
Network Working Group H. Tschofenig
Internet-Draft ARM Limited
Intended status: Experimental M. Baugher
Expires: May 3, 2018 Consultant
 October 30, 2017

Layered DTLS/TLS
draft-tschofenig-layered-tls-00

Abstract

 TLS and increasingly also DTLS are frequently used to provide channel
 security for Internet of Things (IoT) communication. On the Web and
 smart phones, TLS is already the defacto approach for securing
 protocol interactions. While the end-to-end security offered by TLS,
 particularly TLS 1.3, is already too much for some, there are others
 who believe that TLS is insufficient. While the former group is
 working on ways to weaken TLS security, the latter group is
 interested in designing an application layer security solution.
 Whether application-layer security is used in addition to or as a
 substitute for transport-layer security is of secondary importance.
 However, the security needs for such an application layer solution
 are similar, if not identical, to those that drove the design of TLS.
 This is for an obvious reason: Security requirements are not tied to
 the name of a security protocol nor to the layer at which it is
 executed. One can make this observation also in other areas, such as
 with the increasing similarity of Internet Key Exchange (IKE) and the
 TLS handshake protocols.

 These discussions within the IETF inspired the document authors to
 explore whether TLS could actually be used also at the application
 layer and how complex it would be. We call this approach "Layered
 TLS" since TLS may, in some scenarios, be executed at two layers:
 above the transport layer in the traditional manner and also at the
 application layer.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

Tschofenig & Baugher Expires May 3, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft LDTLS October 2017

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Layered DTLS Use Cases 5
3.1. Application-Layer DTLS in the end device 5
3.2. Transport-layer DTLS to the end device 5

4. Design Rational . 6
5. Layered TLS Design . 7
5.1. Relocatable layers 7
5.2. Application-specific layer headers 8

6. Functional Design . 9
7. Summary . 10
8. Security Considerations 10

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Tschofenig & Baugher Expires May 3, 2018 [Page 2]

Internet-Draft LDTLS October 2017

9. IANA Considerations . 11
10. References . 11
10.1. Normative References 11
10.2. Informative References 11
10.3. URIs . 11

Appendix A. Implementation 13
A.1. OpenSSL . 13
A.2. mbedTLS . 15

Appendix B. Contributors . 15
 Authors' Addresses . 15

1. Introduction

 "Layered TLS" addresses two problems with TLS connections to middle
 boxes: End points cannot authenticate each other, and each
 intermediary gains more access to decrypted messages than it needs.
 The lack of end-to-end authentication puts a service at risk of
 message-forgery attacks. Services lacking end-to-end encryption,
 moreover, leak information and violate the principle of "least
 privilege." End-systems that use TLS or DTLS may benefit from
 applying TLS to secure application messages, end-to-end, and reusing
 TLS infrastructure and open-source software. This short report
 solicits ideas and opinions from the Internet standards community on
 using TLS at the application layer for message security, end-to-end.

 In this document, "message security" means sender authentication,
 message-integrity protection, and confidentiality of at least parts
 of the message. "End-to-end authentication" means that a network
 receiver can determine the sender of a message - and vice versa. And
 "end-to-end confidentiality" means that the receiver and only the
 receiver can read the sender's message. The need for these security
 services on the Internet is well established and defined [RFC4949].
 Nonetheless, most Internet services today lack end-to-end security,
 which is the subject of this work.

 Internet mail endpoints, for example, are periodically offline and
 need always-on SNMP servers to store mail. StartTLS is a standard
 that authenticates mail servers and encrypts messages on the network,
 but transport-layer security cannot cryptographically authenticate
 mail endpoints or encrypt messages between them. That requires PGP,
 S/MIME or some other method of message authentication and encryption.
 The absence of this layer of email security has caused enormous
 problems for people, organizations and nations worldwide, but
 insecure practices persist.

