
Network Working Group                                   Jonathan Trostle
INTERNET-DRAFT                                             Cisco Systems
                                                              Mike Swift
                                                        University of WA

                   The Lightweight Kerberos Protocol
                     <draft-trostle-lwkerb-01.txt>

Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026 [6].

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet- Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

   This draft expires on November 30th, 2001. Please send comments to
   the authors.

1. Abstract

   The Kerberos V5 protocol [3] allows network entities to authenticate
   and establish shared secret keys. Some network applications would
   benefit from a lightweight authentication mechanism with many of the
   benefits of Kerberos, but where the messages have fewer bytes than
   existing Kerberos messages. Also, we describe a protocol option that
   requires only two messages to be sent and received from the client,
   to support lightweight clients. This document describes a Kerberos-
   like protocol that does not use ASN.1 and is optimized for smaller
   messages. The protocol makes use of existing Kerberos infrastructure.

2. Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/draft-trostle-lwkerb-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html


   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC2119 [2].

Trostle, Swift                                                  [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119


INTERNET DRAFT                  May 2001           Expires November 2001

3. Protocol Overview

   We define lw-ticket, lw-authenticator, and message constructs. We use
   the notation of TLS [5].

   The current proposal does not eliminate the RFC 1510 Kerberos
   libraries from the client. The client obtains lw-tickets using
   conventional Kerberos exchanges with a KDC that also hosts the lw-KDC
   component.  The client indicates its desire to obtain a lw-ticket, in
   addition to a conventional Kerberos ticket, by including a padata
   type in the KDC request message. The KDC returns the lw-ticket in a
   padata field of the KDC reply message.

   Subsequent exchanges between the client and application server can
   use the lw-ap-req and lw-ap-rep messages in place of the Kerberos AP
   exchange. The advantage here is reduced processing and much smaller
   messages in the client server exchange. Our initial estimate is that
   there is approximately a 50% reduction in size of messages.

   In addition, we define a new message that does not have a Kerberos
   analog: the lw-passthrough message. By using this option, the client
   does not have to contact the KDC at all (subsequent to obtaining its
   initial TGT). The lw passthrough option is valuable in environments
   where the client must minimize the messages it sends.  To initiate
   it, the client sends a lw-ap-req to the application server, but the
   ticket in the lw-ap-req is either a TGT or a crossrealm TGT. The
   application server creates the lw-passthrough message by including
   the received lw-ap-req message and its own TGT and sending it to its
   local KDC. The local KDC, in case it cannot decrypt the lw-ap-req,
   then forwards it on to the next KDC, after replacing the ticket with
   its own crossrealm ticket targetted at the next KDC.

   If the next KDC can decrypt the lw-ap-req, it validates it (except
   for authenticator time fields), and then re-encrypts the ticket with
   the session key from the accompanying ticket. It then sends the lw-
   passthrough message back to the previous KDC.

4. Protocol Constructs

   We define lw-ap-req and lw-ap-rep messages that are sent by the
   initiator and responder, respectively. The lw-ap-rep is only sent by
   the target if the initiator has set the MUTUAL-AUTH flag.

      lw-ap-req = { // version number will match tkt vno.
        uint16           message type
        lw-ticket        ticket
        lw-authenticator authenticator
      }

https://datatracker.ietf.org/doc/html/rfc1510


      lw-ap-reply = {
        uint16            version number
        uint16            message type
        uint16            extensions field length
        extfield          extensions field

Trostle, Swift                                                  [Page 2]



INTERNET DRAFT                  May 2001           Expires November 2001

        encryptedpart     lw-encreplypart
      }

      lw-encreplypart = {
        key            subkey
        uint64         sequence number
        uint32         time0
        uint32         time1
      }

      lw-ticket = {
        uint16          version number
        namestring      server name     // not present in service ticket
                                        // UTF-8 encoding
        namestring      server realm
        uint16          extensions field length
        extfield        extensions field
        encryptedpart   encticket
      }

      encticket = {
        namestring     client name
        namestring     client realm
        key            session key
        uint32         logon time      // not present in service ticket
        uint32         expiration time
        uint32         renew time      // not present in service ticket
      }

      namestring = {
        uint16         name length
        string         name           // UTF-8 encoding
      }

      extfield = {
        uint16         type0
        uint16         length0
        uchar[length0] data0
        uint16         type1
        uint16         length1
        uchar[length1] data1
        ...
      }

      lw-authenticator = {      //  version number matches ticket vno
        uint32      time0
        uint32      time1
        key         subkey



        uint64      sequence number
        uint16      extensions field length
        extfield    extensions field
      }

   The lw-authenticator is encrypted using the session key from the

Trostle, Swift                                                  [Page 3]



INTERNET DRAFT                  May 2001           Expires November 2001

   ticket.  Extension types 1-31 are reserved. We define the following
   extension field types for an authenticator:

     extension field type: 32
     extension field type 32 length: 4 (bytes)
     extension field type 32 data: context establishment flags bit
      vector (as in [4]):

     Delegation flag               1
     Mutual flag                   2
     Replay flag                   4
     Sequence flag                 8
     Confidentiality flag          16
     Integrity flag                32

   The bit vector is encoded in little-endian form. If this extension
   type is not present, then it is the same as sending type 32 with all
   of the above six bits set (delegation, mutual, replay, sequence,
   confidentiality, and integrity).

