
Network Working Group B. Trammell, Ed.
Internet-Draft ETH Zurich
Intended status: Informational September 23, 2015
Expires: March 26, 2016

Architectural Considerations for Transport Evolution with Explicit Path
 Cooperation

draft-trammell-stackevo-explicit-coop-00

Abstract

 The IAB Stack Evolution in a Middlebox Internet (SEMI) workshop in
 Zurich in January 2015 and the follow-up Substrate Protocol for User
 Datagrams (SPUD) BoF session at the IETF 92 meeting in Dallas in
 March 2015 identified the potential need for a UDP-based
 encapsulation to allow explicit cooperation with middleboxes while
 using encryption at the transport layer and above to protect user
 payload and metadata from inspection and interference. This document
 proposes a set of architectural considerations for such approaches.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 26, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Trammell Expires March 26, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/draft-trammell-stackevo-explicit-coop-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Explicit Cooperation September 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction and Motivation

 The IAB IP Stack Evolution Program aims to support the evolution of
 the Internet's transport layer and its interfaces to other layers in
 the Internet Protocol stack. The need for this work is driven by two
 trends. First is the development and increased deployment of
 cryptography in Internet protocols to protect against pervasive
 monitoring [RFC7258], which will break many middleboxes used in the
 operation and management of Internet-connected networks and which
 assume access to plaintext content. An additional encapsulation
 layer to allow selective, explicit metadata exchange between the
 endpoints and devices on path to replace ad-hoc packet inspection is
 one approach to retain network manageability in an encrypted
 Internet.

 Second is the increased deployment of new applications (e.g.
 interactive media as in RTCWEB [I-D.ietf-rtcweb-overview]) for which
 the abstractions provided by today's transport protocols (i.e.,
 either a single reliable stream as in SOCK_STREAM over TCP, or an
 unreliable, unordered packet sequence as in SOCK_DGRAM over UDP) are
 inadequate. This evolution is constrained by the presence of
 middleboxes which interfere with connectivity or packet invariability
 in the presence of new transport protocols or transport protocol
 extensions.

 The core issue is one of layer violation. The boundary between the
 network and transport layers was originally defined to be the
 boundary between information used (and potentially modified) hop-by-
 hop, and that only used end-to-end. The widespread deployment of
 network address and port translation (NAPT) in the Internet has
 eroded this boundary. The first four bytes after the IP header or
 header chain - the source and destination ports - are now the de
 facto boundary between the layers. This erosion has continued into
 the transport and application layer headers and down into content, as
 the capabilities of deployed middleboxes have increased over time.
 Evolution above the network layer is only possible if this layer
 boundary is reinforced. Asking on-path devices nicely not to muck
 about in the transport layer and below - stating in an RFC that
 devices on path MUST NOT use or modify some header field - has not
 proven to be of much use here, so we need a new approach.

 This boundary can be reinforced by encapsulating new transport
 protocols in UDP and encrypting everything above the UDP header.

https://datatracker.ietf.org/doc/html/rfc7258

Trammell Expires March 26, 2016 [Page 2]

Internet-Draft Explicit Cooperation September 2015

 However, this brings with it other problems. First, middleboxes
 which maintain state must use timers to expire that state for UDP
 flows, since there is no exposure of flow lifetime and bidirectional
 establishment as with TCP's SYN, ACK, FIN, and RST flags. These
 timers are often set fast enough to require a relatively high rate of
 heartbeat traffic to maintain this state. A limited facility to
 expose basic semantics of the underlying transport protocol would
 allow these devices to keep state as they do with TCP, with no worse
 characteristics with respect to state management than those of TCP.

 This is a specific case of a more general issue: some of the
 inspection of traffic done by middleboxes above the network-transport
 boundary is operationally useful. However, the use of transport
 layer and higher layer headers is an implicit feature of the
 architecture: middleboxes are exploiting the fact that these headers
 are transmitted in cleartext. There is no explicit cooperation here:
 the endpoints have no control over the information exposed to the
 path, and the middleboxes no information about the intentions of the
 endpoint application other than that inferred from the inspected
 traffic. We propose a change to the architecture to remedy this
 condition.