 The same had been generally true for chat and VoIP services prior to
 the introduction of application layer security protocols: XMPP
 deployments, for example, have generally failed to protect message

https://datatracker.ietf.org/doc/html/rfc4949

Tschofenig & Baugher Expires May 3, 2018 [Page 3]

Internet-Draft LDTLS October 2017

 contents using S/MIME, as specified by XMPP standards. Instead,
 early deployments used only transport security between chat servers,
 similar to StartTLS between SNMP servers. Chat, however, has evolved
 a succession of application-layer security protocols such as Off-the-
 Record and the "double-ratchet" key-management schemes found in
 Signal/Noise and its predecessors. VoIP endpoints have initially
 passed keys in a hop-by-hop fashion between SIP proxies (with SIP
 proxies seeing the keys in plaintext) before a range of other end-to-
 end security solutions were developed, including DTLS-SRTP. The
 emergence of end-to-end security for VoIP and chat is a bright spot
 for improving privacy and security through middle boxes.

 Internet of Things (IoT) communications have a similar problem: IoT
 services commonly use middle boxes for connecting different IoT
 islands. Unlike most chat deployments, however, IoT devices have
 additional constraints: they are typically limited in memory,
 storage, processing power and network capacity. This complicates the
 problem of securing these applications and raises the specter of many
 more new and untested security protocols, including problematic key
 management, seeZillner [1] and authorization systems, see SmartThings
 [2].

 It is unlikely that a single security protocol can satisfy all IoT
 applications since some of them will require one-shot messages, like
 firmware updates. But CoAP, MQTT, HTTP and other standards
 increasingly use DTLS or TLS for communications security in at least
 some constrained environments. Ideally, deployments should avoid the
 use of middle boxes to simplify the overall architecture. However,
 for those cases where this is not feasible this work seeks to
 authenticate and encrypt through middle boxes by reusing TLS
 [I-D.ietf-tls-tls13], [I-D.ietf-tls-dtls13] infrastructure and open-
 source software implementations.

 This is a work in progress to develop an architecture, design and
 implementations for layered TLS services in both the end system and
 middle box. Some problems and evaluation metrics are also considered
 in the summary.

2. Terminology

 "Layered TLS" can refer to a TLS or DTLS association between
 endpoints. Also, as used in this document, "middle box" is
 synonomous with application-layer gateway, hub, semantic gateway,
 gateway or proxy.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Tschofenig & Baugher Expires May 3, 2018 [Page 4]

Internet-Draft LDTLS October 2017

3. Layered DTLS Use Cases

 Two use cases are considered. Both of these examples use DTLS.

3.1. Application-Layer DTLS in the end device

 It is well understood that a TLS or DTLS function is relocatable from
 an end system to a middle box, and this is true of layered TLS: The
 end-device might use application or transport security or both. This
 is necessary given the diversity of today's IoT products. For
 example, One product runs TLS from a gateway to a user device, which
 it also connects to a ZigBee device, see Traedfri [3]. The gateway
 in Figure 1 is a "semantic gateway" that converts one set of
 operations to another.

 +--+
 |+------+ |
 ||DEVICE|<-+ | | | | |
 |+------+ | +---+|
 | | | M ||
 |+------+ | +-------+ | O ||
 || ... |<-+--ZIGBEE-->|GATEWAY|<- COAP ->| B ||
 |+------+ | +-------+ | I ||
 | | | L ||
 |+------+ | | E ||
 ||DEVICE|<-+ +---+|
 |+------+ |
 +--+

 Figure 1: A middle-box semantic gateway

 In Figure 1, DTLS secures CoAP messages en route. An additional DTLS
 layer would improve end-to-end security for data that are sent over
 the ZigBee network but intended only for the mobile endpoint and not
 needed by the GATEWAY function.

3.2. Transport-layer DTLS to the end device

 In another topology, CoAP is run between a constrained end-device and
 a cloud server, aggregator, or some type of proxy. In this case,
 some non-constrained protocol rather than CoAP may run on the other
 side of the middle box. But either way, all device data are
 accessible to the proxy en route to their legitimate destination,
 such as the mobile device shown below.

Tschofenig & Baugher Expires May 3, 2018 [Page 5]

Internet-Draft LDTLS October 2017

 +---+
 |+------+ |
	DEVICE	<-+				
+------+						
+------+	+-------+ HTTP +--------------+					
	...	<-+---COAP--->	CLOUD	<--MQTT-->	APPLICATION	
+------+		SERVER	AMQP	SERVER		
	+-------+ XMPP +--------------+					
+------+						
	DEVICE	<-+				
+------+						
 +---+

 Figure 2: DTLS to the IoT Endpoint

 Figure 2 illustrates the problem of relying on hop-by-hop transport
 security: The end systems have no assurance that all hops run it.
 Thus, in addition to method exposure inside middle boxes, end systems
 have no assurance of authentication and confidentiality end-to-end.
 A partial remedy to this problem is to secure messages between the
 DEVICE and the APPLICATION SERVER. This is done independently of the
 Figure 2 CLOUD SERVER. This is the goal of layered TLS.

