
TCP Maintenance and Minor Extensions (tcpm) R.

Scheffenegger

Internet-Draft NetApp,

Inc.

Intended status: Experimental M.

Kuehlewind

Expires: January 16, 2014 University of

Stuttgart

 B.

Trammell

 ETH

Zurich

 July 15,

2013

 Encoding of Time Intervals for the TCP Timestamp Option

 draft-trammell-tcpm-timestamp-interval-01.txt

Abstract

 The TCP Timestamp option would be useful for additional measurements

 if it could be assumed that the interval between ticks of the

 timestamp clock are regular, and if that interval were known. In

 practice, many implementations do use a timestamp clock source that

 has a regular interval. This draft specifies a compact encoding for

 exposing the timestamp interval to a receiver, and discusses

 applications therefor.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six

months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 16, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Scheffenegger, et al. Expires January 16, 2014 [Page

1]

Internet-Draft Timestamp Intervals July

2013

 carefully, as they describe your rights and restrictions with

respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction .

2

 2. Terminology .

3

 3. Timestamp interval exposure

3

 3.1. Interval encoding requirements

3

 3.2. Interval encoding specification

4

 3.3. Timestamp Interval experimental TCP option

6

 4. Guidelines for defined-interval timestamp export

7

 5. IANA Considerations .

8

 6. Security Considerations

8

 7. References .

8

 7.1. Normative References

8

 7.2. Informative References

8

 Appendix A. Methodology for one-way delay variation measurement

 using known timestamp

 intervals .

8

 Authors' Addresses .

10

1. Introduction

 The Timestamp option originally introduced in [RFC1323] was designed

 to support only two very specific mechanisms, round trip time

 measurement (RTTM), and protection against wrapped sequence numbers

 (PAWS), assuming a particular TCP algorithm (Reno).

 While [RFC1323] specifies only that timestamps "must be at least

 approximately proportional to real time" to support RTTM, many

 implementations generate timestamp values from a regular timing

 source. Determining the real-time interval represented by a single

 tick makes additional measurements possible. In addition to easing

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

 passive measurements using the timestamp option, it also makes

 possible the measurement of inter-departure time; the comparison of

 inter-departure time to inter-arrival time can be used to one-way

 delay variation measurement, useful for congestion control

algorithms

 as well in QoS applications.

 This document specifies a compact encoding for timestamp intervals

 which can be exported via any number of mechanisms, either through a

 new TCP option, by piggybacking on the timestamp option as in

 [I-D.scheffenegger-tcpm-timestamp-negotiation], or through other in-

 or out-of-band means. This document specifies an experimental TCP

Scheffenegger, et al. Expires January 16, 2014 [Page

2]

Internet-Draft Timestamp Intervals July

2013

 option for experiments with interval exposure separate from any

other

 mechanism.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC2119].

 Terms defined in [RFC1323] are used in this document as defined

 there.

 This document defines the following additional term:

 Timestamp interval

 The interval between two ticks of the timestamp clock source

 running at a constant frequency. Note that the timestamp clock

is

 not required to be identical with the TCP clock, even though most

 implementations use the same clock for practical purposes.

3. Timestamp interval exposure

 This section describes the requirements for interval encoding, then

 specifies an interval to meet these requirements based on a 16-bit

 reduced-precision encoding of a 42-bit fixed-point unsigned integer.

3.1. Interval encoding requirements

 The choice of a timestamp interval is generally implementation-

 specific, and there are a small number of commonly chosen intervals.

 However, a general solution must support not only common cases, but

 uncommon ones, and provide future flexibility to allow an

 implementation to dynamically choose new timestamp intervals for new

 sockets, based on network conditions and specific requirements for

 timestamp measurements.

 There are some sensible bounds on the range of timestamp intervals

 that must be reasonably supported. The minimum inter-packet

interval

 for 64-byte packets (i.e., back-to-back ACK segments) on a future

400

 Gigabit Ethernet would be about 1ns; smaller intervals need not be

 supported with current technology, even for applications for which a

 unique timestamp for every packet would be useful. On the other

side

 of the scale, low-bandwidth, high-latency links may operate with

 timestamp intervals on the order of seconds.

 The precision required by timestamp interval export, on the other

 hand, is determined by the applications for which the information

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1323

 will be used and the precision of the underlying clock source. As

Scheffenegger, et al. Expires January 16, 2014 [Page

3]

Internet-Draft Timestamp Intervals July

2013

 many clock sources may provide less than maximum precision (due to

 e.g. interrupt jitter), there should be some way to represent

 variable precision.

 As a timestamp interval will need to be bound to a connection in-

band

 at runtime, a space-efficient encoding is necessary.

 These requirements indicate a reduced-precision encoding of a fixed-

 point interval, expressed in seconds, as described in the next

 subsection.

