative assertion is being made; this information is
 instead available via WHOIS. To our knowledge, no present DNS name
 servers use WHOIS information retrieved out of band to make policy
 decisions.

3.2.7. Revocability of Authority

 An ideal naming service allows the revocation and replacement of an
 authority at any level in the namespace, and supports the revocation
 and replacement of authorities with minimal operational disruption.

 The current DNS allows the replacement of any level of delegation
 except the root through changes to the appropriate NS and DS records.
 Authority revocation in this case is as consistent as any other
 change to the DNS.

3.2.8. Consensus on Root of Authority

 Authority at the top level of the namespace tree is delegated
 according to a process such that there is universal agreement
 throughout the Internet as to the subordinates of those Delegations.

https://datatracker.ietf.org/doc/html/rfc5730

Trammell & Fehlmann Expires August 2, 2019 [Page 10]

Internet-Draft RAINS January 2019

3.2.9. Authenticity of Delegation

 Given a Delegation from a superordinate to a subordinate Authority, a
 querier can verify that the superordinate Authority authorized the
 Delegation.

 Authenticity of delegation in DNS is provided by DNSSEC [RFC4033].

3.2.10. Authenticity of Response

 The authenticity of every answer is verifiable by the querier. The
 querier can confirm that the Assertion returned in the answer is
 correct according to the Authority for the Subject of the query.

 Authenticity of response in DNS is provided by DNSSEC.

3.2.11. Authenticity of Negative Response

 Some queries will yield no answer, because no such Assertion exists.
 In this case, the querier can confirm that the Authority for the
 Subject of the query asserts this lack of Assertion.

 Authenticity of negative response in DNS is provided by DNSSEC.

3.2.12. Dynamic Consistency

 Consistency in a naming service is important. The naming service
 should provide the most globally consistent view possible of the set
 of Assertions that exist at a given point in time, within the limits
 of latency and bandwidth tradeoffs.

 When an Authority makes changes to an Assertion, every query for a
 given Subject returns either the new valid result or a previously
 valid result, with known and/or predictable bounds on "how
 previously". Given that additions of, changes to, and deletions of
 Assertions may have different operational causes, different bounds
 may apply to different operations.

 The time-to-live (TTL) on a resource record in DNS provides a
 mechanism for expiring old resource records. We note that this
 mechanism makes additions to the system propagate faster than changes
 and deletions, which may not be a desirable property. However, as no
 context information is explicitly available in DNS, the DNS cannot be
 said to be dynamically consistent, as different implicitly
 inconsistent views of an Assertion may be persistent.

https://datatracker.ietf.org/doc/html/rfc4033

Trammell & Fehlmann Expires August 2, 2019 [Page 11]

Internet-Draft RAINS January 2019

3.2.13. Explicit Inconsistency

 Some techniques require giving different answers to the same query,
 even in the absence of changes: the stable state of the namespace is
 not globally consistent. This inconsistency should be explicit: a
 querier can know that an answer might be dependent on its identity,
 network location, or other factors.

 One example of such desirable inconsistency is the common practice of
 "split horizon" DNS, where an organization makes internal names
 available on its own network, but only the names of externally-
 visible subjects available to the Internet at large.

 Another is the common practice of DNS-based content distribution, in
 which an authoritative name server gives different answers for the
 same query depending on the network location from which the query was
 received, or depending on the subnet in which the end client
 originating a query is located (via the EDNS Client Subnet extension
 {RFC7871}}). Such inconsistency based on client identity or network
 address may increase query linkability (see Section 3.2.18).

 These forms of inconsistency are implicit, not explicit, in the
 current DNS. We note that while DNS can be deployed to allow
 essentially unlimited kinds of inconsistency in its responses, there
 is no protocol support for a query to express the kind of consistency
 it desires, or for a response to explicitly note that it is
 inconsistent. [RFC7871] does allow a querier to note that it would
 specifically like the view of the state of the namespace offered to a
 certain part of the network, and as such can be seen as inchoate
 support for this property.

3.2.14. Global Invariance

 An Assertion which is not intended to be explicitly inconsistent by
 the Authority issuing it must return the same result for every Query
 for it, regardless of the identity or location of the querier.

 This property is not provided by DNS, as it depends on the robust
 support of the Explicit Inconsistency property above. Examples of
 global invariance failures include geofencing and DNS-based
 censorship ordered by a local jurisdiction.

3.2.15. Availability

 The naming service as a whole is resilient to failures of individual
 nodes providing the naming service, as well as to failures of links
 among them. Intentional prevention by an adversary of a successful
 answer to a query should be as hard as practical.

https://datatracker.ietf.org/doc/html/rfc7871
https://datatracker.ietf.org/doc/html/rfc7871

Trammell & Fehlmann Expires August 2, 2019 [Page 12]

Internet-Draft RAINS January 2019

 The DNS protocol was designed to be highly available through the use
 of secondary name servers. Operational practices (e.g. anycast
 deployment) also increase the availability of DNS as currently
 deployed.

3.2.16. Lookup Latency

 The time for the entire process of looking up a name and other
 necessary associated data from the point of view of the querier,
 amortized over all queries for all connections, should not
 significantly impact connection setup or resumption latency.

3.2.17. Bandwidth Efficiency

 The bandwidth cost for looking up a name and other associated data
 necessary for establishing communication with a given Subject, from
 the point of view of the querier, amortized over all queries for all
 connections, should not significantly impact total bandwidth demand
 for an application.

3.2.18. Query Linkability

 It should be costly for an adversary to monitor the infrastructure in
 order to link specific queries to specific queriers.

 DNS over TLS [RFC7858] and DNS over DTLS [RFC8094] provide this
 property between a querier and a recursive resolver; mixing by the
 recursive helps with mitigating upstream linkability.

3.2.19. Explicit Tradeoff

 A querier should be able to indicate the desire for a benefit with
 respect to one performance property by accepting a tradeoff in
 another, including:

 o Reduced latency for reduced dynamic consistency

 o Increased dynamic consistency for increased latency

 o Reduced request linkability for increased latency and/or reduced
 dynamic consistency

 o Reduced aggregate bandwidth use for increased latency and/or
 reduced dynamic consistency

 There is no support for explicit tradeoffs in performance properties
 available to clients in the present DNS.

https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc8094

Trammell & Fehlmann Expires August 2, 2019 [Page 13]

Internet-Draft RAINS January 2019

3.2.20. Trust in Infrastructure

 A querier should not need to trust any entity other than the
 authority as to the correctness of association information provided
 by the naming service. Specifically, the querier should not need to
 trust any intermediary of infrastructure between itself and the
 authority, other than that under its own control.

 DNS provides this property with DNSSEC. However, the lack of
 mandatory DNSSEC, and the lack of a viable transition strategy to
 mandatory DNSSEC (see [I-D.trammell-optional-security-not]), means
 that trust in infrastructure will remain necessary for DNS even with
 large scale DNSSEC deployment.

3.3. Observations

 On a cursory examination, many of the properties of our ideal name
 service can be met, or could be met, by the present DNS protocol or
 extensions thereto. We note that there are further possibilities for
 the future evolution of naming services meeting these properties.
 This section contains random observations that might inform future
 work.

3.3.1. Delegation and redirection are separate operations

 Any system which can provide the authenticity properties enumerated
 above is freed from one of the design characteristics of the present
 domain name system: the requirement to bind a zone of authority to a
 specific set of authoritative servers. Since the authenticity of a
 delegation must be protected by a chain of signatures back to the
 root authority, the location within the infrastructure where an
 authoritative mapping "lives" is no longer bound to a specific name
 server. While the present design of DNS does have its own
 scalability advantages, this implication allows a much larger design
 space to be explored for future name service work, as a Delegation
 need not always be implemented via redirection to another name
 server.

3.3.2. Unicode alone may not be sufficient for distinguishable names

 Allowing names to be encoded in Unicode goes a long way toward
 meeting the meaningfulness property (see Section 3.2.1) for the
 majority of speakers of human languages. However, as noted by the
 Internet Architecture Board (see [IAB-UNICODE7]) and discussed at the
 Locale-free Unicode Identifiers (LUCID) BoF at IETF 92 in Dallas in
 March 2015 (see [LUCID]), it is not in the general case sufficient
 for distinguishability (see Section 3.2.2). An ideal naming service
 may therefore have to supplement Unicode by providing runtime support

Trammell & Fehlmann Expires August 2, 2019 [Page 14]

Internet-Draft RAINS January 2019

 for disambiguation of queries and assertions where the results may be
 indistinguishable.

3.3.3. Implicit inconsistency makes global invariance challenging to
 verify

 DNS does not provide a generalized form of explicit inconsistency, so
 efforts to verify global invariance, or rather, to discover
 Assertions for which global invariance does not hold, are necessarily
 effort-intensive and dynamic. For example, the Open Observatory of
 Network Interference performs DNS consistency checking from multiple
 volunteer vantage points for a set of targeted (i.e., likely to be
 globally variant) domain names; see

https://ooni.torproject.org/nettest/dns-consistency/.

4. RAINS Protocol Architecture

 The RAINS architecture is simple, and vaguely resembles the
 architecture of DNS. A RAINS Server is an entity that provides
 transient and/or permanent storage for assertions about names and
 addresses, and a lookup function that finds assertions for a given
 query about a name or address, either by searching local storage or
 by delegating to another RAINS server. RAINS servers can take on any
 or all of three roles:

 o authority service, acting on behalf of an authority to ensure
 properly signed assertions are made available to the system
 (equivalent to an authoritative server in DNS);

 o query service, acting on behalf of a client to answer queries with
 relevant assertions (equivalent to a recursive resolver in DNS),
 and to validate assertions on the client's behalf; and/or

 o intermediary service, acting on behalf of neither but providing
 storage and lookup for assertions with certain properties for
 query and authority servers (partially replacing, but not really
 equivalent to, caching resolvers in DNS).

 RAINS Servers use the RAINS Protocol defined in this document to
 exchange queries and assertions.

 From the point of view of an authority (an entity owning some part of
 the namespace by virtue of holding private keys associated with a
 zone delegation), the RAINS protocol is used to publish signed
 assertions toward one or more RAINS servers configured to provide
 authority service for their domains. Since the signatures on these
 assertions expire periodically, the authority must publish assertions
 continuously toward the authority services. In order to provide a

https://ooni.torproject.org/nettest/dns-consistency/

Trammell & Fehlmann Expires August 2, 2019 [Page 15]

Internet-Draft RAINS January 2019

 DNS-like operational experience, a RAINS server providing authority
 service may be colocated with the infrastructure for publishing
 assertions; however, the architecture of the protocol means these
 functions need not be colocated.

 Clients are configured, or use some out-of-band discovery mechanism,
 to contact one or more query services using the RAINS protocol, and
 may trust those services to verify assertion signatures on the
 client's behalf.

 In this way, the same protocol is used between servers, from client
 to server, and from publisher to server, with minor differences among
 the interactions implemented as profiles. See Section 6 for details

 The protocol itself is designed in terms of its information and data
 model, detailed in Section 5. Since all RAINS information is carried
 in messages containing assertions, and an assertion is not valid
 unless it is signed, the validity of an assertion is separated from
 whence the assertion was received. This means the RAINS protocol
 itself is merely a means for moving RAINS assertions around, and
 moving RAINS queries to places where they can be answered. This
 document defines bindings for carrying RAINS messages over TLS over
 TCP, but bindings to other transports (e.g. QUIC [QUIC]) or session
 layers (e.g. HTTP [RFC7540]) would be trivial to design, and the
 protocol provides a capability mechanism for discovering alternate
 transports.

5. Information and Data Model

 The RAINS Protocol is based on an information model containing three
 primary kinds of objects: Assertions, Queries, and Notifications. An
 Assertion contains some information about a name or address, and a
 Query contains a request for information about a name or address.
 Queries are answered with Assertions. Notifications provide
 information about the operation of the protocol itself. The protocol
 exchanges RAINS Messages, which act as envelopes containing
 Assertions, Queries, and Notifications. RAINS Messages also provide
 for capabilities-based versioning of the protocol, and for
 recognition of a chunk of CBOR-encoded binary data at rest to be
 recognized as a RAINS message.

 The RAINS data model is a relatively straightforward mapping of the
 information model to the Concise Binary Object Representation (CBOR)
 [RFC7049], such that Assertions are split into four subtypes
 depending on their scope and purpose:

 o Singular Assertions and Zones for a positive proof of the
 existence of an association between a name and an Object;

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7049

Trammell & Fehlmann Expires August 2, 2019 [Page 16]

Internet-Draft RAINS January 2019

 o Shards and P-Shards for negative proof thereof.

 Messages, Singular Assertions, Shards, P-Shards, Zones, Queries, and
 Notifications are each represented as a CBOR map of integer keys to
 values, which allows each of these types to be extended in the
 future, as well as the addition of non-standard, application-specific
 information to RAINS messages and data items. A common registry of
 map keys is given in Table 1. RAINS implementations MUST ignore any
 data objects associated with map keys they do not understand.
 Integer map keys in the range -22 to +23 are reserved for the use of
 future versions or extensions to the RAINS protocol, due to the
 efficiency of representation of these values in CBOR.