4. Design Rational

 At a first glance, the use of TLS may appear as an overkill since
 application layer security often gives the perception of being
 lightweight. However, we argue that the same security services are
 needed.

 When protecting data sent by a device, one obviously might want to
 offer integrity and confidentiality protection. Additionally, it is
 important for the recipient to verify that the data was sent by a
 specific party, a property provided by data origin authentication.
 Today, ciphers offering authenticated encryption with additional data
 (AEAD) are the preferred approach.

 So far, a simple JOSE or COSE object provides us such security
 services. When we design such a system we might want to start with
 public key cryptography to simplify key management. However, public
 key cryptography has the unfortunate side-effect of being
 heavyweight, particularly on a
 per-message basis. Additionally, there is the risk of denial of
 service attacks when an entity needs to make heavy computations based
 on a single message only.

Tschofenig & Baugher Expires May 3, 2018 [Page 6]

Internet-Draft LDTLS October 2017

 The classical design to amortize the cost of public key cryptography
 is to use two phases: In the first phase, we use public key
 cryptography for entity authentication. We then exchange symmetric
 keys for use in the second phase where data is protected. The idea
 is that the first phase happens less frequently than the second where
 application data protection takes place. Ideally, we want to avoid
 the first phase as much as possible, which is why we want to cache
 symmetric keys for fast re-authentication (or resumption).

 Best current practice in cryptography today suggests to also
 incorporate perfect-forward secrecy in the derivation of symmetric
 key utilizing a Diffie-Hellman approach. Additionally, it has long
 been a requirement to take crypto-agility into account, since
 cryptographic algorithms age and different communities tend to have
 different preferences for algorithms.
 Finally, a modern protocol design also needs to consider extensions
 to the main protocol via a negotiation mechanism.

 Voila! We have just re-designed TLS (minus all the security
 analysis). Many of the needed security features in today's security
 protocols are not bound to the name of the protocol but are rather a
 side-effect of the security and privacy services needed for modern
 applications and the best current cryptography design practices.

 Every time you hear "TLS is complex" or "TLS is so heavyweight" ask
 yourself whether this "complexity" or "weight" is the result of TLS/
 DTLS or rather the result of security services that a specific
 application needs.

5. Layered TLS Design

 In a communications protocol, a "layer" is often associated with a
 communications-protocol header, which conveys addressing or other
 "metadata." Message metadata are considered in one subsection below.

 The next subsection considers where headers and TLS layer services
 are applied along the service path. Figure 2 shows a case where a
 transport-layer DTLS connection originates at the constrained device.
 Figure 1 shows a case where the constrained device has its own link-
 layer security and the GATEWAY acts as the terminus of a DTLS
 connection. In either case, an application-DTLS layer might be
 located at the constrained device or at the middle box.

5.1. Relocatable layers

 An application developer has to decide whether to use TLS or DTLS at
 the application layer, and this decision depends on the properties
 offered by the lower layers, end-to-end. If the lower layer has a

Tschofenig & Baugher Expires May 3, 2018 [Page 7]

Internet-Draft LDTLS October 2017

 reliable transport service (usually TCP), then TLS is RECOMMENDED.
 But if the lower layer has an unreliable service like UDP or connects
 to a middle box, then DTLS is RECOMMENDED. DTLS operates on top of
 unreliable transports while TLS assumes reliable transports.

 By design, TLS layers are independent, but code and data can be
 shared when two layers share a physical device. More commonly today,
 the layers can originate either at a communications endpoint or at
 some middle box in the service path.