3.2. Interval encoding specification

 A 42-bit fixed-point unsigned integer with 4 bits before the decimal

 point and 38 bits after, expressed in seconds, is sufficient to

 encode an interval range from just under 16 seconds (0x3ff ffff

ffff)

 down to 2^-38 s or 3.64 ps (0x000 0000 0001), meeting the range

 requirement. Sufficient precision for the applications envisioned

by

 this document is provided by exporting just the 11 most significant

 bits of the interval value (here, the "value"), coupled with a 5-bit

 "scale" which locates the least significant bit of the value within

 the larger field: a scale of 31 places the value field between bits

 41 and 31 inclusive of the fixed-point integer for the largest

 intervals, while a scale of 0 places the value field between bits 10

 and 0 inclusive. By using a scale such that the most significant

bit

 of the value is not 1, less than 11 bits of precision can be

 signaled, as well; implementations SHOULD NOT represent more

 precision in an exported timestamp interval than they actually

 support. Full precision export is available down to 2^-27 s (or

7.45

 ns) with diminishing precision down to 3.64 ps. This arrangement

 therefore allows the representation of timestamp intervals over 13

 orders of magnitude and 11 bits of precision with only two octets.

 The details of this encoding are illustrated in Figure 1.

Scheffenegger, et al. Expires January 16, 2014 [Page

4]

Internet-Draft Timestamp Intervals July

2013

 MSb LSb

 41 37 31 23 15 7 0

 +----+------+--------+--------+--------+-------+

 | int| frac | full value

 +----+------+--------+--------+--------+-------+

 / \

 +-+ \

 / \

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | scale | value | encoded interval

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 15 11 10 0

 Figure 1: Timestamp interval encoding using scaled fixed-point

 integer

 This encoded 16-bit interval is then exported for a given connection

 as a standalone TCP option or as part of the extended timestamp

 negotiation described in the following subsections.

 A sender explicitly signals that it uses an irregular timestamp

clock

 by sending zero for both scale and value (i.e., 0x0000).

 Combinations of a value of zero and a non-zero scale are reserved

for

 future use. These values MUST NOT be sent as a timestamp interval,

 and SHOULD presently be interpreted by the receiver as exposing an

 irregular timestamp clock.

 For implementations that support only a single timestamp interval

for

 all flows in all situations, the encoded interval can be implemented

 as a constant. Encodings for common timestamp intervals with

maximum

 precision are given in Table 1. Encodings for 9-bit precision, the

 maximum available from common software interrupt clock sources, are

 given in Table 2.

Scheffenegger, et al. Expires January 16, 2014 [Page

5]