2. Explicit Cooperation as Architectural Principle

 The principle behind this change is one of explicit cooperation.

 The present Internet architecture is rife with implicit cooperation
 between endpoints and devices on the path between them. It is this
 implicit cooperation which has led to the ossification of the
 transport layer in the Internet. Implicit cooperation requires
 devices along the path to make assumptions about the format of the
 packets and the nature of the traffic they are forwarding, which in
 turn leads to problems using protocols which don't meet these
 assumptions. It also forces application and transport protocol
 developers to build protocols that operate in this presumed, least-
 common-denominator network environment.

 This situation can be improved by making this cooperation explicit.
 We first explore the properties of an ideal architecture for explicit
 cooperation, then consider the constraints imposed by the present
 configuration of the Internet which would make transition to this
 ideal architecture infeasible. From this we derive a set of
 architectural principles and protocol design requirements which will
 support an incrementally deployable approach to explicit cooperation
 between applications on endpoints and middleboxes in the Internet.

Trammell Expires March 26, 2016 [Page 3]

Internet-Draft Explicit Cooperation September 2015

2.1. What does good look like?

 We can take some guidance for the future from the original Internet
 architecture.

 The original Internet architecture defined the split between TCP and
 IP by defining IP to contain those functions the gateways need to
 handle (and possibly de- and re-encapsulate, including
 fragmentation), while defining TCP to contain functions that can be
 handled by hosts end-to-end [RFC0791]. Gateways were essentially
 trusted not to meddle in TCP.

 As a first principle, a strict division between hop-to-hop and end-
 to-end functions is desirable to restore and maintain end-to-end
 service in the Internet.

 In the original architecture, there was no provision for "in-network
 functionality" beyond forwarding, fragmentation, and basic
 diagnostics. Forwarding is inherently explicit: placing an address
 in the destination address field, the endpoint (and by extension, the
 application) indicates that a packet should be sent to a given
 address. Fragmentation was implicit in IPv4, though in-network
 fragmentation was removed in IPv6 [RFC2460]. This was as much a
 function of adherence to the end-to-end-principle [Saltzer84] as it
 was an engineering reaction to limited computational and state
 capacity on the gateways.

 We note that layer boundaries can be enforced using sufficiently
 strong cryptography.

 As a second principle, in-network functionality along a path which
 results in the modification of packet streams received at the other
 end of a connection should be explicitly visible (and, where
 appropriate to the nature of the functionality, controllable) by the
 endpoints.

 This explicitness extends into the transport stack in the endpoint.
 When applications can clearly define transport requirements, instead
 of implicitly lensing them through known implementations of each
 socket type, these transport requirements can be exposed to and/or
 matched with properties of devices along the path, where that is
 useful.

2.2. What keeps us from getting there?

 The clear separation of network and transport layer has been steadily
 eroded over the past twenty years or so. Network address and port
 translation (NAPT) have effectively made the first four bytes of the

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2460

Trammell Expires March 26, 2016 [Page 4]

Internet-Draft Explicit Cooperation September 2015

 transport header a de-facto part of the network layer, and have made
 it difficult to deploy protocols where NAPT devices don't know that
 the ports are safe to touch: anything other than UDP and TCP.
 Protocols to support NAT traversal (e.g. Interactive Connectivity
 Establishment [RFC5245]) do not address this fundamental issue.

 Mechanisms that could be used to support explicit cooperation between
 applications and middleboxes could be supported within the network
 layer. The IPv6 Hop-by-Hop Options Header is intended for this
 purpose, and a new hop-by-hop option could be defined. However,
 there are some limitations to using this header: it is only supported
 by IPv6, it may itself cause packets to be dropped, it may not be
 handled efficiently (or indeed at all) by currently deployed routers
 and middleboxes [I-D.baker-6man-hbh-header-handling], and it requires
 changes to operating system stacks at the endpoints to allow
 applications to access these headers.