 Message and Assertion contents, signatures and object values are
 implemented as type- prefixed CBOR arrays with fixed meanings of each
 array element; the structure of these lower-level elements can
 therefore not be extended. Message section types are given in
 Table 2, object types in Table 4, and signature algorithms in
 Table 10.

 +------+-----------------+--+
 | Code | Name | Description |
 +------+-----------------+--+
0	signatures	Signatures on a message or section
1	capabilities	Capabilities of server sending message
2	token	Token for referring to a data item
3	subject-name	Subject name in an Assertion, Shard,
		P-Shard or Zone
4	subject-zone	Zone name in an Assertion, Shard,
		P-Shard or Zone
5	subject-addr	Subject address in address assertion
6	context	Context of an Assertion, Shard, P-Shard,
		Zone or Query
7	objects	Objects of an Assertion
8	query-name	Fully qualified name for a Query
9	reserved	Reserved for future use
10	query-types	Acceptable object types for a Query

Trammell & Fehlmann Expires August 2, 2019 [Page 17]

Internet-Draft RAINS January 2019

11	range	Lexical range of Assertions in Shard or
		P-Shard
12	query-expires	Absolute timestamp for query expiration
13	query-opts	Set of query options requested
14	current-time	Querier's latest assertion timestamp for
		a query
15	reserved	Reserved for future use
16	reserved	Reserved for future use
17	query-keyphases	All requested key phases of a Query
19	reserved	Reserved for future use
20	assertions	Singular Assertion content of a Shard or
		Zone
21	note-type	Notification type
22	note-data	Additional notification data
23	content	Content of a Message or a P-Shard
 +------+-----------------+--+

 Table 1: CBOR Map Keys used in RAINS

 The information model is designed to be representation-independent,
 and can be rendered using alternate structured-data representations
 that support the concepts of maps and arrays. For example, YAML or
 JSON could be used to represent RAINS messages and data structures
 for debugging purposes. However, signatures over messages and
 assertions need a single canonical representation of the object to be
 signed as a bitstream. For RAINS, this is the CBOR representation
 canonicalized as in Section 5.7.1; therefore alternate
 representations are always secondary to the CBOR data model.

 The following subsections describe the information and data model of
 a RAINS message from the top down.

5.1. Messages

 A Message is a self-contained unit of exchange in the RAINS protocol.
 Messages have some content (the Assertions, Queries, and/or
 Notifications carried by the Message) tagged with a token (see

Trammell & Fehlmann Expires August 2, 2019 [Page 18]

Internet-Draft RAINS January 2019

Section 5.8). They may also carry information about peer
 capabilities, and an optional signature.

 More concretely, a Message is represented as a CBOR map with the CBOR
 tag value 15309736, which identifies the map as a RAINS message.
 This map MUST contain a token key (2) and a content key (23), and MAY
 contain a capabilities key (1) a signatures key (0).

 The value of the content key is an array of zero or more Message
 Sections, as defined in Section 5.1.1

 The value of the token key is an opaque 16-byte octet array used to
 link Messages, Queries, and Notifications; see Section 5.8 for
 details.

 The value of the signatures key, when present, is an array of
 Signatures over the entire Message, generated as in Section 5.7, and
 to be verified against an infrastructure key (see Section 5.3.11) for
 the RAINS Server originating the message.

 The value of the capabilities key, when present, is an array of
 Capabilities or the hash thereof. The first Message sent from one
 peer to another MUST contain the capabilities key. The capabilities
 mechanism is described in Section 5.9.

5.1.1. Message Section structure

 Each Message Section in the Message's content value is represented as
 a two-element array. The first element in the array is the message
 section type, encoded as an integer as in Table 2. The second
 element in the array is a message section body, a CBOR map defined as
 in the subsections Section 5.2, Section 5.5, and Section 5.6

Trammell & Fehlmann Expires August 2, 2019 [Page 19]

Internet-Draft RAINS January 2019

 +------+--------------+--+
 | Code | Name | Description |
 +------+--------------+--+
 | 1 | assertion | Singular Assertion (see Section 5.2.1) |
 | | | |
 | -1 | revassertion | Address Assertion (see Section 5.2.9) |
 | | | |
 | 2 | shard | Shard (see Section 5.2.2) |
 | | | |
 | 3 | p-shard | P-Shard (see Section 5.2.4) |
 | | | |
 | 4 | zone | Zone (see Section 5.2.3) |
 | | | |
 | 5 | query | Query (see Section 5.5) |
 | | | |
 | -5 | revquery | Address Query (see Section 5.5.4) |
 | | | |
 | 23 | notification | Notification (see Section 5.6) |
 +------+--------------+--+

 Table 2: Message Section Type Codes

5.2. Assertions

 Information about names in RAINS is carried by Assertions. An
 Assertion is a statement about a mapping from a Subject name (or in
 the case of an Address Assertion, a subject prefix or address) to one
 or several Object values, signed by some Authority for the namespace
 containing the Assertion, with a temporal validity determined by the
 lifetime of the signature(s) on the Assertion.

 The subject of an Assertion is identified by a name in three parts:

 o the subject zone name, identifying the namespace within which the
 subject is contained;

 o the subject name, identifying the name of the subject within that
 zone; and

 o the subject context, as in Section 5.2.7, identifying the context
 for purposes of explicit inconsistency.

 The types of Objects that can be associated with a Subject are
 described in Section 5.3.

 There are four kinds of Assertions, distinguished by their scope (how
 many Subjects are covered by a single Assertion) and their utility
 (whether the Assertion can be used for positive proof of a Subject-

Trammell & Fehlmann Expires August 2, 2019 [Page 20]

Internet-Draft RAINS January 2019

 Object association, for negative proof of the lack of such an
 association, or both):

 o Singular Assertions contain a set of Objects associated with a
 single given subject name in a given zone in a given context. The
 signature on a Singular Assertion can be used to prove the
 existence of an association between the subject name and the
 Objects within the Assertion. Singular Assertions are described
 in detail in Section 5.2.1.

 o Zones contain all Singular Assertions that have the same zone and
 context values. The signature on a Zone can be used to prove both
 the existence of an association between a subject name and an
 Object, as well as the absence of such an association. Zones are
 described in detail in Section 5.2.3. If signed, the Singular
 Assertions within a Zone can also be used on their own, as if they
 were contained within a Message directly; in this case they
 inherit zone and context information from the containing zone.

 o Shards contain Singular Assertions for every Object associated
 with every subject name in a given lexicographic range of subject
 names within a given zone in a given context. The signature on a
 Shard can be used to prove the nonexistence of an Object for a
 subject name within its range. Shards are described in detail in

Section 5.2.2. If a Singular Assertion within a Shard is signed,
 it inherits zone and context information from the containing shard
 and can also be used outside the Shard.

 o P-Shards (or Probabilistic Shards) contain a data structure that
 can be used to demonstrate, within predictable bounds of false-
 negative probability, the nonexistence of an Object for a subject
 name within a lexicographic range of subject names within a given
 zone in a given context. They allow an efficiency-accuracy
 tradeoff for negative proofs. P-Shards are described in detail in

Section 5.2.4

5.2.1. Singular Assertions

 A Singular Assertion contains a set of Objects associated with a
 single given subject name in a given zone in a given context. A
 Singular Assertion with a valid signature can be used as a positive
 answer to a query for a name. It is represented as a CBOR map. The
 keys present in this map depend on whether the Singular Assertion is
 contained in a Message, Shard or Zone.

 Singular Assertions contained directly within a Message's content
 value cannot inherit any values from their containers, and therefore

Trammell & Fehlmann Expires August 2, 2019 [Page 21]

Internet-Draft RAINS January 2019

 MUST contain the signatures (0), subject-name (3), subject-zone (4),
 context (6), and objects (7) keys.

 Singular Assertions within a Shard or Zone can inherit values from
 their containers. A contained Singular Assertion MUST contain the
 subject-name (3), and objects (7) keys. It MAY contain the
 signatures (0) key. The subject-zone (4) and context (6) keys MUST
 NOT be present. They are assumed to have the same value as the
 corresponding values in the containing Shard or Zone for signature
 generation and signature verification purposes; see Section 5.7.

 The value of the signatures (0) key, if present, is an array of one
 or more Signatures as defined in Section 5.7. Signatures on a
 contained Assertion are generated as if the inherited subject-zone
 and context values are present in the Assertion. The signatures on
 the Assertion are to be verified against the appropriate key for the
 Zone containing the Assertion in the given context.

 The value of the subject-name (3) key is a UTF-8 encoded [RFC3629]
 string containing the name of the subject of the assertion. The
 subject name may cover multiple levels of hierarchy, separated by the
 '.' character. The fully-qualified name of an Assertion is obtained
 by joining the subject-name to the subject-zone with a '.' character.
 The subject-name must be valid according to the nameset expression
 for the zone, if any (see Section 5.3.6).

 The value of the subject-zone (4) key, if present, is a UTF-8 encoded
 string containing the name of the zone in which the assertion is made
 and MUST end with '.' (the root zone). If not present, the zone of
 the assertion is inherited from the containing Shard or Zone.

 The value of the context (6) key, if present, is a UTF-8 encoded
 string containing the name of the context in which the assertion is
 valid. Both the authority-part and the context-part MUST end with a
 '.'. If not present, the context of the assertion is inherited from
 the containing Shard or Zone. See Section 5.2.7 for more.

 The value of the objects (7) key is an array of objects, as defined
 in Section 5.3. Note that this array MAY be empty; see

Section 5.2.5.

5.2.2. Shards

 A Shard contains Singular Assertions for every Object within a zone
 in a given context whose subject name falls within a specified
 lexicographic range. A Shard with a valid signature, within which a
 subject name should fall (i.e. appearing within that Shard's range),
 but within which there is no Singular Assertion for the specified

https://datatracker.ietf.org/doc/html/rfc3629

Trammell & Fehlmann Expires August 2, 2019 [Page 22]

Internet-Draft RAINS January 2019

 subject name and Object, can therefore be taken as a proof of
 nonexistence for that subject name and Object. Shards are used
 exclusively for negative proof; the individual signatures on their
 contained Singular Assertions are used for positive proof of the
 existence of an assertion.

 The content of a Shard (in terms of the number of Singular Assertions
 it covers) is chosen by the Authority of the zone for which the Shard
 is valid. There is an inherent tradeoff between the number of
 Singular Assertions within a Shard and the size of the Shard, and
 therefore the size of the Message that must be presented as negative
 proof. P-Shards ("Probabalistic Shards", see Section 5.2.4) allow a
 different tradeoff, gaining space efficiency and coverage for a
 fixed, predictable probability of a false positive (i.e., the
 possibility that the P-Shard cannot be used to prove the nonexistence
 of a subject which does not, in fact, exist).

 A Shard is represented as a CBOR map. Shards MUST contain the
 signatures (0), subject-zone (4), context (6), range (11), and
 assertions (20) keys.

 The value of the signatures (0) key is an array of one or more
 Signatures as defined in Section 5.7. Signatures on the Shard are to
 be verified against the appropriate key for the Shard in the given
 context.

 The value of the subject-zone (4) key is a UTF-8 encoded string
 containing the name of the zone in which the Singular Assertions
 within the Shard are made and MUST end with '.' (the root zone).

 The value of the context (6) key is a UTF-8 encoded string containing
 the name of the context in which the Singular Assertions within the
 Shard are valid. Both the authority-part and the context-part MUST
 end with a '.'.

 The value of the range (11) key is a two element array of strings or
 nulls (subject-name A, subject-name B). A MUST lexicographically
 sort before B. If A is null, the shard begins at the beginning of
 the zone. If B is null, the shard ends at the end of the zone. The
 shard MUST NOT contain any Singular Assertions whose subject names
 are equal to or sort before A, or are equal to or sort after B.

 The value of the assertions (20) key is a CBOR array of Singular
 Assertions as defined in Section 5.2.1. These Singular Assertions
 MUST be sorted (see Section 5.7.1); the set of allowable Singular
 Assertions is restricted by the range, as above.

Trammell & Fehlmann Expires August 2, 2019 [Page 23]

Internet-Draft RAINS January 2019

5.2.3. Zones

 A Zone contains Singular Assertions for every Object associated with
 every subject name within a given zone in a given context. A Zone
 with a valid signature can be used either as a positive answer for a
 query about a name (when its contained Singular Assertions are not
 signed), or as a negative answer to prove that a given Object does
 not exist for a given name.

 Organizing Singular Assertions into Zones allows operators of zones
 with few subject names (e.g., used only for simple web hosting, as is
 the case with many zones in the current Internet naming system) to
 minimize signing and zone management overhead.

 A Zone is represented as a CBOR map. Zones MUST contain the
 signatures (0), subject-zone (4), context (6), and assertions (20)
 keys.