Internet-Draft Timestamp Intervals July

2013

 +----------+-----------+-------+-------+----------+

 | interval | frequency | scale | value | combined |

 +----------+-----------+-------+-------+----------+

 | 16 s | 0.06 Hz | 0x1f | 0x7ff | 0xffff |

 | 1 s | 1 Hz | 0x1c | 0x400 | 0xe400 |

 | 0.5 s | 2 Hz | 0x1b | 0x400 | 0xdc00 |

 | 100 ms | 10 Hz | 0x18 | 0x666 | 0xc666 |

 | 10 ms | 100 Hz | 0x15 | 0x51f | 0xad1f |

 | 4 ms | 250 Hz | 0x14 | 0x419 | 0xa419 |

 | 1 ms | 1 kHz | 0x12 | 0x418 | 0x9418 |

 | 200 us | 5 kHz | 0x0f | 0x68e | 0x7e8e |

 | 50 us | 20 kHz | 0x0d | 0x68e | 0x6e8e |

 | 1 us | 1 MHz | 0x08 | 0x432 | 0x4432 |

 | 60 ns | 16.7 MHz | 0x04 | 0x407 | 0x2407 |

 | none | -------- | 0x00 | 0x000 | 0x0000 |

 +----------+-----------+-------+-------+----------+

 Table 1: Encodings for common timestamp intervals with maximum

 precision

 +----------+-----------+-------+-------+----------+

 | interval | frequency | scale | value | combined |

 +----------+-----------+-------+-------+----------+

 | 1.0 s | 1 Hz | 0x1e | 0x100 | 0xf100 |

 | 0.5 s | 2 Hz | 0x1d | 0x100 | 0xe900 |

 | 100 ms | 10 Hz | 0x1a | 0x199 | 0xd199 |

 | 10 ms | 100 Hz | 0x17 | 0x147 | 0xb947 |

 | 4 ms | 250 Hz | 0x16 | 0x106 | 0xb106 |

 | 1 ms | 1 kHz | 0x14 | 0x106 | 0xa106 |

 | 200 us | 5 kHz | 0x11 | 0x1a3 | 0x89a3 |

 | 50 us | 20 kHz | 0x0f | 0x1a3 | 0x79a3 |

 | 1 us | 1 MHz | 0x0a | 0x10c | 0x510c |

 | 60 ns | 16.7 MHz | 0x06 | 0x101 | 0x3101 |

 | none | -------- | 0x00 | 0x000 | 0x0000 |

 +----------+-----------+-------+-------+----------+

 Table 2: Encodings for common timestamp intervals with 9-bit

 precision

3.3. Timestamp Interval experimental TCP option

 This section specifies an experimental TCP option, using an ExID and

 magic number as described in [I-D.ietf-tcpm-experimental-options],

 for exporting timestamp intervals. This option MAY appear in any

TCP

 segment after the SYN segment to advertise the sender's timestamp

 interval, encoded as in Section 3.2 above. If the receiver uses

 timestamp interval information, it stores the interval for the

 duration of the connection, or until a subsequent Timestamp Interval

Scheffenegger, et al. Expires January 16, 2014 [Page

6]

Internet-Draft Timestamp Intervals July

2013

 option is received. The receiver may assume the Timestamp Interval

 is applicable from the point of receipt of the option; i.e. that all

 subsequent received segments with the same or a subsequent sequence

 number as the segment containing the option export timestamps with

 the stated option.

 If a sender has previously sent a timestamp interval to a receiver,

 and changes the timestamp interval on the connection, it MUST send a

 new Timestamp Interval option.

 This option MUST NOT appear in a segment in which a TCP Timestamp

 option is also not present.

 +-+

 | Kind = 253 | Length = 8 | ExID = 0x75ec |

 +-+

 | more magic = 0xffee | encoded advertised interval |

 +-+

 Figure 2: Structure of Timestamp Interval Experimental TCP option

for

 interval export

 Should timestamp interval exposure prove useful, and a separate TCP

 Option be chosen as the preferred method to send it in-band, this

 option would have a length of 4, and the use of an ExID and magic

 number would preserve word alignment in implementations

transitioning

 from experimental to production TCP Option usage.

4. Guidelines for defined-interval timestamp export

 As noted above, implementations SHOULD NOT indicate more precision

 than they support. As common software interrupt clock sources

 provide about 9 bits of precision, these should be indicated with 2

 leading zero bits in the value field. Low variance software clocks

 (e.g. CPU cycle counters) should be indicated with a single leading

 zero bit, and hardware injecting the timestamp into the header with

 high precision should use the full precision. Similarly, if the

 clock source exhibits a very high variability (e.g. when running in

a

 virtualized environment), 3 or more leading zeros should be used in

 the value field.

 Timestamp intervals faster than about 1 ms SHOULD be implemented by

 inserting the timestamp "late" before transmitting a segment to

avoid

 unnecessary timing jitter.

 Intervals on the order of 1us or less are intended for use with for

 hardware-assisted implementations, e.g. direct use of a (shifted)

CPU

 cycle counter as clock source.

Scheffenegger, et al. Expires January 16, 2014 [Page

7]

Internet-Draft Timestamp Intervals July

2013

5. IANA Considerations

 This document uses the Experimental Option Experiment Identifier

 (ExID) 0x75ec ffee to identify the Timestamp Interval experimental

 option in Section 3.3; an application for this codepoint in the IANA

 TCP Experimental Option ExID registry has already been submitted.

6. Security Considerations

 [EDITOR'S NOTE: discuss implications of misuse -- what can I break

by

 sending a bad interval?]

7. References

7.1. Normative References

 [I-D.ietf-tcpm-experimental-options]

 Touch, J., "Shared Use of Experimental TCP Options",

 draft-ietf-tcpm-experimental-options-06 (work in

 progress), June 2013.

 [I-D.scheffenegger-tcpm-timestamp-negotiation]

 Scheffenegger, R., Kuehlewind, M., and B. Trammell,

 "Additional negotiation in the TCP Timestamp Option field

 during the TCP handshake", draft-scheffenegger-tcpm-

 timestamp-negotiation-05 (work in progress), October

2012.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions

 for High Performance", RFC 1323, May 1992.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997.

7.2. Informative References

 [Chirp] Kuehlewind, M. and B. Briscoe, "Chirping for Congestion

 Control - Implementation Feasibility", Nov 2010, <http://

 bobbriscoe.net/projects/netsvc_i-f/chirp_pfldnet10.pdf>.

 [I-D.ietf-ledbat-congestion]

 Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,

 "Low Extra Delay Background Transport (LEDBAT)", draft-

 ietf-ledbat-congestion-10 (work in progress), September

 2012.