 One of the effects of the fact that cryptography enforces layer
 boundaries is that applications and transports run over HTTPS de
 facto [I-D.blanchet-iab-internetoverport443], since HTTPS is the most
 widely implemented, accessible, and deployable way for application
 developers to get this enforcement.

 However, the greatest barriers to explicit cooperation between
 applications and devices along the path is the lack of explicit trust
 among them. While it is possible to assign trust within the "first
 hop" administrative domains, especially when the endpoint and network
 operator are the same entity, building and operating an
 infrastructure for assigning and maintaining these trust
 relationships within an Internet context is currently impractical.

 Finally, the erosion of the end-to-end principle has not occurred in
 a vacuum. There are incentives to deploy in-network functions, and
 services that are impaired by them have already worked around these
 impairments. For example, the present trend toward service
 recentralization can be seen in part as the market's response to the
 end of end-to-end. If every application-layer transaction is
 mediated by services owned by the application's operator, two-end NAT
 traversal is no longer important. This new architecture for services
 has additional implications for the types of interactions supported,
 and for the types of business models encouraged, which may in turn
 make some of the concerns about limited deployability of new
 transport protocols moot.

https://datatracker.ietf.org/doc/html/rfc5245

Trammell Expires March 26, 2016 [Page 5]

Internet-Draft Explicit Cooperation September 2015

2.3. What can we do?

 First we turn to the problem of re-separation of the network layer
 from the transport layer. NAPT, as noted, has effectively made the
 ports part of the network layer, and this change is not easy to undo,
 so we can make this explicit. In many NAPT environments only UDP and
 TCP traffic will be forwarded, and a packet with a TCP header may be
 assumed by middleboxes to have TCP semantics; therefore, the solution
 space is most probably constrained to putting the "new" separation
 between the network and transport layers within a UDP encapsulation.

 Since the relative delay in getting new transport protocols into
 widely deployed kernel implementations has historically been another
 impediment to deploying these new protocols in the Internet, a UDP
 encapsulation based approach has a further implication for
 incremental deployability: it is possible to implement UDP-based
 encapsulations in userspace. While userspace implementations may
 lack some of the interfaces to lower layers available to kernelspace
 implementations necessary to build high-performance transport
 implementations, the ability to deploy widely and quickly may help
 break the chicken-and-egg problem of getting a transport protocol
 adopted into kernelspace.

 To support explicit cooperation in an environment where trust
 relationships are variable and there may be no context with which to
 authenticate every device along a path with which a

3. Properties of encapsulation and signaling mechanisms

 We now turn to observations about and probable constraints on an
 encapsulation and signaling-based approaches to explicit cooperation.
 These thoughts are presently unordered, some having come from initial
 efforts at defining requirements for SPUD.

3.1. The narrowness of encapsulation

 A good deal of experience with tunnels has shown that the per-stream
 overhead of a given encapsulation is generally less important than
 its impact on MTU. For instance, the SPUD prototype as presently
 defined needs at least 20 additional bytes in the header per packet:
 2 each for source and destination UDP port, 2 for UDP length, 2 for
 UDP checksum, 8 to identify tubes, 1 for control bits for SPUD
 itself, and 3 for the smallest possible CBOR map containing a single
 opaque higher layer datagram. For 1500-byte Ethernet frames, the
 marginal cost of SPUD before is therefore 1.33% in byte terms, but it
 does imply that 1450 byte application datagrams will no longer fit in
 a single SPUD-over-UDP-over-IPv4-over Ethernet packet.

Trammell Expires March 26, 2016 [Page 6]

Internet-Draft Explicit Cooperation September 2015

 This fact has two implications for encapsulation design: First,
 maximum payload size per packet should be communicated up to the
 higher layer, as an explicit feature of the transport layer's
 interface. Second, link-layer MTU is a fundamental property of each
 link along a path, so any signaling protocol allowing path elements
 to communicate to the endpoint should treat MTU as one of the most
 important properties along the path to explicitly signal.

3.2. Implicit trust in endpoint-path signaling

 In a perfect world, the trust relationships among endpoints and
 elements on path would be precisely and explicitly defined: an
 endpoint would explicitly delegate some processing to a network
 element on its behalf, network elements would be able to trust any
 command from any endpoint, and the integrity and authenticity of
 signaling in both directions would be cryptographically protected.