 The value of the signatures (0) key is an array of one or more
 Signatures on the Zone as defined in Section 5.7. Signatures on the
 Zone are to be verified against the appropriate key for the Zone in
 the given context.

 The value of the subject-zone (4) key is a UTF-8 encoded string
 containing the name of the Zone which MUST end with '.' (the root
 zone).

 The value of the context (6) key is a UTF-8 encoded string containing
 the name of the context for which the Zone is valid. Both the
 authority-part and the context-part MUST end with a '.'. See

Section 5.2.7

 The value of the assertions (20) key is a CBOR array of Singular
 Assertions as defined in Section 5.2.1. The CBOR array contains all
 Singular Assertions of this zone and context and they MUST be sorted
 (see Section 5.7.1).

5.2.4. P-Shards

 Shards (Section 5.2.2) can be used as definitive proof of the
 nonexistence of a name within a zone. P-Shards serve the same
 purpose, but offer only a probabilistic guarantee of the nonexistence
 of a name. Specifically, as they are based on Bloom filters, a
 subject name which does not in fact exist may appear in the P-Shard;
 in return for this uncertainty, they offer a much more space-
 efficient way to demonstrate the nonexistence of an Object for a
 subject name within the zone and context than Shards do. There is a
 tradeoff between the size of the bit string storing the Bloom filter,

Trammell & Fehlmann Expires August 2, 2019 [Page 24]

Internet-Draft RAINS January 2019

 the number of names covered by the P-Shard, and the false positive
 error rate. The zone Authority can determine how to weight them.

 A P-Shard is represented as a CBOR map. This map MUST contain the
 signatures (0), subject-zone (4), context (6), and content(23) keys.
 It MAY contain the range(11) key.

 The value of the signatures (0) key is an array of one or more
 Signatures as defined in Section 5.7. The signatures on the P-Shard
 are to be verified against the appropriate key for the Zone for which
 the P-Shard is valid in the given context.

 The value of the subject-zone (4) key is a UTF-8 encoded string
 containing the name of the zone within which the names represented in
 the P-Shard are contained, and MUST end with '.' (the root zone).

 The value of the context (6) key is a UTF-8 encoded string containing
 the name of the context for which the names represented in the
 P-Shard are valid. Both the authority-part and the context-part MUST
 end with a '.'.

 The value of the range (11) key, if present, is a two element array
 of strings or nulls (subject-name A, subject-name B). A MUST
 lexicographically sort before B. If A is null, the P-Shard begins at
 the beginning of the zone. If B is null, the P-Shard ends at the end
 of the zone. The P-Shard MUST NOT be used to check the existence of
 Assertions about subject names equal to or sort before A, or are
 equal to or sort after B. If the range (11) key is not present, the
 P-Shard covers then entire zone.

 The value of the content (23) key is a three-element array. The
 first element identifies the algorithm used for generating the
 bitstring. The second element identifies the hash function in use
 for generating the bitstring. The third element contains the
 bitstring itself, as an octet array. The size of the bitstring must
 be 0 mod 8.

 Table 3 enumerates supported generation algorithms; supported hash
 functions are given in Section 5.4.

Trammell & Fehlmann Expires August 2, 2019 [Page 25]

Internet-Draft RAINS January 2019

 +------+-------------+--------------------------------------+
 | Code | Name | Description |
 +------+-------------+--------------------------------------+
 | 1 | bloom-km-12 | KM-optimized bloom filter with nh=12 |
 | | | |
 | 2 | bloom-km-16 | KM-optimized bloom filter with nh=16 |
 | | | |
 | 3 | bloom-km-20 | KM-optimized bloom filter with nh=20 |
 | | | |
 | 4 | bloom-km-24 | KM-optimized bloom filter with nh=24 |
 +------+-------------+--------------------------------------+

 Table 3: P-shard generation algorithms

 These datastructures generate a bitstring using a Bloom filter and
 the Kirsch-Mitzenmacher optimization [BETTER-BLOOM-FILTER].

 To add a subject-object mapping for a name to a bloom-km structure,
 the mapping is first encoded as a four-element CBOR array. The first
 element is the subject name. The second element is the subject zone.
 The third element is the subject context. The fourth element is the
 type code as in Table 4 in Section 5.3. This encoded object is then
 hashed according to the specified hash algorithm. The hash
 algorithm's output is then split into two parts of equal length x and
 y. To obtain the nh indexes into the bitstring, the following
 equation is used:

 o (x + i*y) mod bsl, where bsl is the bitstring length and i ∈
 [1,nh]

 To add a subject-object mapping, all bits at the calculated indices
 are set to one. To check wether such a mapping exists, all bits at
 the calculated indices are checked, and the mapping is taken to be in
 the filter if all bits are one.

5.2.5. Dynamic Assertion Validity

 For a given {subject, zone, context, type} tuple, multiple Singular
 Assertions can be valid at a given point in time; the union of the
 object values of all of these Singular Assertions is considered to be
 the set of valid values for that type at that point in time.

 A Singular Assertion's objects array MAY be empty. If the only
 assertion valid for a given {subject, zone, context} tuple at a given
 point in time is such a Singular Assertion, this is to be interpreted
 as a statement that a name exists at that point in time, but that it
 is not mapped to any object.

Trammell & Fehlmann Expires August 2, 2019 [Page 26]

Internet-Draft RAINS January 2019

5.2.6. Semantic of nonexistence proofs

 Shards, P-Shards and Zones can all be used to prove nonexistence
 during their validity. However, real naming systems are dynamic: an
 Assertion might be created, altered, expired or revoked during the
 validity period of a Shard, P-Shard or Zone, leading to an
 inconsistency. Thus, a section proving nonexistence only captures
 the state at the point in time when it was signed.

5.2.7. Context in Assertions

 Assertion contexts are used to provide explicit inconsistency, while
 allowing Assertions themselves to be globally valid regardless of the
 query to which they are given in reply. Explicit inconsistency is
 the simultaneous validity of multiple sets of Assertions for a single
 subject name at a given point in time. Explicit inconsistency is
 implemented by using the context to select an alternate chain of
 signatures to use to verify the validity of an Assertion, as follows:

 o The global context is identified by the special context name '.'.
 Assertions in the global context are signed by the Authority for
 the subject zone. For example, assertions about the name
 'ethz.ch.' in the global context are only valid if signed by the
 relevant Authority which is either 'ethz.ch.', 'ch.', or '.'
 depending on the value of the subject zone of the Assertion.

 o A local context is associated with a given Authority. The local
 context's name is divided into an authority-part and a context-
 part by a context marker ('cx-'). The authority-part directly
 identifies the Authority whose key was used to sign the Assertion;
 Assertions within a local context are only valid if signed by the
 identified Authority. Authorities have complete control over how
 the contexts under their namespaces are arranged, and over the
 names within those contexts. Both the authority-part and the
 context-part must end with a '.'.

 Some examples illustrate how context works:

 o For the common split-DNS case, an enterprise could place names for
 machines on its local networks within a separate context. E.g., a
 workstation could be named 'simplon.cab.inf.ethz.ch.' within the
 context 'staff-workstations.cx-inf.ethz.ch.' Assertions about
 this name would be signed by the Authority for 'inf.ethz.ch.'.
 Here, the context serves simply as a marker, without enabling an
 alternate signature chain: note that the name
 'simplon.cab.inf.ethz.ch' could at the same time be validly signed
 in the global context by the Authority over that name to allow
 external users access this workstation. The local context simply

Trammell & Fehlmann Expires August 2, 2019 [Page 27]

Internet-Draft RAINS January 2019

 marks this Assertion as internal. This allows a client making
 requests of local names to know they are local, and for local
 resolvers to manage visibility of Assertions outside the
 enterprise: explicit context makes accidental leakage of both
 Queries and Assertions easier to detect and avoid.

 o Contexts make captive-portal interactions more explicit: a captive
 portal resolver could respond to a query for a common website
 (e.g. www.google.ch) with a signed response directed at the
 captive portal, but within a context identifying the location as
 well as the ISP (e.g. sihlquai.zurich.ch.cx-
 starbucks.access.some-isp.net.). This response will be signed by
 the Authority for 'starbucks.access.some-isp.net.'. This
 signature achieves two things: first, the client knows the result
 for www.google.ch is not globally valid; second, it can present
 the user with some indication as to the identity of the captive
 portal it is connected to.

 Further examples showing how context can be used in queries as well
 are given in Section 5.5.3 below.

 Developing conventions for assertion contexts for different
 situations will require implementation and deployment experience, and
 is a subject for future work.

5.2.8. Zone-Reflexive Singular Assertions

 A zone may make a Singular Assertion about itself by using the string
 "@" as a subject name. This facility can be used for any object
 type, but is especially useful for self-signing root zones, and for a
 zone to make a subsequent key assertion about itself. If a Singular
 Assertion for an Object about a zone is available both in the zone
 itself and in the superordinate zone, the assertion in the
 superordinate zone will take precedence.

5.2.9. Address Assertions

 Address assertions map a subject address or subject address prefix to
 one or more objects. Address assertions provide the equivalent of
 reverse DNS (IN PTR) for IPv4 and IPv6 addresses. Information about
 addresses is stored in a completely separate namespace from
 information about names, rooted at the prefix containing the entire
 numberspace for a given address family. An Address Assertion with a
 valid signature can be used as a positive answer to a query for any
 address within the subject's prefix. It is represented as a CBOR
 map.

Trammell & Fehlmann Expires August 2, 2019 [Page 28]

Internet-Draft RAINS January 2019

 Assertions about addresses are similar to assertions about names, but
 keyed by address and restricted in terms of the objects they can
 contain. An Address Assertion body is a CBOR map which MUST contain
 the signatures (0), subject-addr (5), and objects (7) keys.

 The value of the signatures (0) key is an array of one or more
 Signatures as defined in Section 5.7. A signature on an Address
 Assertion can be verified against any public key to which an address
 delegation assertion exists for a prefix containing the Address
 Assertion's subject address. This implies that, in contrast to
 Assertions about names, any authority in the hierarchy may sign
 Assertions about any address within their prefix, even if they have
 also delegated part of the prefix to another key.

 The value of the subject-addr (5) key is a three element array. The
 first element of the array is the address family encoded as an object
 type (see Section 5.3); i.e. 2 for IPv6 addresses and 3 for IPv4
 addresses. The second element is the prefix length encoded as an
 integer, 0-128 for IPv6 and 0-32 for IPv4. The third element is the
 address, encoded as in Section 5.3.2 or Section 5.3.3.

 The value of the objects (7) key is an array of objects, as defined
 in Section 5.3. If the prefix of the subject-addr value is the
 maximum prefix length for the address family, then the assertion is a
 Host Address Assertion, and only the object types redirection,
 delegation, registrant, and name are valid. Otherwise, it is a
 Prefix Address Assertion, and only the object types redirection,
 delegation, and registrant are valid.

 Address assertions contain no context, as the context in which they
 are valid (the global addressing context for the given address
 family) is implied by the address family of the subject name.

5.3. Object Types and Encodings

 Each Object associated with a given subject name in a Singular
 Assertion (see Section 5.2.1) is represented as a CBOR array, where
 the first element is the type of the object, encoded as an integer in
 the following table:

Trammell & Fehlmann Expires August 2, 2019 [Page 29]

Internet-Draft RAINS January 2019

 +------+--------------+------------------------------+--------------+
 | Code | Name | Description | Reference |
 +------+--------------+------------------------------+--------------+
1	name	name associated with subject	Section
			5.3.1
2	ip6-addr	IPv6 address of subject	Section
			5.3.2
3	ip4-addr	IPv4 address of subject	Section
			5.3.3
4	redirection	name of zone authority	Section
		server	5.3.4
5	delegation	public key for zone	Section
		delgation	5.3.5
6	nameset	name set expression for zone	Section
			5.3.6
7	cert-info	certificate information for	Section
		name	5.3.7
8	service-info	service information for	Section
		srvname	5.3.8
9	registrar	registrar information	Section
			5.3.9
10	registrant	registrant information	Section
			5.3.10
11	infrakey	public key for RAINS	Section
		infrastructure	5.3.11
12	extrakey	external public key for	Section
		subject	5.3.12
13	nextkey	next public key for subject	Section
			5.3.13
 +------+--------------+------------------------------+--------------+

 Table 4: Object type codes

 Subsequent elements contain the object content, encoded as described
 in the respective subsection below.

Trammell & Fehlmann Expires August 2, 2019 [Page 30]

Internet-Draft RAINS January 2019

5.3.1. Name Alias

 A name (1) object contains a name associated with a name as an alias.
 It is represented as a three-element array. The second element is a
 fully-qualified name as a UTF-8 encoded string. The third type is an
 array of object type codes for which the alias is valid, with the
 same semantics as the query-types (9) key in queries (see

Section 5.5).

 The name type is roughly equivalent to the DNS CNAME RRTYPE.

5.3.2. IPv6 Address

 An ip6-addr (2) object contains an IPv6 address associated with a
 name. It is represented as a two element array. The second element
 is a byte array of length 16 containing an IPv6 address in network
 byte order.