5.2. Application-specific layer headers

 By design, application-layer TLS secures services through middle
 boxes. An upper TLS or DTLS layer restricts access to message data
 inside the middle box. Nonetheless, middle boxes often need some
 information from and about the message for message processing. This
 information is referred to as "metadata," or information about the
 message that may be conveyed in a header, separate from the content
 of the message and usually unencrypted.
 [I-D.ietf-core-object-security] does not require that header metadata
 be moved to an external header, however, in order to reduce overhead
 in a constrained device.

 Application-layer encodings, such as CBOR/COSE or JSON/JOSE define
 message metadata that need to be shared with middle boxes in two
 varieties, protected or unprotected, i.e. integrity-protected or re-
 writable [RFC8152]. The reader should note that the use of the term
 "layer" in this document is different from the COSE standard in that
 a TLS layer is a TLS or DTLS connection at or above the transport
 layer, i.e. source and destination addresses define the layer.

 The identification and encoding of message parameters into protected
 or unprotected headers is very much a function of the particular
 application service, its content and its use of middle boxes. For
 example, OSCORE maps message fields into protected, protected and
 encrypted, or unprotected fields. These fields are from the COSE-
 encoded object parameters that are needed by CoAP proxies or other
 types of middle boxes [I-D.ietf-core-object-security].

 As important as metadata construction might be, the first solution
 pursued in this work is to scale down to a very simple design that
 might prove useful, i.e. improve security. For example, two
 applications listening on remote ports might not need application-to-
 application address metadata or other types of service-routing
 parameters. In this case, there is no need for a header. But in
 many practical cases do require a header, such as routing through an
 application overlay, and RESTful endpoints. These cases will be
 considered more closely in future implementation work.

https://datatracker.ietf.org/doc/html/rfc8152

Tschofenig & Baugher Expires May 3, 2018 [Page 8]

Internet-Draft LDTLS October 2017

6. Functional Design

 The functional design assumes that an authorization system has
 established operational keys for authenticating endpoints. In a
 layered design, this needs to be done for each layer, which may
 operate in two separate authorization domains.

 +---+
 | +---+ +---+ |
 | +--------+ |APP| |APP| +--------+ | | |
 | |security| +---+ +---+ |security| |
 | |--------+ ^ ^ |--------+ |
 | |policies| | | |policies| |
 | |LAYER 0 | | | |LAYER 0 | |
 | +--------+ v v +--------+ |
 | + +------+ APP +------+ + |
 | | | TLS- |<--------->| TLS- | | |
 | +----->|SERVER| LAYER |CLIENT|<-----+ |
 | +------+ +------+ |
 | TOP LAYER ^ ^ |
 +-----------------|-------------------|-----------------+
 | BOTTTOM LAYER | | |
 | v v |
 | +------+ TRANSPORT +------+ |
 | | TLS- |<--------->| TLS- | | | |
 | +--------+ |SERVER| LAYER |CLIENT| +--------+ |
 | |security| +------+ +------+ |security| |
 | |--------+ ^ ^ |--------+ |
 | |policies| | | |policies| |
 | |LAYER 1 +-----+ +-----+LAYER 1 | |
 | +--------+ +--------+ |
 | |
 +---+

 Figure 3

 Thus, the security policies of one layer are distinct from those of
 another in Figure 3. They may overlap, but that's not necessary or
 perhaps even likely since one layer operates end-to-end, the other
 hop-by-hop, and the two often have different authorization domains,

 TLS can protect IoT device-to-hub communications "on the wire" using
 the "bottom layer" of Figure 3, and it can protect application data
 inside the hub/application-gateway using the "top layer." This is
 needed. Application and transport security each have a role to play.
 Transport security restricts access to messages on the networks,
 notably application TLS headers,if any, and application-layer TLS
 restricts access to messages inside middle boxes.

Tschofenig & Baugher Expires May 3, 2018 [Page 9]

Internet-Draft LDTLS October 2017

 Thus, Figure 3 accepts an application-layer message, which gets
 encrypted and integrity protected with optional headers that MAY be
 integrity protected or not. In the most general case of Figure 3,
 the resulting TLS message and headers are passed to a TLS socket,
 which may have a different security policy than the application layer
 client_hello that the app sends in response to the first message.
 This application message triggers the transport layer to send its own
 client_hello to the TLS server or endpoint, which is often a middle
 box.