 However, both the economic reality that the users at the endpoints
 and the operators of the network may not always have aligned
 interests, as well as the difficulty of universal key exchange and
 trust distribution among widely heterogeneous devices across
 administrative domain boundaries, require us to take a different
 approach toward building deployable, useful metadata signaling.

 We observe that imperative signaling approaches in the past have
 often failed in that they give each actor incentives to lie.
 Markings to ask the network to explicitly treat some packets as more
 important than others will see their value inflate away - i.e., most
 packets from most sources will be so marked - unless some mechanism
 is built to police those markings. Reservation protocols suffer from
 the same problem: for example, if an endpoint really needs 1Mbps, but
 there is no penalty for reserving 1.5Mbps "just in case", a
 conservative strategy on the part of the endpoint leads to over-
 reservation.

3.3. Declarative marking

 An alternate approach is to treat these markings as declarative and
 advisory, and to treat all markings on packets and flows as relative
 to other markings on packets and flows from the same sender. In this
 case, where neither endpoints nor path elements can reliably predict
 the actions other elements in the network will take with respect to
 the marking, and where no endpoint can ask for special treatment at
 the expense of other endpoints, the incentives to marking inflation
 are greatly diminished.

Trammell Expires March 26, 2016 [Page 7]

Internet-Draft Explicit Cooperation September 2015

3.4. Verifiable marking

 Second, markings and declarations should be defined in such a way
 that they are verifiable, and verification built end to endpoints and
 middleboxes wherever practical. Suppose for example an endpoint
 declares that it will send constant-bitrate, loss-insensitive traffic
 at 192kbps. The average data rate for the given flow is trivially
 verifiable at any endpoint. A firewall which uses this data for
 traffic classification and differential quality of service may spot-
 check the data rate for such flows, and penalize those flows and
 sources which are clearly mismarking their traffic.

 We note that it is optimistic to assume, especially in an environment
 with ubiquitous opportunistic encryption [RFC7435], that it is
 possible to define a useful marking vocabulary such that every
 marking will be so easily verifiable. However, using verifiability
 as a design goal can lead to marking vocabularies which are less
 likely, on balance, to be be gameable and gamed.

3.5. Privacy Tradeoffs in Metadata Signaling

 Protocol engineering experience has shown that extensibility is a key
 design goal for new protocols: especially in this case, an attempt to
 "de-ossify" the protocol stack is really an attempt to "re-ossify" it
 around new realities and requirements, so it makes sense to ensure
 this effort must not be repeated. However, extensibility brings with
 it the potential for adding new metadata which can be used to
 increase linkability and surveillability of traffic. Identifiers
 used internally by the signaling mechanism may also increase
 linkability. Care must be taken when designing identifier spaces and
 extensibility mechanisms to minimize these risks.

3.6. In-band, out-of-band, piggybacked, and interleaved signaling

 Signaling channels may be in-band (that is, using the same 5 tuple as
 the encapsulated traffic) or out-of-band (using another channel and
 different flows). Here there are also many tradeoffs to consider.
 In-band signaling has the advantage that it does not require
 foreknowledge of the identity and addresses of devices along the path
 by endpoints and vice versa, but does add complexity to the signaling
 protocol.

 In-band signaling can be either piggybacked on the overlying
 transport or interleaved with it. Piggybacked signaling uses some
 number of bits in each packet generated by the overlying transport to
 achieve signaling. It requires either reducing the MTU available to
 the encapsulated transport and/or opportunistically using bits

https://datatracker.ietf.org/doc/html/rfc7435

Trammell Expires March 26, 2016 [Page 8]

Internet-Draft Explicit Cooperation September 2015

 between the network-layer MTU and the bits actually used by the
 transport.

 This is even more complicated in the case of middleboxes that wish to
 add information to piggybacked-signaling packets, and may require the
 endpoints to introduce "scratch space" in the packets for potential
 middlebox signaling use, further increasing complexity and overhead.