 The ip6-addr type is roughly equivalent to the DNS AAAA RRTYPE.

5.3.3. IPv4 Address

 An ip4-addr (3) object contains an IPv4 address associated with a
 name. It is represented as a two element array. The second element
 is a byte array of length 4 containing an IPv4 address in network
 byte order.

 The ip4-addr type is roughly equivalent to the DNS A RRTYPE.

5.3.4. Redirection

 A redirection (4) object contains the fully-qualified name of a RAINS
 authority server for a named zone. It is represented as a two-
 element array. The second element is a fully-qualified name of an
 RAINS authority server as a UTF-8 encoded string.

 The redirection type is used to point to a "last-resort" server or
 server from which assertions about a zone can be retrieved; it
 therefore approximately replaces the DNS NS RRTYPE.

5.3.5. Delegation

 A delegation (5) object contains a public key used to generate
 signatures on assertions in a named zone, and by which a delegation
 of a name within a zone to a subordinate zone may be verified. It is
 represented as an 4-element array. The second element is a signature
 algorithm identifier as in Section 5.7. The third element is a key
 phase as in Section 5.7. The fourth element is the public key,

Trammell & Fehlmann Expires August 2, 2019 [Page 31]

Internet-Draft RAINS January 2019

 formatted as defined in Section 5.7 for the given algorithm
 identifier and RAINS delegation chain keyspace.

 Delegations approximately replace the DNS DNSKEY RRTYPE.

5.3.6. Nameset

 A nameset (6) object contains an expression defining which names are
 allowed and which names are disallowed in a given zone. It is
 represented as a two- element array. The second element is a nameset
 expression to be applied to each name element within the zone without
 an intervening delegation.

 The nameset expression is represented as a UTF-8 string encoding a
 modified POSIX Extended Regular Expression format (see POSIX.2) to be
 applied to each element of a name within the zone. A name containing
 an element that does not match the valid nameset expression for a
 zone is not valid within the zone, and the nameset assertion can be
 used to prove nonexistence.

 The POSIX character classes :alnum:, :alpha:, :ascii:, :digit:,
 :lower:, and :upper: are available in these regular expressions,
 where:

 o :lower: matches all codepoints within the Unicode general category
 "Letter, lowercase"

 o :upper: matches all codepoints within the Unicode general category
 "Letter, uppercase"

 o :alpha: matches all codepoints within the Unicode general category
 "Letter".

 o :digit: matches all codepoints within the Unicode general category
 "Number, decimal digit"

 o :alnum: is the union of :alpha: and :digit:

 o :ascii: matches all codepoints in the range 0x20-0x7f

 In addition, each Unicode block is available as a character class,
 with the syntax :ublkXXXX: where XXXX is a 4 or 5 digit, zero-
 prefixed hex encoding of the first codepoint in the block. For
 example, the Cyrillic block is available as :ublk0400:.

 Unicode escapes are supported in these regular expressions; the
 sequence \uXXXX where XXXX is a 4 or 5 digit, possibly zero-prefixed
 hex encoding of the codepoint, is substituted with that codepoint.

Trammell & Fehlmann Expires August 2, 2019 [Page 32]

Internet-Draft RAINS January 2019

 Set operations (intersection and subtraction) are available on
 character classes. Two character class or range expressions in a
 bracket expression joined by the sequence && are equivalent to the
 intersection of the two character classes or ranges. Two character
 class or range expressions in a bracket expression joined by the
 sequence - are equivalent to the subtraction of the second character
 class or range from the first.

 For example, the nameset expression:

 [[:ublk0400:]&&[:lower:][:digit:]]+

 matches any name made up of one or more lowercase Cyrillic letters
 and digits. The same expression can be implemented with a range
 instead of a character class:

 [\u0400-\u04ff&&[:lower:][:digit:]]+

 Nameset expression support is experimental and subject to (radical)
 change in future revisions of this specification.

5.3.7. Certificate Information

 A cert-info (7) object contains an expression binding a certificate
 or certificate authority to a name, such that connections to the name
 must either use the bound certificate or a certificate signed by a
 bound authority. It is represented as an five-element array.

 The second element is the protocol family specifier, describing the
 cryptographic protocol used to connect, as defined in Table 5. The
 protocol family defines the format of certificate data to be hashed.
 The third element is the certificate usage specifier as in Table 6,
 describing the constraint imposed by the assertion. These are
 defined to be compatible with Certificate Usages in the TLSA RRTYPE
 for DANE [RFC6698]. The fourth element is the hash algorithm
 identifier, defining the hash algorithm used to generate the
 certificate data, as in Table 7. The fifth item is the data itself,
 whose format is defined by the protocol family and hash algorithm.

https://datatracker.ietf.org/doc/html/rfc6698

Trammell & Fehlmann Expires August 2, 2019 [Page 33]

Internet-Draft RAINS January 2019

 +------+--------+---------------------------------+-----------------+
 | Code | Name | Protocol family | Certificate |
 | | | | format |
 +------+--------+---------------------------------+-----------------+
0	unspec	Unspecified	Unspecified
1	tls	Transport Layer Security (TLS)	[RFC5280]
		[RFC8446]	
 +------+--------+---------------------------------+-----------------+

 Table 5: Certificate information protocol families

 Protocol family 0 leaves the protocol family unspecified; client
 validation and usage of cert-info assertions, and the protocol used
 to connect, are up to the client, and no information is stored in
 RAINS. Protocol family 1 specifies Transport Layer Security version
 1.3 [RFC8446] or a subsequent version, secured with PKIX [RFC5280]
 certificates.

 +------+------+--------------------------+
 | Code | Name | Certificate usage |
 +------+------+--------------------------+
 | 2 | ta | Trust Anchor Certificate |
 | | | |
 | 3 | ee | End-Entity Certificate |
 +------+------+--------------------------+

 Table 6: Certificate information usage values

 A trust anchor certificate constraint specifies a certificate that
 MUST appear as the trust anchor for the certificate presented by the
 subject of the Assertion on a connection attempt. An end-entity
 certificate constraint specifies a certificate that MUST be presented
 by the subject on a connection attempt.

 Certificate information is hashed using an appropriate hash function
 described in Section 5.4; hash functions are identified by a code as
 in Table 7. Code 0 is used to store full certificates in RAINS
 assertions, while other codes are used to store hashes for
 verification.

 For example, in a cert-info object with values [7, 1, 3, 3, (data)
], the data would be a 48 SHA-384 hash of the ASN.1 DER-encoded
 X.509v3 certificate (see Section 4.1 of [RFC5280]) to be presented by
 the endpoint on a connection attempt with TLS version 1.2 or later.

 The cert-info type replaces the TLSA DNS RRTYPE.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1

Trammell & Fehlmann Expires August 2, 2019 [Page 34]

Internet-Draft RAINS January 2019

5.3.8. Service Information

 A service-info (8) object gives information about a named service.
 Services are named as in [RFC2782]. It is represented as a four-
 element array. The second element is a fully-qualified name of a
 host providing the named service as a UTF-8 string. The third
 element is a transport port number as a positive integer in the range
 0-65535. The fourth element is a priority as a positive integer,
 with lower numbers having higher priority.

 The service-info type replaces the DNS SRV RRTYPE.

5.3.9. Registrar Information

 A registrar (9) object gives the name and other identifying
 information of the registrar (the organization which caused the name
 to be added to the namespace) for organization-level names. It is
 represented as a two element array. The second element is a UTF-8
 string of maximum length 4096 bytes containing identifying
 information chosen by the registrar, according to the registry's
 policy.

 The protocol does not mandate a format for this string; however, it
 is RECOMMENDED that authorities place a Registration Data Access
 Protocol (RDAP) Entity URL or RDAP Entity path segment, as defined in

section 3.1.5 of [RFC7482], in the registrar information field. A
 querier can assume that a URL or an entity path segment (i.e. a
 string beginning with the substring "entity/") is an RDAP reference
 to the registrar.

5.3.10. Registrant Information

 A registrant (10) object gives information about the registrant of an
 organization-level name. It is represented as a two element array.
 The second element is a UTF-8 string wcontaining this information,
 with a format chosen by the registrant according to the registry's
 policy.

 The protocol does not mandate a format for this string; however, it
 is RECOMMENDED that authorities place a Registration Data Access
 Protocol (RDAP) Entity URL or RDAP Entity path segment, as defined in

section 3.1.5 of [RFC7482], in the registrant information field. A
 querier can assume that a URL or an entity path segment (i.e. a
 string beginning with the substring "entity/") is an RDAP reference
 to the registrant.

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc7482#section-3.1.5
https://datatracker.ietf.org/doc/html/rfc7482#section-3.1.5

Trammell & Fehlmann Expires August 2, 2019 [Page 35]

Internet-Draft RAINS January 2019

5.3.11. Infrastructure Key

 An infrakey (11) object contains a public key used to generate
 signatures on messages by a named RAINS server, by which a RAINS
 message signature may be verified by a receiver. It is identical in
 structure to a delegation object, as defined in Section 5.3.5.
 Infrakey signatures are especially useful for clients which delegate
 verification to their query servers to authenticate the messages sent
 by the query server.

5.3.12. External Key

 An extrakey (12) object contains a public key used to generate
 signatures on assertions in a named zone outside of the normal
 delegation chain. It is represented as an 4-element array, where the
 second element is a signature algorithm identifier, and the third
 element is keyspace identifier, as in Section 5.7. The fourth
 element is the public key, as defined in Section 5.7 for the given
 algorithm identifier. An extrakey may be matched with a public key
 obtained through other means for additional authentication of an
 assertion.

5.3.13. Next Delegation Public Key

 A nextkey (13) object contains the a public key that a zone owner
 would like its superordinate to delegate to in the future. It is
 represented as an 6-element array. The second element is a signature
 algorithm identifier as in Section 5.7. The third element is a key
 phase as in Section 5.7. The fourth element is the public key, as
 defined in Section 5.7 for the given algorithm identifier. The fifth
 element is the requested-valid-since time, and the sixth element is
 the requested-valid-until time, formatted as for signatures as in

Section 5.7. See Section 7.6 for more.

5.4. Hash Functions

 Hash algorithms are used in several places in the RAINS data model:

 o hashing certificate data in cert-info objects (see Section 5.3.7)

 o hashing assertions into Bloom filters and checking if a subject-
 object mapping within a zone for the given context and type is
 present in a Bloom filter (see Section 5.2.4)

 o hashing Assertion and Message data as part of generating a MAC
 (see Section 5.7)

Trammell & Fehlmann Expires August 2, 2019 [Page 36]

Internet-Draft RAINS January 2019

 Hash functions are identified by a code given in Table 7. The
 Applicability column determines where in the RAINS Protocol a
 specific hash function might be used. Applicability "C" means the
 hash is valid for use in a certificate info object, "P" that it can
 be used for hashing assertions for P-shards, "S" that it can be used
 for hashing Assertions and Messages for signatures.

 +------+----------+-------------------+--------+---------------+
 | Code | Name | Reference | Length | Applicability |
 +------+----------+-------------------+--------+---------------+
 | 0 | nohash | (data not hashed) | var. | C |
 | | | | | |
 | 1 | sha-256 | [RFC6234] | 32 | CPS |
 | | | | | |
 | 2 | sha-512 | [RFC6234] | 64 | CS |
 | | | | | |
 | 3 | sha-384 | [RFC6234] | 48 | CS |
 | | | | | |
 | 4 | shake256 | [RFC8419] | 32 | PS |
 | | | | | |
 | 5 | fnv-64 | [FNV] | 8 | P |
 | | | | | |
 | 6 | fnv-128 | [FNV] | 16 | P |
 +------+----------+-------------------+--------+---------------+

 Table 7: Hash algorithms

5.5. Queries

 Information about requests for information about names is carried in
 Queries. A Query specifies the name and object types about which
 information is requested, information about how long the querier is
 willing to wait for an answer, and additional options indicating the
 querier's preferences about how the query should be handled.

 In contrast to Singular Assertions, the subject in a Query is given
 as a fully-qualified name - the subject name concatenated to the zone
 name with a '.', since a querier may not know the zone name
 associated with a fully-qualified name.

 There are two kinds of queries supported by the RAINS data model:

 o Query (or Normal Query): a request for information about one or
 several types of a given subject, about which the querier
 expresses no prior information.

 o Confirmation Query: a request for information about one or several
 types of a given subject, for which the querier already has a

https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc8419

Trammell & Fehlmann Expires August 2, 2019 [Page 37]

Internet-Draft RAINS January 2019

 valid cached Assertion, but for which the querier would like a new
 Assertion if available. Confirmation queries are covered in

Section 5.5.2.

 Both queries are carried in a Query message section. Each Query
 contained in a Message represents a separate Query.

 A Query body is represented as a CBOR map. Queries MUST contain the
 query-name (8), context (6), query-types (10), and query-expires (12)
 keys. Queries MAY contain the query-opts (13), query-keyphases (17)
 keys, and/or current-time (14) keys.