   We define the following extension field types for a ticket:

       extension field type: 35
       extension field length: 8 bytes
       extension field data: both time fields from the authenticator.

   This extension is used in the lw-passthrough message to allow an
   application server to quickly reject a message that is a replay or a
   clock skew error. Alternatively, the application server will learn
   about this problem after the lw-passthrough message is returned
   through multiple KDC's.

   In the lwkerb passthrough option, the following ticket extension is
   placed into the ticket in the lw-ap-req by the user's KDC (the home
   KDC):

       extension field type: 36
       extension field data: the following servicetkt-skey structure

   The servicetkt-skey structure is:

      servicetkt-skey = {
        encryptedpart   encsrvtktskey  // encrypted in the TGT skey
      }

      encsrvtktskey = {
        key             service tkt session key
      }



   The structure is removed from the lw-ap-req and placed into the the
   lw-ap-reply by the lwkerb responder. The responder then sends the
   lw-ap-reply to the lwkerb initiator.

   The following extension is placed into the lw-ap-req ticket

Trostle, Swift                                                  [Page 4]



INTERNET DRAFT                  May 2001           Expires November 2001

   extensions field by the lwkerb responder's KDC (the local KDC):

       extension field type: 37
       extension field data: the following enckdcreppart structure

      enckdcreppart = {
        encryptedpart   local-kdc-rep-body  // encrypted in srvtktskey
      }

      local-kdc-rep-body = {
        namestring server name  // UTF-8 encoding
        namestring server realm // UTF-8 encoding
        uint32     expiration time // could add to servicetkt-skey too
      }

   This extension is removed from the lw-ap-req message and then placed
   in the lw-ap-reply extensions field by the lwkerb responder. The
   responder then sends the lw-ap-reply to the lwkerb initiator.

   Here we define the key and encryptedpart structures:

      key = {
        uint16        keytype
        uint16        length
        uchar[length] keyvalue
      }

      encryptedpart = {
        uint16        etype
        uint16        keyversion
        uint16        length
        uchar[length] ciphertext    // define ciphertext for RC4,
                                    // AES etypes
      }

      The encryption type is derived from the Kerberos encryption type.

      We also define the following message that does not have a Kerberos
      analog; this message is used for the lwkerb passthrough option:

      lw-passthrough = {
        ap-req        lw-ap-req  // using client TGT or client
                                 // xrealm TGT
        ticket        lw-ticket  // server or KDC lw-tgt
      }

   Upon receiving such a message, a lw-KDC will check if the ap-req is
   targetted at itself. If so, it will validate that the authenticator
   in the ap-req decrypts successfully using the session key from the



   lw-ticket. The ticket is also decrypted, and the expiration is
   checked. The lw-KDC will NOT validate the time fields in the
   authenticator to check for replays. If all goes well, the lw-KDC will
   re-encrypt the ticket using the session key from the ticket in the
   lw-passthrough message and send the lw-passthrough message back to

Trostle, Swift                                                  [Page 5]



INTERNET DRAFT                  May 2001           Expires November 2001

   the entity it received it from.

   If the ap-req is not targetted at the current lw-KDC, then the lw-KDC
   forwards it to the next lw-KDC after replacing the ticket with its
   own lw-tgt targetted at the next KDC. The old ticket is cached and
   used when the lw-KDC receives the lw-passthrough message back from
   the next KDC.

      ErrorMessage = {
        uint16        error code
        uint16        extensions field length
        extfield      extensions field
      }

   The following error codes are reused from [3]:

      lwapreqerr-bad-integrity     31
      lwapreqerr-tkt-expired       32
      lwapreqerr-repeat            34
      lwapreqerr-not-us            35
      lwapreqerr-badmatch          36
      lwapreqerr-skew              37

   along with errors 39-50, and 60 from [3].

5.  Acknowledgements

   The authors thank Doug Engert and Hannes Tschofenig for their
   feedback on this document.

6.  Security Considerations

   The entire draft discusses security.

7.  References

   [1] Bradner, S., "The Internet Standards Process -- Revision 3", BCP
9, RFC 2026, October 1996.

   [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997

   [3] J. Kohl, C. Neuman. The Kerberos Network Authentication
       Service (V5), Request for Comments 1510.

   [4] Linn, J., "The Kerberos V5 GSSAPI Mechanism",
RFC 1964.

   [5] Dierks T., Allen C. "The TLS Protocol, Version 1.0",

https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1964


RFC 2246.

Trostle, Swift                                                  [Page 6]

https://datatracker.ietf.org/doc/html/rfc2246


INTERNET DRAFT                  May 2001           Expires November 2001

8. Expiration Date

   This draft expires on November 30th, 2001.

9. Authors' Addresses

      Jonathan Trostle
      Cisco Systems
      170 W. Tasman Dr.
      San Jose, CA 95134
      Email: jtrostle@cisco.com

      Mike Swift
      University of Washington
      Seattle, WA
      Email: mikesw@cs.washington.edu

10. Full Copyright Statement

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implmentation may be prepared, copied, published and
   distributed, in whole or in part, without restriction of any kind,
   provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."



Trostle, Swift                                                  [Page 7]