 In contrast, interleaved signaling uses signaling packets on the same
 5-tuple. This reduces complexity and sidesteps MTU problems, but is
 only applicable when the signaling can be considered valid for the
 entire flow or bound to some subset of packets in the flow via an
 identifier.

 Out-of-band signaling uses direct connections between endpoints and
 middleboxes, separate from the encapsulated transport - connections
 that are perhaps negotiated by in-band signaling. A key disadvantage
 here is that out-of-band signaling packets may not take the same path
 as the packets in the encapsulated transport; therefore connectivity
 cannot be guaranteed.

 Signaling of path-to-endpoint information, in the case that a
 middlebox wants to signal something to the sender of the packet,
 raises the added problem of either (1) requiring the middlebox to
 send the information to the receiver for later reflection back to the
 sender, which has the disadvantage of complexity, or (2) requiring
 out-of-band direct signaling back to the sender, which in turn either
 requires the middlebox to spoof the source address and port of the
 receiver to ensure equivalent NAT treatment, or some other NAT-
 traversal approach.

 The tradeoffs here must be carefully weighed, and a comprehensive
 approach may use a mix of all these communication patterns.

3.7. Reflection protection and return routability

 The ease of forging source addresses in UDP together with the only
 limited deployment of network egress filtering [RFC2827] means that
 UDP traffic presently lacks a return routability guarantee. This
 leads to UDP being useful for reflection and amplification attacks,
 which in turn has led in part to the present situation wherein UDP
 traffic may be blocked by firewalls when not explicitly needed by an
 organization as part of its Internet connectivity.

 Return routability is therefore a minimal property of any transport
 that can be responsibly deployed at scale in the Internet.

https://datatracker.ietf.org/doc/html/rfc2827

Trammell Expires March 26, 2016 [Page 9]

Internet-Draft Explicit Cooperation September 2015

4. IANA Considerations

 This document has no actions for IANA.

5. Security Considerations

 This revision of this document presents no security considerations.
 A more rigorous definition of the limits of declarative and
 verifiable marking would need to be evaluated against a specified
 threat model, but we leave this to future work.

6. Acknowledgments

 Many thanks to the attendees of the IAB Workshop on Stack Evolution
 in a Middlebox Internet (SEMI) in Zurich, 26-27 January 2015; most of
 the thoughts in this document follow directly from discussions at
 SEMI and the subsequent SPUD BoF in Dallas in March 2015. Some text
 for this revision of this document has been taken from
 [I-D.trammell-spud-req], written with Mirja Kuehlewind, David Black,
 Ken Calvert, Ted Hardie, Joe Hildebrand, Jana Iyengar, and Eric
 Rescorla. This work is partially supported by the European
 Commission under Grant Agrement FP7-318627 mPlane; support does not
 imply endorsement by the Commission of the content of this work.

7. Informative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
 1981.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, DOI
 10.17487/RFC5245, April 2010,
 <http://www.rfc-editor.org/info/rfc5245>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <http://www.rfc-editor.org/info/rfc7258>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <http://www.rfc-editor.org/info/rfc7435>.

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc5245
http://www.rfc-editor.org/info/rfc5245
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
http://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/rfc7435
http://www.rfc-editor.org/info/rfc7435

Trammell Expires March 26, 2016 [Page 10]

Internet-Draft Explicit Cooperation September 2015

 [I-D.ietf-rtcweb-overview]
 Alvestrand, H., "Overview: Real Time Protocols for
 Browser-based Applications", draft-ietf-rtcweb-overview-14
 (work in progress), June 2015.

 [I-D.ietf-taps-transports]
 Fairhurst, G., Trammell, B., and M. Kuehlewind, "Services
 provided by IETF transport protocols and congestion
 control mechanisms", draft-ietf-taps-transports-06 (work
 in progress), July 2015.

 [I-D.hildebrand-spud-prototype]
 Hildebrand, J. and B. Trammell, "Substrate Protocol for
 User Datagrams (SPUD) Prototype", draft-hildebrand-spud-

prototype-03 (work in progress), March 2015.