 The value of the query-name (8) key is a UTF-8 encoded string
 containing the name for which the query is issued and MUST end with a
 '.' (the root zone).

 The value of the context (6) key is a UTF-8 encoded string containing
 the name of the context to which a query pertains. A zero-length
 string indicates that assertions will be accepted in any context.

 The value of the query-types (10) key is an array of integers
 encoding the type(s) of Objects (as in Section 5.3) acceptable in
 answers to the query. All values in the query-type array are treated
 at equal priority: for example, [2,3] means the querier is equally
 interested in both IPv4 and IPv6 addresses for the query-name. An
 empty query-types array indicates that objects of any type are
 acceptable in answers to the query.

 The value of the query-expires (12) key is a CBOR integer epoch
 timestamp identified with tag value 1 and encoded as in section 2.4.1
 of [RFC7049]. After the query-expires time, the query will have been
 considered not answered by the original issuer and can be ignored.

 The value of the query-keyphases (17) key, if present, is an array of
 integers representing all key phases (see Section 5.7) desired in
 delegation and nextkey answers to queries (see Section 5.3.5 and

Section 5.3.13). The value of the query-keyphases key is ignored for
 all Queries where query-types does not include delegation or nextkey.
 A query for a delegation or nextkey object that does not contain a
 query-keyphases key SHOULD return information for all available
 keyphases.

 The value of the query-opts (13) key, if present, is an array of
 integers in priority order of the querier's preferences in tradeoffs
 in answering the query. See Section 5.5.1.

 The value of the current-time (14) key, if present, is the timestamp
 of the latest information available at the querier for the queried

https://datatracker.ietf.org/doc/html/rfc7049#section-2.4.1
https://datatracker.ietf.org/doc/html/rfc7049#section-2.4.1

Trammell & Fehlmann Expires August 2, 2019 [Page 38]

Internet-Draft RAINS January 2019

 subject and object types. See Section 5.5.2 for details of how
 confirmation queries work.

5.5.1. Query Options

 RAINS supports a set of query options to allow a querier to express
 preferences. Query options are advisory.

 +------+--+
 | Code | Description |
 +------+--+
1	Minimize end-to-end latency
2	Minimize last-hop answer size (bandwidth)
3	Minimize information leakage beyond first hop
4	No information leakage beyond first hop: cached answers
	only
5	Expired assertions are acceptable
6	Enable query token tracing
7	Disable verification delegation (client protocol only)
8	Suppress proactive caching of future assertions
9	Maximize freshness of result
 +------+--+

 Table 8: Query Option Codes

 Options 1-5 and 9 specify performance/privacy tradeoffs. Each server
 is free to determine how to minimize each performance metric
 requested; however, servers MUST NOT generate queries to other
 servers if "no information leakage" is specified, and servers MUST
 NOT return expired Assertions unless "expired assertions acceptable"
 is specified.

 Option 6 specifies that the token on the message containing the query
 (see Section 5.8) should be used on all queries resulting from a
 given query, allowing traceability through an entire RAINS
 infrastructure. The resulting queries SHOULD also carry Option 6.
 When Option 6 is not present, queries sent by a server in response to
 an incoming query must use different tokens.

Trammell & Fehlmann Expires August 2, 2019 [Page 39]

Internet-Draft RAINS January 2019

 By default, a client service will perform verification on a negative
 query response and return a 404 No Assertion Exists Notification for
 queries with a valid and verified proof of nonexistence, within a
 Message signed by the query service's infrakey. Option 7 disables
 this behavior, and causes the query service to return the Shard,
 P-Shard or Zone for verification by the client. It is intended to be
 used with untrusted query services.

 Option 8 specifies that a querier's interest in a query is strictly
 ephemeral, and that future assertions related to this query SHOULD
 NOT be proactively pushed to the querier.

 Option 9 specifies that the querier would prefer a fresh result to
 one from the server's cache. If the server is not running an
 authority service for the queried subject, it can honor this request
 by issuing a query toward the authority. As this could be used for
 denial-of-service-attacks, a server honoring Option 9 SHOULD limit
 the rate of "freshness" queries it issues.

5.5.2. Confirmation Queries

 A Query containing a current-time key is a Confirmation Query, used
 by a server to refresh a cached query result. The querier passes the
 timestamp of the most recent result it has cached, taken from the
 most recent start time of the validity of the signature(s) on the
 Assertion(s) that may answer it. If the answer to a Confirmation
 Query is not newer than the given timestamp, the server SHOULD answer
 with a Notification of type 304 (see Section 5.6). Otherwise, the
 most recent Assertion answering the query is returned.

 The value of the current-time key is represented as a CBOR integer
 epoch timestamp identified with tag value 1 and encoded as in section

2.4.1 of [RFC7049].

5.5.3. Context in Queries

 Context is used in Queries as it is in Assertions (see
Section 5.2.7). The Context section of a query contains the context

 of desired Assertions; a special "any" context (represented by the
 empty string) indicates that Assertions in any context will be
 accepted. Assertion contexts in an answer to a Query that is not
 about the "any" context MUST match the context in the Query.

 Query contexts can also be used to provide additional information to
 RAINS servers about the query. For example, context can provide a
 method for explicit selection of a CDN server not based on either the
 client's or the resolver's address (see [RFC7871]). Here, the CDN
 creates a context for each of its content zones, and an external

https://datatracker.ietf.org/doc/html/rfc7049#section-2.4.1
https://datatracker.ietf.org/doc/html/rfc7049#section-2.4.1
https://datatracker.ietf.org/doc/html/rfc7871

Trammell & Fehlmann Expires August 2, 2019 [Page 40]

Internet-Draft RAINS January 2019

 service selects appropriate contexts for the client based not just on
 client source address but passive and active measurement of
 performance. Queries for names at which content resides can then be
 made within these contexts, with the priority order of the contexts
 reflecting the goodness of the zone for the client. Here, a context
 might be 'zrh.cx-cdn-zones.some-cdn.com.' for names of servers
 hosting content in a CDN's Zurich data center. A client could
 represent its desire to find content nearby by making queries in the
 zrh.cx-, fra.cx- (Frankfurt), and ams.cx- (Amsterdam) contexts of the
 'cdn-zones.some-cdn.com.' Authority. In all cases, the Assertions
 themselves will be signed by the Authority for 'cdn-zones.some-
 cdn.com.', accurately representing that it is the CDN, not the owner
 of the related name in the global context, that is making the
 Assertion.

 As with assertion contexts, developing conventions for query contexts
 for different situations will require implementation and deployment
 experience, and is a subject for future work.

5.5.4. Address Queries

 Queries for assertions about addresses are similar to queries for
 assertions about names, but have semantic restrictions similar to
 those for Address Assertions. An Address Query body is a map.
 Queries MUST contain the subject-addr (5), query-types (10), and
 query-expires (12) keys. Address Queries MAY contain query-opts (13)
 key.

 The value of the subject-addr (5) key is a three element array. The
 first element of the array is the address family encoded as an object
 type (see Section 5.3); i.e. 2 for IPv6 addresses and 3 for IPv4
 addresses. The second element is the prefix length encoded as an
 integer, 0-128 for IPv6 and 0-32 for IPv4. The third element is the
 address, encoded as in Section 5.3.2 or Section 5.3.3.

 The value of the query-types (10) key is an array of integers
 encoding the type(s) of objects (as in Section 5.3) acceptable in
 answers to the query. All values in the query-type array are treated
 at equal priority: [4,5] means the querier is equally interested in
 both redirection and delegation for the subject-addr. An empty
 query-types array indicates that objects of any type are acceptable
 in answers to the query. As with Address Assertions, only object
 types redirection, delegation, registrant, and name are valid on
 Address Queries.

 The value of the query-expires (12) key is a CBOR integer counting
 seconds since the UNIX epoch UTC, identified with tag value 1 and
 encoded as in section 2.4.1 of [RFC7049]. After the query-expires

https://datatracker.ietf.org/doc/html/rfc7049#section-2.4.1

Trammell & Fehlmann Expires August 2, 2019 [Page 41]

Internet-Draft RAINS January 2019

 time, the query will have been considered not answered by the
 original issuer.

 The value of the query-opts (13) key, if present, is an array of
 integers in priority order of the querier's preferences in tradeoffs
 in answering the query, as in Table 8. See Section 5.5.1 for more.

 When answering Address Queries, an Address Assertion with a more-
 specific prefix is preferred over a less-specific in response to a
 Address Query.

5.6. Notifications

 Notifications contain information about the operation of the RAINS
 protocol itself. A Notification body is represented as a CBOR map,
 which MUST contain the token (2) and note-type (21) keys, and MAY
 contain the note-data (22) key.

 The value of the token (2) key is a 16-byte array, which MUST contain
 the token of the Message to which the Notification is a response.
 See Section 5.8.

 The value of the note-type key is encoded as an integer as in the
 Table 9.

Trammell & Fehlmann Expires August 2, 2019 [Page 42]

Internet-Draft RAINS January 2019

 +------+-----------------------------------+------------------------+
 | Code | Description | See Also |
 +------+-----------------------------------+------------------------+
100	Connection heartbeat	Section 6.1.2
304	Confirmation query has latest	Section 5.5.2
	answer	
399	Send full capabilities	Section 5.9
400	Bad message received	
403	Inconsistent message received	Section 6.5
404	No assertion exists	Section 6.3
406	Message not acceptable for	Section 6.3 Section
	service	6.4
413	Message too large	Section 6.1.1
500	Unspecified server error	
504	No assertion available	Section 6.3
 +------+-----------------------------------+------------------------+

 Table 9: Notification Type Codes

 Note that the status codes are chosen to be mnemonically similar to
 status codes for HTTP [RFC7231].

 The value of the note-data (22) key, if present, is a UTF-8 encoded
 string with additional information about the notification, intended
 to be displayed to an administrator to help debug the issue
 identified by the Notification.

 Notification codes 400 and 500 signal error conditions. 400 is a
 general message noting that a client or server could not parse a
 message, and 500 notes that the server failed to process a message
 due to some internal error. Sending these notifications is optional,
 according to server policy and configuration.

5.7. Signatures

 RAINS supports multiple signature algorithms and hash functions for
 signing Assertions for cryptographic algorithm agility [RFC7696]. A
 RAINS signature algorithm identifier specifies the signature
 algorithm; a hash function for generating the HMAC and the format of

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7696

Trammell & Fehlmann Expires August 2, 2019 [Page 43]

Internet-Draft RAINS January 2019

 the encodings of the signature values in Assertions and Messages, as
 well as of public key values in delegation objects.

 RAINS signatures have five common elements: the algorithm identifier,
 a keyspace identifier, a key phase, a valid-since timestamp, and a
 valid-until timestamp. Signatures are represented as an array of
 these five values followed by additional elements containing the
 signature data itself, according to the algorithm identifier.

 The following algorithms are supported:

 +--------+------------+-----------+-------------------+
 | Alg ID | Signatures | Hash/HMAC | Format |
 +--------+------------+-----------+-------------------+
 | 1 | ed25519 | sha-512 | See Section 5.7.2 |
 | | | | |
 | 2 | ed448 | shake256 | See Section 5.7.2 |
 +--------+------------+-----------+-------------------+

 Table 10: Defined signature algorithms

 As noted in Section 5.7.2, support for Algorithm 1, ed25519, is
 REQUIRED; other algorithms are OPTIONAL.

 The keyspace identifier associates the signature with a method for
 verifying signatures. This facility is used to support signatures on
 assertions from external sources (the extrakey object type). At
 present, one keyspace identifier is defined, and support for it is
 REQUIRED.

 +-------------+-------+---+
 | Keyspace ID | Name | Signature Verification Algorithm |
 +-------------+-------+---+
 | 0 | rains | RAINS delegation chain; see Section 5.7 |
 +-------------+-------+---+

 Within the RAINS delegation chain keyspace, the key phase is an
 unbounded, unsigned integer matching a signature's key phase to the
 delegation key phase. Multiple keys may be valid for a delegation at
 a given point in time, in order to support seamless rollover of keys,
 but only one per key phase and algorithm may be valid at once. The
 third element of delegation objects and signatures is the key phase.

 Valid-since and valid-until timestamps are represented as CBOR
 integers counting seconds since the UNIX epoch UTC, identified with
 tag value 1 and encoded as in section 2.4.1 of [RFC7049].

https://datatracker.ietf.org/doc/html/rfc7049#section-2.4.1

Trammell & Fehlmann Expires August 2, 2019 [Page 44]

Internet-Draft RAINS January 2019

 A signature in RAINS is generated over a byte stream representing the
 data element to be signed. The signing process is defined as
 follows:

 o Render the element to be signed into a canonical byte stream as
 specified in Section 5.7.1.

 o Generate a signature on the resulting byte stream according to the
 algorithm selected.

 o Add the full signature to the signatures array at the appropriate
 point in the element.