7. Summary

 The use of TLS/DTLS for protection of payloads at the application
 layer does not require much or any standardization. However,
 conceptually it is a big step. With the capabilities offered by TLS/
 DTLS a wide range of security services are available to the
 application developer.

 Future work will compare the protocol, message, and platform resource
 demands of layered TLS with given sets of policies and workloads.
 The layered TLS design presented here is applicable to TLS 1.3 and
 earlier versions. But TLS 1.3 is chosen for the Layered TLS
 prototype, however, to make use of zero-RTT and other new features,
 as well as ongoing improvements anticipated in future revisions of
 TLS and DTLS 1.3 specifications
 [I-D.ietf-tls-tls13][I-D.ietf-tls-dtls13].

 The authors are still undecided whether Layered TLS should establish
 keys for use with the TLS/DTLS record layer only or should establish
 keys for use with COSE/OSCoAP as well.

8. Security Considerations

 Layered TLS is intended to improve security for an Internet service
 by offering application layer security.

 In general, adding more security code increases complexity and can
 thereby make the service less secure. However, in this case the
 solution re-uses already existing code and utilizes it twice, at
 different layers.

 In any case, it is RECOMMENDED that the layers be isolated and the
 line between the layers in Figure 4 effectively firewalls one layer
 off from another using platform features that will foil cross-layer
 attacks in platforms with two layers.

Tschofenig & Baugher Expires May 3, 2018 [Page 10]

Internet-Draft LDTLS October 2017

9. IANA Considerations

 There are no IANA Considerations in this draft.

10. References

10.1. Normative References

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-02 (work in progress), October
 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-21 (work in progress),
 July 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

10.2. Informative References

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-06 (work in
 progress), October 2017.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

10.3. URIs

 [1] https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-
ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf

 [2] https://web.eecs.umich.edu/~earlence/assets/papers/
smartthings_sp16.pdf

https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-02
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-21
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-06
https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://web.eecs.umich.edu/~earlence/assets/papers/smartthings_sp16.pdf
https://web.eecs.umich.edu/~earlence/assets/papers/smartthings_sp16.pdf

Tschofenig & Baugher Expires May 3, 2018 [Page 11]

Internet-Draft LDTLS October 2017

 [3] http://www.sensorsiot.org/145-ikea-tradfri-hack-with-gateway/

 [4] https://thekerneldiaries.com/2016/06/13/openssl-ssltls-within-a-
different-protocol/

 [5] https://wiki.openssl.org/index.php/
EVP_Authenticated_Encryption_and_Decryption

 [6] https://tls.mbed.org/kb/how-to/mbedtls-tutorial

Tschofenig & Baugher Expires May 3, 2018 [Page 12]

http://www.sensorsiot.org/145-ikea-tradfri-hack-with-gateway/
https://thekerneldiaries.com/2016/06/13/openssl-ssltls-within-a-different-protocol/
https://thekerneldiaries.com/2016/06/13/openssl-ssltls-within-a-different-protocol/
https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
https://tls.mbed.org/kb/how-to/mbedtls-tutorial

Internet-Draft LDTLS October 2017

Appendix A. Implementation

 An implementation with two TLS layers has two TLS or DTLS state
 machines, two sets of policies, and key store. A device that
 physically hosts two TLS layers results in roughly twice as much
 state and twice as much header overhead, than a single layer. This
 is not unusual.

 Implementation work is ongoing on both OpenSSL and mbedTLS libraries.

 +--------------------------+--------------------------+
 | +---+ L | L | | | | | | | | |
 | |APP| A | A |
 | +---+ Y | Y |
 | ^ E | E |
 | | R | R |
 |+--------+ v | +--------+|
 ||security| +------+ | +------+ |security||
 ||--------+ |DTLS- | | |DTLS- | |--------+|
 ||policies|--->|SERVER|<---|--->|SERVER|<---|policies||
 || | +------+ | +------+ | ||
 |+--------+ | +--------+|
 +--------------------------+--------------------------+

 Figure 4: Prototype Functional Block Diagram

A.1. OpenSSL

 There is documentation online [Norrell] that describes a way to use
 the OpenSSL library to create a protocol-independent TLS
 encapsulation of application-level messages including Handshake
 messages, see Norrel [4]. Normally, the easiest OpenSSL API calls
 for a TLS session are SSL_write and SSL_read, shown in the next
 figure from Norrel.