Appendix A. Methodology for one-way delay variation measurement using

 known timestamp intervals

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-experimental-options-06
https://datatracker.ietf.org/doc/html/draft-scheffenegger-tcpm-timestamp-negotiation-05
https://datatracker.ietf.org/doc/html/draft-scheffenegger-tcpm-timestamp-negotiation-05
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://bobbriscoe.net/projects/netsvc_i-f/chirp_pfldnet10.pdf
http://bobbriscoe.net/projects/netsvc_i-f/chirp_pfldnet10.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-ledbat-congestion-10
https://datatracker.ietf.org/doc/html/draft-ietf-ledbat-congestion-10

Scheffenegger, et al. Expires January 16, 2014 [Page

8]

Internet-Draft Timestamp Intervals July

2013

 New congestion control algorithms are currently proposed, that react

 on the measured one-way delay variation (see

 [I-D.ietf-ledbat-congestion], [Chirp]). This control variable is

 updated after each received ACK.

 C(t) = TSval(t) - TSecr(t)

 V(t) = C(t) - C(t-1)

 provided that the timestamp clocks at both ends are running at

 roughly the same rate. Without prior knowledge of the timestamp

 clock interval used by the partner, a sender can try to learn this

 interval by observing the exchanged segments for a duration of a few

 RTTs. However, such a scheme fails if the partner uses some form of

 implicit integrity check of the timestamp values, which would appear

 as either random scrambling of LSB bits in the timestamp, or give

the

 impression of much shorter clock intervals than what is actually

 used. If the partner uses some form of segment counting as

timestamp

 value, without any direct relationship to the wall-clock time, the

 above formula will fail to yield meaningful results. Finally the

 network conditions need to remain stable during any such training

 phase, so that the sender can arrive at reasonable estimates of the

 partners timestamp clock tick duration.

 [EDITOR'S NOTE: the following refers to a mask field which doesn't

 exist anymore, needs a rewrite. Shouldn't we define C(t) =

(TSecr(t)

 - TSval(t)) * (TSinterval(remote) / TSinterval(local))?]

 This note addresses these concerns by providing a means by which

both

 host are required to use a timestamp clock that is closely related

to

 the wall-clock time, with known clock rate, and also provides means

 by which a host can signal the use of a few LSB bits for timestamp

 value integrity checks. To arrive at a valid one-way delay (OWD)

 variation, first the timestamp received from the partner has to be

 right-shifted by a known amount of bits as defined by the mask

field.

 Next the local and remote timestamp values need to be normalized to

a

 common base clock interval (typically, the local clock interval):

 remote

interval

 C = (TSecr >> local mask) - (TSval >> remote mask) *

 t local interval

 V(t) = C(t) - C(t-1)

 [EDITOR'S NOTE: the following refers to field definitions from the

 old TS nego draft; needs a rewrite.]

Scheffenegger, et al. Expires January 16, 2014 [Page

9]

Internet-Draft Timestamp Intervals July

2013

 The adjustment factor can be calculated once during the timestamp

 capability negotiation phase, and pure integer arithmetic can be

used

 during per-segment processing:

 EXP.min = min(EXP.loc, EXP.rem)

 EXP.rem -= EXP.min

 EXP.loc -= EXP.min

 FRAC.rem = (0x800 | FRAC.rem) << EXP.rem

 FRAC.loc = (0x800 | FRAC.loc) << EXP.loc

 and assuming that the local clock tick duration is lower

 ADJ = FRAC.rem / FRAC.loc

 with ADJ being a integer variable. For higher precision, two

 appropriately calculated integers can be used.

 Any previously required training on the remote clock interval can be

 removed, resulting in a simpler and more dependable algorithm.

 Furthermore, transient network effects during the training phase

 which may result in a wrong inference of the remote clock interval

 are eliminated completely.

 Though specified for endpoint usage for congestion control, the

 difference betwen interarrival and interdeparture time used by this

 algorithm is applicable for passive measurement of jitter, as well.

Authors' Addresses

 Richard Scheffenegger

 NetApp, Inc.

 Am Euro Platz 2

 1120 Vienna

 Austria

 Phone: +43 1 3676811 3146

 Email: rs@netapp.com

Scheffenegger, et al. Expires January 16, 2014 [Page

10]

Internet-Draft Timestamp Intervals July

2013

 Mirja Kuehlewind

 University of Stuttgart

 Pfaffenwaldring 47

 70569 Stuttgart

 Germany

 Email: mirja.kuehlewind@ikr.uni-stuttgart.de

 Brian Trammell

 Swiss Federal Institute of Technology Zurich

 Gloriastrasse 35

 8092 Zurich

 Switzerland

 Phone: +41 44 632 70 13

 Email: trammell@tik.ee.ethz.ch

Scheffenegger, et al. Expires January 16, 2014 [Page

11]