 To verify a signature, generate the byte stream as for signing, then
 verify the signature according to the algorithm selected.

5.7.1. Canonicalization

 The byte stream representing a data element over which signatures are
 generated and verified is a canonicalized CBOR object representing
 the data element.

 Signatures may be attached to any form of Assertion, as well as to
 Messages as a whole.

 First, to canonicalize signature metadata to allow it to be protected
 by the signature, regardless of the type of data element:

 o recursively strip all signatures from the content of the data
 element.

 o add a single-element signatures array at the level in the data
 structure where the generated signature will be attached,
 containing the information common to all signatures: the algorithm
 identifier, a keyspace identifier, a key phase, a valid-since
 timestamp, and a valid-until timestamp, but omitting any signature
 content.

 Then follow the canonicalization steps below appropriate for the type
 of data element to be signed:

 To generate a canonicalized Singular Assertion:

 o sort the objects array by ascending order of object type
 (Table 4), then by ascending numeric or lexicographic order of
 each subsequent array element in the object(s)' representation.

 o sort the CBOR map by ascending order of its keys (Table 1).

Trammell & Fehlmann Expires August 2, 2019 [Page 45]

Internet-Draft RAINS January 2019

 To generate a canonicalized Shard:

 o sort the objects array in each Singular Assertion contained in the
 assertions array as, above.

 o sort the assertions array by lexicographic order of the serialized
 canonicalized byte string representing the assertion. Note that
 this will cause the assertions array to be sorted in lexicographic
 order of subject name, as well.

 o sort the CBOR map by ascending order of its keys (Table 1).

 To generate a canonicalized Zone:

 o sort the objects array in each Singular Assertion contained in the
 assertions array as, above.

 o sort the assertions array by lexicographic order of the serialized
 canonicalized byte string representing the assertion. Note that
 this will cause the assertions array to be sorted in lexicographic
 order of subject name, as well.

 o sort the CBOR map by ascending order of its keys (Table 1).

 To generate a canonicalized P-Shard:

 o sort the CBOR map by ascending order of its keys (Table 1).

 To generate a canonicalized Message:

 o preserve the order of the Message Sections within the Message.

 o canonicalize each Section as appropriate by following the
 canonicalization steps for the appropriate Section type, above.

 It is RECOMMENDED that RAINS implementations generate and send only
 Messages whose contents are sorted according to the canonicalization
 rules in this section, since the sorting operation is in any case
 necessary to generate and verify signatures. However, an
 implementation MUST NOT assume that a Message it receives is sorted
 according to these rules.

5.7.2. EdDSA signature and public key format

 EdDSA public keys consist of a single value, a 32-byte bit string
 generated as in Section 5.1.5 of [RFC8032] for Ed25519, and a 57-byte
 bit string generated as in Section 5.2.5 of [RFC8032] for Ed448. The
 fourth element in a RAINS delegation object is this bit string

https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
https://datatracker.ietf.org/doc/html/rfc8032#section-5.2.5

Trammell & Fehlmann Expires August 2, 2019 [Page 46]

Internet-Draft RAINS January 2019

 encoded as a CBOR byte array. RAINS delegation objects for Ed25519
 keys with value k are therefore represented by the array [5, 1,
 phase, k]; and for Ed448 keys as [5, 2, phase, k].

 Ed25519 and Ed448 signatures are are a combination of two non-
 negative integers, called "R" and "S" in sections 5.1.6 and 5.2.6,
 respectively, of [RFC8032]. An Ed25519 signature is represented as a
 64-byte array containing the concatenation of R and S, and an Ed448
 signature is represented as a 114-byte array containing the
 concatenation of R and S. RAINS signatures using Ed25519 are
 therefore the array [1, 0, phase, valid-since, valid-until, R|S];
 using Ed448 the array [2, 0, phase, valid-since, valid-until, R|S].

 Ed25519 keys are generated as in Section 5.1.5 of [RFC8032], and
 Ed448 keys as in Section 5.2.5 of [RFC8032]. Ed25519 signatures are
 generated from a normalized serialized CBOR object as in

Section 5.1.6 of [RFC8032], and Ed448 signatures as in section 5.2.6
 of [RFC8032].

 RAINS Server and Client implementations MUST support Ed25519
 signatures for delegation.

5.8. Tokens

 Messages and Notifications contain an opaque token (2) key, whose
 content is a 16-byte array, and is used to link Messages to the
 Queries they respond to, and Notifications to the Messages they
 respond to. Tokens MUST be treated as opaque values by RAINS
 servers.

 A Message sent in response to a Query (normal and update) MUST
 contain the token of the Message containing the Query. Otherwise,
 the Message MUST contain a token selected by the server originating
 it, so that future Notifications can be linked to the Message causing
 it. Likewise, a Notification sent in response to a Message MUST
 contain the token from the Message causing it (where the new Message
 contains a fresh token selected by the server). This allows sending
 multiple Notifications within one Message and the receiving server to
 respond to a Message containing Notifications (e.g. when it is
 malformed).

 Since tokens are used to link Queries to replies, and to link
 Notifications to Messages, regardless of the sender or recipient of a
 Message, they MUST be chosen by servers to be hard to guess; e.g.
 generated by a cryptographic random number generator.

 When a server creates a new Query to forward to another server in
 response to a Query it received, it MUST NOT use the same token on

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
https://datatracker.ietf.org/doc/html/rfc8032#section-5.2.5
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.6
https://datatracker.ietf.org/doc/html/rfc8032#section-5.2.6
https://datatracker.ietf.org/doc/html/rfc8032#section-5.2.6

Trammell & Fehlmann Expires August 2, 2019 [Page 47]

Internet-Draft RAINS January 2019

 the delegated query as on the received query, unless option 6 Enable
 Tracing is present in the received query, in which case it MUST use
 the same token.

5.9. Capabilities

 The capabilities (1) key in a RAINS message allows the sender of that
 message to communicate its capabilities to its peer. Capabilities
 MUST be sent on the first message sent from one peer to another.

 A peer's capabilities can be represented in one of two ways:

 o an array of uniform resource names specifying capabilities
 supported by the sending server, taken from the table below, with
 each name encoded as a UTF-8 string.

 o a SHA-256 hash of the CBOR byte stream derived from normalizing
 such an array by sorting it in lexicographically increasing order,
 then serializing it.

 If a peer receives a message from a counterpart for which it does not
 have the hash of the capabilities, it can ask for the next message to
 contain a list of these capabilities by sending a message containing
 notification 399.

 This mechanism is inspired by [XEP0115], and is intended to be used
 to reduce the overhead in exposing common sets of capabilities. Each
 RAINS server can cache a set of recently-seen or common hashes,

 The following URNs are presently defined; other URNs will specify
 future optional features, support for alternate transport protocols
 and new signature algorithms, and so on.

 +--------------------+--+
 | URN | Meaning |
 +--------------------+--+
 | urn:x-rains:tlssrv | Listens for TLS/TCP connections (see Section |
 | | 6.1.1 |
 +--------------------+--+

 A RAINS server MUST NOT assume that a peer server supports a given
 capability unless it has received a message containing that
 capability from that server. An exception are the capabilities
 indicating that a server listens for connections using a given
 transport protocol; servers and clients can also learn this
 information from RAINS itself (given redirection and service-info
 Assertions for a named zone) or from external configurations.

Trammell & Fehlmann Expires August 2, 2019 [Page 48]

Internet-Draft RAINS January 2019

6. RAINS Protocol

 RAINS is a message-exchange protocol based around a CBOR data model.
 Since CBOR is self-framing - a CBOR parser can determine when a CBOR
 object is complete at the point at which it has read its final byte -
 RAINS messages requires no external framing, and can be carried on a
 variety of transport protocols.

 These transport bindings serve to transfer Messages containing
 Queries toward servers that can answer them, and to transfer
 Assertions toward clients that have indicated an interest in them.
 The interpretation and action implied by the arrival of a RAINS
 Message at a peer is not affected by the transport used to send it.

6.1. Transport Bindings

 This document defines one transport binding for RAINS: TLS-over-TCP
 in Section 6.1.1. Each transport binding offers a different set of
 tradeoffs. Carrying RAINS Messages over persistent TLS 1.3 (or
 later) connections [RFC8446] over TCP [RFC0793] protects query
 confidentiality and integrity while supporting implementation over a
 ubiquitously-available and well-understood security and transport
 layer.

6.1.1. TLS over TCP

 RAINS servers listen on port 55553 by default. Note that no effort
 has yet been made to assign this port at IANA; should RAINS be
 standardized, another port may be chosen. Servers may listen on
 other TCP ports subject to local configuration. Methods for
 discovering servers and configuring clients MUST allow for the
 specification of an alternate port. Servers providing authority
 service should use service information records (Section 5.3.8) to
 specify a port on a service name specified by redirection object(s)
 for the zone; see Section 7.2.

 RAINS servers should strive to keep connections open to peer servers,
 unless it is clear that no future messages will be exchanged with
 those peers, or in the face of resource limitations at either peer.
 If a RAINS server needs to send a message to another RAINS server to
 which it does not have an open connection, it attempts to open a
 connection with that server.

 A RAINS client configured to use one or more servers for query
 service should strive to keep connections open to those servers.

 RAINS servers MUST accept Messages over TCP up to 65536 bytes in
 length, but MAY accept messages of greater length, subject to

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc0793

Trammell & Fehlmann Expires August 2, 2019 [Page 49]

Internet-Draft RAINS January 2019

 resource limitations of the server. A server with resource
 limitations MUST respond to a message rejected due to length
 restrictions with a notification of type 413 (Message Too Large). A
 server that receives a type 413 notification must note that the peer
 sending the message only accepts messages smaller than the largest
 message it's successfully sent that peer, or cap messages to that
 peer to 65536 bytes in length.

 Since a singular assertion with a single Ed25519 signature requires
 on the order of 180 bytes, it is clear that many full zones won't fit
 into a single minimum maximum-size message. Authorities are
 therefore encouraged to publish zones grouped into shards that will
 fit into 65536-byte messages, to allow servers to reply using these
 shards when full-zone transfers are not possible due to message size
 limitations.

6.1.2. Heartbeat Messages

 TCP connections between RAINS clients and servers may be associated
 with in-network state (such as firewall pinholes and/or network
 address translation cache entries) with relatively short idle
 timeouts. RAINS provides a simple heartbeat mechanism to refresh
 this state for long-running connections.

 A RAINS peer may send its peer a 100 Connection Heartbeat
 notification at any time. This message is ignored by the receiving
 peer.

6.2. Protocol Dynamics

 This section illustrates how the RAINS protocol works with one
 possible set of rules for handling incoming messages and sending
 outgoing messages as a RAINS server; however, the actions here and
 the sequence in which they are applied are meant only as one
 possibility for implementors, and are not normative.

6.2.1. Message Processing

 Once a transport connection is established, any server may validly
 send a message with any content to any other server. A client may
 send messages containing queries to servers, and a server may sent
 messages containing anything other than queries to clients.

 Upon receipt of a message, a server or client attempts to parse it.
 If the server or client cannot parse the message at all, it returns a
 400 Bad Message notification to the peer. This notification may have
 a null token if the token cannot be retrieved from the message.

Trammell & Fehlmann Expires August 2, 2019 [Page 50]

Internet-Draft RAINS January 2019

 If the server or client can parse the message, it:

 o notes the token on the message to send on any message generated in
 reply to the message.

 o processes any capabilities present, replacing the set of
 capabilities known for the peer with the set present in the
 message. If the present capabilities are represented by a hash
 that the server does not have in its cache, it prepares a
 notification of type 399 ("Capability hash not understood") to
 send to its peer.

 o splits the contents into its constituent message sections, and
 verifies that each is acceptable. Specifically, queries are not
 accepted by clients (see Section 6.3), and 404 No Assertion Exists
 notifications are not accepted by servers. If a message contains
 an unacceptable section, the server or client returns a 406
 Message Not Acceptable for Service notification to its peer, and
 ceases processing of the message.

 It then processes each sections acoording to the rules below.

 On receipt of an Assertion (Singular Assertion, Shard, P-Shard, or
 Zone) section, a server:

 o verifies its consistency (see Section 6.5). If the section is not
 consistent, it prepares to send a notification of type 403
 Inconsistent Message to the peer, and discards the section.
 Otherwise, it:

 o determines whether it answers an outstanding query; if so, it
 prepares to forward the section to the server that issued the
 query.

 o determines whether it is likely to answer a future query,
 according to its configuration, policy, and query history; if so,
 it caches the section.

 On receipt of an Assertion (Singular Assertion, Shard, P-Shard, or
 Zone) section, a client:

 o determines whether it answers an outstanding query; if so, it
 considers the query answered. It then:

 o determines whether it is likely to answer a future query,
 according to its configuration, policy, and query history; if so,
 it caches the section.