 [I-D.huitema-tls-dtls-as-subtransport]
 Huitema, C., Rescorla, E., and J. Jana, "DTLS as
 Subtransport protocol", draft-huitema-tls-dtls-as-

subtransport-00 (work in progress), March 2015.

 [I-D.blanchet-iab-internetoverport443]
 Blanchet, M., "Implications of Blocking Outgoing Ports
 Except Ports 80 and 443", draft-blanchet-iab-

internetoverport443-02 (work in progress), July 2013.

 [I-D.baker-6man-hbh-header-handling]
 Baker, F., "IPv6 Hop-by-Hop Header Handling", draft-baker-

6man-hbh-header-handling-02 (work in progress), July 2015.

 [I-D.trammell-spud-req]
 Trammell, B. and M. Kuehlewind, "Requirements for the
 design of a Substrate Protocol for User Datagrams (SPUD)",

draft-trammell-spud-req-00 (work in progress), July 2015.

 [Saltzer84]
 Saltzer, J., Reed, D., and D. Clark, "End-to-End Arguments
 in System Design (ACM Trans. Comp. Sys.)", 1984.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, DOI 10.17487/RFC0792, September 1981,

 <http://www.rfc-editor.org/info/rfc792>.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,
 May 2000, <http://www.rfc-editor.org/info/rfc2827>.

https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-overview-14
https://datatracker.ietf.org/doc/html/draft-ietf-taps-transports-06
https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://datatracker.ietf.org/doc/html/draft-huitema-tls-dtls-as-subtransport-00
https://datatracker.ietf.org/doc/html/draft-huitema-tls-dtls-as-subtransport-00
https://datatracker.ietf.org/doc/html/draft-blanchet-iab-internetoverport443-02
https://datatracker.ietf.org/doc/html/draft-blanchet-iab-internetoverport443-02
https://datatracker.ietf.org/doc/html/draft-baker-6man-hbh-header-handling-02
https://datatracker.ietf.org/doc/html/draft-baker-6man-hbh-header-handling-02
https://datatracker.ietf.org/doc/html/draft-trammell-spud-req-00
https://datatracker.ietf.org/doc/html/rfc792
http://www.rfc-editor.org/info/rfc792
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
http://www.rfc-editor.org/info/rfc2827

Trammell Expires March 26, 2016 [Page 11]

Internet-Draft Explicit Cooperation September 2015

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [RFC7510] Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black,
 "Encapsulating MPLS in UDP", RFC 7510, DOI 10.17487/

RFC7510, April 2015,
 <http://www.rfc-editor.org/info/rfc7510>.

 [I-D.trammell-stackevo-newtea]
 Trammell, B., "Thoughts a New Transport Encapsulation
 Architecture", draft-trammell-stackevo-newtea-01 (work in
 progress), May 2015.

 [I-D.iab-semi-report]
 Trammell, B. and M. Kuehlewind, "IAB Workshop on Stack
 Evolution in a Middlebox Internet (SEMI) Report", draft-

iab-semi-report-01 (work in progress), July 2015.

 [I-D.ietf-dart-dscp-rtp]
 Black, D. and P. Jones, "Differentiated Services
 (DiffServ) and Real-time Communication", draft-ietf-dart-

dscp-rtp-10 (work in progress), November 2014.

Author's Address

 Brian Trammell (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

https://datatracker.ietf.org/doc/html/rfc4821
https://datatracker.ietf.org/doc/html/rfc7510
https://datatracker.ietf.org/doc/html/rfc7510
http://www.rfc-editor.org/info/rfc7510
https://datatracker.ietf.org/doc/html/draft-trammell-stackevo-newtea-01
https://datatracker.ietf.org/doc/html/draft-iab-semi-report-01
https://datatracker.ietf.org/doc/html/draft-iab-semi-report-01
https://datatracker.ietf.org/doc/html/draft-ietf-dart-dscp-rtp-10
https://datatracker.ietf.org/doc/html/draft-ietf-dart-dscp-rtp-10

Trammell Expires March 26, 2016 [Page 12]