Tschofenig & Baugher Expires May 3, 2018 [Page 13]

Internet-Draft LDTLS October 2017

 APPLICATION OPENSSL
 +----------------------+---------------+
 | +-----------+ | +---+| | | | |
 | |to_send_buf|--------|--------->| S ||
 | +-----------+ | | O ||
 | | | C ||
 | | | K ||
 |+------------+ | | E ||
 ||received_buf|<-------|<---------| T ||
 |+------------+ | +---+|
 +----------------------+---------------+

 Figure 5: OpenSSL calls send and receive user messages as TLS
 messages over a socket

 As shown above, OpenSSL writes a user buffer to a TLS message and
 sends the message out a communications socket. The converse is done
 on the receiving side. What's needed to create a layer independent
 of the host IP stack is to send the TLS message to a buffer rather
 than to a communications socket and do the reverse on the receiving
 side. This is shown in Figure 6, which is also from Norrell..

 +--------------------+------------+----------------------+
 |+---------+ +-+ +----+ +---------+|
 || buf1 |------->| |------->|RBIO|+------->| buf2 ||
 ||plaintext| |S| +----+ |encrypted||
 |+---------+ |S| OPENSSL | +---------+|
 |+---------+ |L| | +---------+|
 || buf4 | | | +----+ | buf3 ||
 ||plaintext|<-------| |<-------|WBIO|<--------|encrypted||
 |+---------+ +-+ +----+ +---------+|
 +--------------------+------------+----------------------+
 APPLICATION OPENSSL APPLICATION
 Plaintext side Encrypted side

 Figure 6: BIO interface provides raw TLS message

 In #SSLBIO, the SSL_write and SSL_read calls use an OpenSSL context
 that is bound to a buffer rather than a socket. To retrieve a TLS
 message for OpenSSL, the application does a BIO_read of the RBIO
 buffer on the sender side and the converse on the receiver side.

 In between the send and receive operations, message headers are
 optionally created and added or parsed and removed. The authors of
 [I-D.ietf-core-object-security] argue that there is a general need
 for both unprotected headers and protected headers with a message
 integrity check. OSCORE describes how to map COSE parameters to a
 message header. OSCORE uses the AEAD transform to take protected-

Tschofenig & Baugher Expires May 3, 2018 [Page 14]

Internet-Draft LDTLS October 2017

 header data as additional data without replicating the parameters
 inside the message. The message authentication code is created (on
 send) and checked (on receipt) in the OpenSSL layer of Figure 6.
 Prior to calling SSL_write, therefore, the application ("APPLICATION"
 in #SSLBIO) will add any needed protected and unprotected headers.
 If a protected header is to be included, the protected-header
 parameters will be passed as additional data to an AEAD interface,
 such as a manual encryption using EVP prior to SSL_Write and
 following SSL_read, see OpenSSL [5]. As mentioned above, protocol-
 dependent signaling is often needed for those application protocols
 that support application middle boxes to ensure that Handshake
 protocol messages are not cached en route. These are added as new
 parameters in the protected or unprotected headers.

A.2. mbedTLS

 Most of our work is focused on adding layer functionality to a TLS
 1.3 prototype based on mbedTLS. Like OpenSSL, mbedtls has a
 straightforward method to receive and send DTLS or TLS-encapsulated
 data. This uses mbedtls_ssl_set_bio, see mbedtls [6].

 Beyond how to use the mbedTLS application API, however, are deeper
 questions about efficiency, layer isolation, constrained and scalable
 multi-processor platforms, and platform resource sharing between
 layers. Our current work extends existing mbedtls example
 application code to prototype a single layer and multi-layer
 application program. Early code has been contributed to the mbedtls
 github repository.

Appendix B. Contributors

 The authors wish to thank our friends in the IPSO Alliance for their
 ideas and criticisms, particularly Per Staehl, Ned Smith, and Alan
 Grau.

Authors' Addresses

 Hannes Tschofenig
 ARM Limited

 EMail: hannes.tschofenig@gmx.net

 Mark Baugher
 Consultant

 EMail: mark@mbaugher.com

Tschofenig & Baugher Expires May 3, 2018 [Page 15]