Trammell & Fehlmann Expires August 2, 2019 [Page 51]

Internet-Draft RAINS January 2019

 On receipt of a query, a server:

 1. determines whether it has expired by checking the query-expires
 value. If so, it drops the query silently. If not, it

 2. determines whether it has at least one stored assertion
 containing a positive answer to the query. If so, it checks to
 see if the assertion is newer than the current-time value in the
 query, if present. If the assertion is not newer, it prepares to
 send a notification of type 304 ("Querier Has Latest Answer") to
 the peer. Otherwise, it prepares a message containing the stored
 assertion(s) positively answering the query. If no positive
 assertion is available, it

 3. checks to see whether it has at least one stored proof of
 nonexistence (shard or p-shard) for the query. If so, it
 prepares a message containing the negative proof to the peer. It
 prefers P-Shards to Shards for reasons of efficiency, but must
 verify that any P-shard does indeed function as a negative proof
 before sending it.

 4. determines whether it has other non-authoritative servers it can
 forward the query to, according to its configuration and policy,
 and in compliance with any query options (see Section 5.5.1). If
 so, it prepares to forward the query to those servers, noting the
 reply for the received query depends on the replies for the
 forwarded query. If not, it:

 5. determines the responsible authority servers for the zone
 containing the query name in the query for the context requested,
 and forwards the query to those authority servers, noting the
 reply for the received query depends on the reply for the
 forwarded query.

 Query options (see Section 5.5.1) change this handling. If query
 option 4 ("cached answers only") is set, steps 4 and 5 above are
 skipped, and the server returns a 504 ("No Assertion Available")
 notification instead. If query option 9 ("Maximize Freshness") is
 set, the server might forward a query even if it has a cached answer.

 If query delegation fails to return an answer within the maximum of
 the valid-until time in the received query and a configured maximum
 timeout for a delegated query, the server prepares to send a 504 No
 assertion available response to the peer from which it received the
 query.

 When a server creates a new query to forward to another server in
 response to a query it received, it does not use the same token on

Trammell & Fehlmann Expires August 2, 2019 [Page 52]

Internet-Draft RAINS January 2019

 the delegated query as on the received query, unless option 6
 ("Enable Tracing") is present in the received query, in which case it
 does use the same token. The Enable Tracing option is designed to
 allow debugging of query processing across multiple servers.

 When a server creates a new query to forward to another server in
 response to a query it received, and the received query contains a
 query-expires time, the delegated query MUST NOT have a query-expires
 time after that in the received query. If the received query
 contains no query-expires time, the delegated query MAY contain a
 query- expires time of the server's choosing, according to its
 configuration.

 On receipt of a notification, a server's behavior depends on the
 notification type:

 o For type 100 "Connection Heartbeat", the server does nothing:
 these null messages are used to keep long-lived connections open
 in the presence of network behaviors that may drop state for idle
 connections.

 o For type 399 "Capability hash not understood", the server prepares
 to send a full capabilities list on the next message it sends to
 the peer.

 o For type 504 "No assertion available", the server checks the token
 on the message, and prepares to forward the assertion to the
 associated query.

 o For type 413 "Message too large" the server notes that large
 messages may not be sent to a peer and tries again, or logs the
 error along with the note-data content.

 o For type 400 "Bad message", type 403 "Inconsistent message", type
 406 "not supported for service", or type 500 "Server error", the
 server logs the error along with the note-data content, as these
 notifications generally represent implementation or configuration
 error conditions which will require human intervention to
 mitigate.

 On receipt of a notification, a client's behavior depends on the
 notification type:

 o For type 100 "Connection Heartbeat", the client does nothing, as
 above.

 o For type 304 "Querier has newest assertion", the client notes that
 its cache is up-to-date for the given query.

Trammell & Fehlmann Expires August 2, 2019 [Page 53]

Internet-Draft RAINS January 2019

 o For type 399 "Capability hash not understood", the client prepares
 to send a full capabilities list on the next message it sends to
 the peer.

 o For type 404 "No assertion exists", the client takes the query to
 be unanswerable. It may reissue the query with query option 7 to
 do the verification of nonexistence again, if the server from
 which it received the notification is untrusted.

 o For type 413 "Message too large" the client notes that large
 messages may not be sent to a peer and tries again, or logs the
 error along with the note-data content.

 o For type 400 "Bad message", type 403 "Inconsistent message", type
 406 "not acceptable for service", of type 500 "Server error", the
 client logs the error along with the note-data content, as these
 notifications generally represent implementation or configuration
 error conditions which will require human intervention to
 mitigate.

 The first message a server or client sends to a peer after a new
 connection is established SHOULD contain a capabilities section, if
 the server or client supports any optional capabilities. See

Section 5.9.

 If the server is configured to keep long-running connections open,
 due to the presence of network behaviors that may drop state for idle
 connections, it sends a message containing a type 100 Connection
 Heartbeat notification after a configured idle time without any
 messages containing other content being sent.

6.2.2. Message Transmission

 As noted in Section 6.2.1 many messages are sent in reply to messages
 received from peers. Servers may also originate messages on their
 own, based on their configuration and policy:

 o Proactive queries to retrieve assertions, shards, and zones for
 which all signatures have expired or will soon expire, for cache
 management purposes.

 o Proactive push of assertions, shards, and zones to other servers,
 based on query history or other information indicating those
 servers may query for the assertions they contain.

Trammell & Fehlmann Expires August 2, 2019 [Page 54]

Internet-Draft RAINS January 2019

6.3. Client Protocol

 The protocol used by clients to issue queries to and receive
 responses from a query service is a subset of the full RAINS
 protocol, with the following differences:

 o Clients only process assertion, shard, zone, and notification
 sections; sending a query to a client results in a 406
 Unacceptable notification.

 o Clients never listen for connections via TCP; a client must
 initiate and maintain a transport session to the query server(s)
 it uses for name resolution.

 o Servers only process query and notification sections when
 connected to clients; a client sending assertions to a server
 results in a 406 Unacceptable notification.

 Since signature verification is resource-intensive, clients delegate
 signature verification to query servers by default. The query server
 signs the message containing results for a query using its own key
 (published as an infrakey object associated with the query server's
 name), and a validity time corresponding to the signature it verified
 with the longest lifetime, stripping other signatures from the reply.
 This behavior can be disabled by a client by specifying query option
 7, allowing the client to do its own verification.

6.4. Publication Protocol

 The protocol used by authorities to publish assertions to an
 authority service is a subset of the full RAINS protocol, with the
 following differences:

 o Servers only process assertion, shard, zone, and notification
 sections when connected to publishers; sending a query to a server
 via the publication procotol results in a 406 Unacceptable
 notification. Servers only process notifications for capability
 negotiation purposes (see Section 5.9).

 o Publishers only process notification sections; sending a query or
 assertion to a publisher results in a 406 Unacceptable
 notification.

6.5. Enforcing Assertion Consistency

 The data model used by the RAINS protocol allows inconsistent
 information to be asserted, all resulting from misconfigured or

Trammell & Fehlmann Expires August 2, 2019 [Page 55]

Internet-Draft RAINS January 2019

 misbehaving authority servers. The following types of inconsistency
 are possible:

 o A Zone omits an Assertion which has the same validity start time
 as said Assertion.

 o A Shard omits an Assertion within its range which has the same
 validity start time as said Assertion.

 o A P-Shard with a given validity start time proves nonexistence of
 an Assertion with the same validity start time.

 o An Assertion prohibited by its Aone's nameset has the same
 validity start time as the prohibiting nameset Assertion.

 o A zone contains a valid reflexive assertion of a given object type
 with the same validity start time as a valid assertion of the same
 type for the same name within a supordinate zone, but with a
 different object value.

 o Delegations to more than one key are simultaneously valid for a
 given context, zone, signature algorithm, and key phase.

 RAINS relies on runtime consistency checking to mitigate
 inconsistency: each server receiving an assertion, shard, or zone
 SHOULD, subject to resource constraints, ensure that it is consistent
 with other information it has, and if not, discard all inconsistent
 assertions, shards, and zones in its cache, log the error, and send a
 403 Inconsistent Message to the source of the message.

 For RAINS to work in a highly dynamic environment, some time-bounded
 inconsistencies are allowed to occur. On the one hand, the authority
 wants to prove nonexistence of a name for a duration of time to make
 caching possible to reduce query latency and reduce load on its
 naming servers. On the other hand, the authority would like the
 flexibility to issue new assertions about previously nonexistent
 names without waiting for a previous negative proof to expire.
 Therefore, the defintions of inconsistency above are strictly limited
 to identical (and therefore non-orderable) validity start times.

7. Operational Considerations

 The following subsections discuss issues that must be considered in
 any deployment of RAINS at scale.

Trammell & Fehlmann Expires August 2, 2019 [Page 56]

Internet-Draft RAINS January 2019

7.1. Discovering RAINS servers

 A client that will not do its own verification must be able to
 discover the query server(s) it should trust for resolution. There
 are three broad approaches to this discovery process: (1) static
 client configuration; (2) server configuration as part of dynamic
 host interface configuration, such as DHCP or provisioning domains;
 (3) discovery of a RAINS server as an optional service, for example
 using mDNS. Integration with any of these approaches is

 In any case, clients MUST provide a configuration interface to allow
 a user to specify (by address or name) and/or constrain (by
 certificate property) a preferred/trusted query server. This would
 allow client on an untrusted network to use an untrusted locally-
 available query server to discover a preferred query server (doing
 key verification on its own for bootstrapping), before connecting to
 that query server for normal name resolution.

 Servers providing query and intermediate service also discover other
 intermediate servers through static configuration, or through an
 external, unspecified discovery protocol.

 Servers providing query and intermediate service discover servers
 providing authority service as in Section 7.2, below.

7.2. Bootstrapping RAINS Services

 At startup, a server performing recursive lookup MUST have access to
 at least one of each of these three assertion types: a self-signed
 delegation assertion of the root zone, a redirection assertion
 containing the name of an authoritative root name server, and an ip4
 or ip6 assertion of the root name server mentioned in the redirection
 assertion. These assertions must be obtained through a secure out of
 band mechanism. For a caching server, it is sufficient to have a
 connection to a recursive resolver which does the lookup on its
 behalf.

 When a zone authority delegates a part of its namespace to a
 subordinate, it MUST sign and serve the assertions of the three above
 mentioned types. This information is necessary for a recursive
 resolver to determine in a recursive lookup where to ask for a more
 specific answer and to validate the response.

7.3. Cooperative Delegation Distribution

 Regardless of any other configuration directive, a RAINS server MUST
 be prepared to provide a full chain of delegation assertions from the
 appropriate delegation root to the signature on any assertion it

Trammell & Fehlmann Expires August 2, 2019 [Page 57]

Internet-Draft RAINS January 2019

 gives to a peer or a client, whether as additional assertions on a
 message answering a query, or in reply to a subsequent query. This
 property allows RAINS servers to maintain a full delegation tree.

7.4. Assertion Lifetime Management

 An assertion can contain multiple signatures, each with a different
 lifetime. Signature lifetimes are equivalent to a time to live in
 the present DNS: authorities should compute a new signature for each
 validity period, and make these new signatures available when old
 ones are expiring.

 Since assertion lifetime management is based on a real-time clock
 expressed in UTC, RAINS servers MUST use a clock synchronization
 protocol such as NTP [RFC5905].

 RAINS servers MAY coalesce assertion lifetimes, e.g. using only the
 most recent valid-until time in their cache management. This implies
 that an assertion with valid signatures in time intervals (T1, T2)
 and (T3, T4) such that T3 > T2 may be cached during the interval (T2,
 T3) as well. Authorites MUST NOT rely on non-caching or non-
 availability of assertions during such intervals.

7.5. Secret Key Management

 The secret keys associated with public keys for each RAINS server
 (via infrakey objects) must be available on that server, whether
 through a hardware or software security device, so they can sign
 messages on demand; this is particularly important for query servers.
 In addition, the secret keys associated with TLS certificates for
 each server (published via certinfo objects) must be available as
 well in order to establish TLS sessions.

 However, storing zone secret keys (associated via delegation objects)
 on RAINS servers would represent a more serious operational risk. To
 keep this from being necessary, authority servers have an additional
 signer interface, from which they will accept and cache any
 assertion, shard, or zone for which they are authority servers until
 at least the end of validity of the last signature, provided the
 signature is verifiable.

7.6. Public Key Management

 As signature lifetime is used to manage assertion lifetime, and key
 rotation strategies may be used both for revocation as well as
 operational flexibility purposes, RAINS presents a much more dynamic
 key management environment than that presented by DNSSEC.

https://datatracker.ietf.org/doc/html/rfc5905

Trammell & Fehlmann Expires August 2, 2019 [Page 58]

Internet-Draft RAINS January 2019

7.6.1. Key Phase and Key Rotation

 Each signature and public key in a RAINS message is associated with a
 key phase, allowing multiple keys to be valid for a given authority
 at any given time. For example, given two key phases and a key
 validity interval of one day, a phase 0 key would be valid from 00:00
 on day 0 to 00:00 on day 1, and a phase 1 key valid from 12:00 on day
 0 to 12:00 on day 1. When the phase 0 key expires, it would be
 replaced by a new phase 0 valid from 00:00 on day 1 to 00:00 on day
 2, and so on.

 Since the end time of the validity of a signature on an assertion is
 the maximum of the validity of the signatures on each of the
 delegations in the delegation chain from the root, key rotation
 avoids mass expiration of assertions, at the cost of requiring one
 valid signatures per key phase on at least all delegation assertions.
 Key rotation schedules are a matter of authority operational policy,
 but key validity intervals should be longer the closer in the
 delegation chain an assertion is to the root.

7.6.2. Next Key Assertions

 Another problem this dyanmic envrionment raises is how a zone
 authority communicates to its superordinate that it would like to
 begin using a new public key to sign its assertions.

 This can be done out of band, using private APIs provided by the
 superordinate authority. Through the nextkey object type, RAINS
 provides a way for a future public key to be shared with the
 superordinate authority (and all other queriers) in-band. An
 authority that wishes to use a new key publishes a reflexive nextkey
 assertion (i.e., in its own zone, with subject @) with the new public
 key and a requested valid-since and valid-until time range. The
 superordinate issues periodic queries for nextkey assertions from its
 subordinate zone, or the subordinate pushes these assertions to an
 intermediate service designated to receive them. When the
 superordinate receives a nextkey, and it decides it wants to delegate
 to the new key, it creates and signs a delegation assertion.

 This process is not mandatory: the superordinate is free to ignore
 the request, or to use a different time range, depending on its
 policy and/or the status of its business relationship with the
 subordinate. The subordinate can discover this, in turn, using its
 own RAINS queries, or through the delegation assertions being
 similarly pushed to a designated intermediate service.

Trammell & Fehlmann Expires August 2, 2019 [Page 59]

Internet-Draft RAINS January 2019

8. Experimental Design and Evaluation

 The protocol described in this document is intended primarily as a
 prototype for discussion, though the goal of the document is to
 specify RAINS completely enough to allow independent, interoperable
 implementation of clients an servers. The massive inertia behind the
 deployment of the present domain name system makes full deployment as
 a replacement for DNS unlikely. Despite this, there are some
 criteria by which the success of the RAINS experiment may be judged:

 First, deployment in simulated or closed networks, or in alternate
 Internet architectures such as SCION, allows implementation
 experience with the features of RAINS which DNS lacks (signatures as
 a first-order delegation primitive, support for explicit contexts,
 explicit tradeoffs in queries, runtime availability of registrar/
 registrant data, and nameset support), which in turn may inform the
 specification and deployment of these features on the present DNS.

 Second, deployment of RAINS "islands" in the present Internet
 alongside DNS on a per-domain basis would allow for comparison
 between operational and implementation complexity and efficiency and
 benefits derived from RAINS' features, as information for future
 development of the DNS protocol.

9. Security Considerations

 This document specifies a new, experimental protocol for Internet
 name resolution, with mandatory integrity protection for assertions
 about names built into the information model, and confidentiality for
 query information protected on a hop-by-hop basis.

9.1. Integrity and Confidentiality Protection

 Assertions are not valid unless they contain at least one signature
 that can be verified from the chain of authorities specified by the
 name and context on the assertion; integrity protection is built into
 the information model. The infrastructure key object type allows
 keys to be associated with RAINS servers in addition to zone
 authorities, which allows a client to delegate integrity verification
 of assertions to a trusted query service (see Section 6.3).

 Since the job of an Internet naming service is to provide publicly-
 available information mapping names to information needed to connect
 to the services they name, confidentiality protection for assertions
 is not a goal of the system. Specifically, the information model and
 the mechanism for proving nonexistence of an assertion is not
 designed to provide resistance against zone enumeration.

Trammell & Fehlmann Expires August 2, 2019 [Page 60]

Internet-Draft RAINS January 2019

 On the other hand, confidentiality protection of query information is
 crucial. Linking naming queries to a specific user can be nearly as
 useful to build a profile of that user for surveillance purposes as
 full access to the clear text of that client's communications
 [RFC7624]. In this revision, RAINS uses TLS to protect
 communications between servers and between servers and clients, with
 certificate information for RAINS infrastructure stored in RAINS
 itself. Together with hop-by-hop confidentiality protection, query
 options, proactive caching, default use of non-persistent tokens, and
 redirection among servers can be used to mix queries and reduce the
 linkability of query information to specific clients.

10. IANA Considerations

 The present revision of this document has no actions for IANA.

 The authors have registered the CBOR tag 15309736 to identify RAINS
 messages in the CBOR tag registry at

https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml.

 RAINS servers currently listen for connections from other servers by
 default on TCP port 7753. This port has not been registered with
 IANA, and is intended only for experimentation with RAINS on closed,
 non-Internet-connected networks. Future revisions of this document
 may specify a different port, registered with IANA via Expert Review
 [RFC5226].

 The urn:x-rains namespace used by the RAINS capability mechanism in
Section 5.9 may be a candidate for replacement with an IANA-

 registered namespace in a future revision of this document.

11. Acknowledgments

 Thanks to Daniele Asoni, Laurent Chuat, Markus Deshon, Ted Hardie,
 Joe Hildebrand, Tobias Klausmann, Steve Matsumoto, Adrian Perrig,
 Raphael Reischuk, Wendy Seltzer, Andrew Sullivan, and Suzanne Woolf
 for the discussions leading to the design of this protocol, and the
 definition of an ideal naming service on which it is based. Thanks
 especially to Stephen Shirley for detailed feedback.

12. References

12.1. Normative References

 [FIPS-186-3]
 NIST, ., "Digital Signature Standard FIPS 186-3", June
 2009.

https://datatracker.ietf.org/doc/html/rfc7624
https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml
https://datatracker.ietf.org/doc/html/rfc5226

Trammell & Fehlmann Expires August 2, 2019 [Page 61]

Internet-Draft RAINS January 2019

 [FNV] Fowler, G., Noll, L., Vo, K., Eastlake, D., and T. Hansen,
 "The FNV Non-Cryptographic Hash Algorithm", draft-

eastlake-fnv-16 (work in progress), December 2018.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <https://www.rfc-editor.org/info/rfc2782>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7482] Newton, A. and S. Hollenbeck, "Registration Data Access
 Protocol (RDAP) Query Format", RFC 7482,
 DOI 10.17487/RFC7482, March 2015,
 <https://www.rfc-editor.org/info/rfc7482>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-16
https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-16
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7482
https://www.rfc-editor.org/info/rfc7482
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032

Trammell & Fehlmann Expires August 2, 2019 [Page 62]

Internet-Draft RAINS January 2019

 [RFC8419] Housley, R., "Use of Edwards-Curve Digital Signature
 Algorithm (EdDSA) Signatures in the Cryptographic Message
 Syntax (CMS)", RFC 8419, DOI 10.17487/RFC8419, August
 2018, <https://www.rfc-editor.org/info/rfc8419>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

12.2. Informative References

 [BETTER-BLOOM-FILTER]
 Adam Kirsch, . and . Michael Mitzenmacher, "Building a
 Better Bloom Filter", May 2008.

 [I-D.ietf-dprive-dns-over-tls]
 Zi, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over TLS", draft-

ietf-dprive-dns-over-tls-09 (work in progress), March
 2016.

 [I-D.ietf-dprive-dnsodtls]
 Reddy, T., Wing, D., and P. Patil, "Specification for DNS
 over Datagram Transport Layer Security (DTLS)", draft-

ietf-dprive-dnsodtls-15 (work in progress), December 2016.

 [I-D.trammell-optional-security-not]
 Trammell, B., "Optional Security Is Not An Option", draft-

trammell-optional-security-not-01 (work in progress),
 January 2019.

 [IAB-UNICODE7]
 IAB, ., "IAB Statement on Identifiers and Unicode 7.0.0",
 n.d., <https://www.iab.org/documents/

correspondence-reports-documents/2015-2/
iab-statement-on-identifiers-and-unicode-7-0-0/>.

 [LUCID] Freytag, A. and A. Sullivan, "LUCID problem (slides, IETF
 92 LUCID BoF)", n.d.,
 <https://www.ietf.org/proceedings/92/slides/

slides-92-lucid-0.pdf>.

 [PARSER-BUGS]
 Bratus, S., Patterson, M., and A. Shubina, "The Bugs We
 Have To Kill (USENIX login)", August 2015.

https://datatracker.ietf.org/doc/html/rfc8419
https://www.rfc-editor.org/info/rfc8419
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-dprive-dns-over-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-dprive-dns-over-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-dprive-dnsodtls-15
https://datatracker.ietf.org/doc/html/draft-ietf-dprive-dnsodtls-15
https://datatracker.ietf.org/doc/html/draft-trammell-optional-security-not-01
https://datatracker.ietf.org/doc/html/draft-trammell-optional-security-not-01
https://www.iab.org/documents/correspondence-reports-documents/2015-2/iab-statement-on-identifiers-and-unicode-7-0-0/
https://www.iab.org/documents/correspondence-reports-documents/2015-2/iab-statement-on-identifiers-and-unicode-7-0-0/
https://www.iab.org/documents/correspondence-reports-documents/2015-2/iab-statement-on-identifiers-and-unicode-7-0-0/
https://www.ietf.org/proceedings/92/slides/slides-92-lucid-0.pdf
https://www.ietf.org/proceedings/92/slides/slides-92-lucid-0.pdf

Trammell & Fehlmann Expires August 2, 2019 [Page 63]

Internet-Draft RAINS January 2019

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-18 (work
 in progress), January 2019.

 [RFC3912] Daigle, L., "WHOIS Protocol Specification", RFC 3912,
 DOI 10.17487/RFC3912, September 2004,
 <https://www.rfc-editor.org/info/rfc3912>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",

RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <https://www.rfc-editor.org/info/rfc5226>.

 [RFC5730] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
 STD 69, RFC 5730, DOI 10.17487/RFC5730, August 2009,
 <https://www.rfc-editor.org/info/rfc5730>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6698] Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
 2012, <https://www.rfc-editor.org/info/rfc6698>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7624] Barnes, R., Schneier, B., Jennings, C., Hardie, T.,
 Trammell, B., Huitema, C., and D. Borkmann,
 "Confidentiality in the Face of Pervasive Surveillance: A
 Threat Model and Problem Statement", RFC 7624,
 DOI 10.17487/RFC7624, August 2015,
 <https://www.rfc-editor.org/info/rfc7624>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-18
https://datatracker.ietf.org/doc/html/rfc3912
https://www.rfc-editor.org/info/rfc3912
https://datatracker.ietf.org/doc/html/rfc4033
https://www.rfc-editor.org/info/rfc4033
https://datatracker.ietf.org/doc/html/rfc5226
https://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5730
https://www.rfc-editor.org/info/rfc5730
https://datatracker.ietf.org/doc/html/rfc5905
https://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6698
https://www.rfc-editor.org/info/rfc6698
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7624
https://www.rfc-editor.org/info/rfc7624

Trammell & Fehlmann Expires August 2, 2019 [Page 64]

Internet-Draft RAINS January 2019

 [RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/info/rfc7696>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC7871] Contavalli, C., van der Gaast, W., Lawrence, D., and W.
 Kumari, "Client Subnet in DNS Queries", RFC 7871,
 DOI 10.17487/RFC7871, May 2016,
 <https://www.rfc-editor.org/info/rfc7871>.

 [RFC8094] Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
 Transport Layer Security (DTLS)", RFC 8094,
 DOI 10.17487/RFC8094, February 2017,
 <https://www.rfc-editor.org/info/rfc8094>.

 [RFC8484] Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
 <https://www.rfc-editor.org/info/rfc8484>.

 [SCION] Barrera, D., Reischuk, R., Szalachowski, P., and A.
 Perrig, "SCION Five Years Later - Revisiting Scalability,
 Control, and Isolation Next-Generation Networks
 (arXiv:1508.01651v1)", August 2015.

 [XEP0115] Hildebrand, J., Saint-Andre, P., Troncon, R., and J.
 Konieczny, "XEP-0115 Entity Capabilities", February 2008.

Authors' Addresses

 Brian Trammell
 ETH Zurich
 Universitaetstrasse 6
 Zurich 8092
 Switzerland

 Email: ietf@trammell.ch

 Christian Fehlmann
 ETH Zurich

 Email: fehlmannch@gmail.com

https://datatracker.ietf.org/doc/html/bcp201
https://datatracker.ietf.org/doc/html/rfc7696
https://www.rfc-editor.org/info/rfc7696
https://datatracker.ietf.org/doc/html/rfc7858
https://www.rfc-editor.org/info/rfc7858
https://datatracker.ietf.org/doc/html/rfc7871
https://www.rfc-editor.org/info/rfc7871
https://datatracker.ietf.org/doc/html/rfc8094
https://www.rfc-editor.org/info/rfc8094
https://datatracker.ietf.org/doc/html/rfc8484
https://www.rfc-editor.org/info/rfc8484

Trammell & Fehlmann Expires August 2, 2019 [Page 65]

