
Network Working Group J. Bradley
Internet-Draft Ping Identity
Intended status: Standards Track P. Hunt
Expires: July 18, 2014 Oracle Corporation
 T. Nadalin
 Microsoft
 H. Tschofenig

 January 14, 2014

The OAuth 2.0 Authorization Framework: Holder-of-the-Key Token Usage
draft-tschofenig-oauth-hotk-03.txt

Abstract

 OAuth 2.0 deployments currently rely on bearer tokens for securing
 access to protected resources. Bearer tokens require Transport Layer
 Security to be used between an OAuth client and the resource server
 when presenting the access token. The security model is based on
 proof-of-possession: access token storage and transfer has to be done
 with care to prevent leakage.

 There are, however, use cases that require a more active involvement
 of the OAuth client for an increased level of security, particularly
 to secure against token leakage. This document specifies an OAuth
 security framework using the holder-of-the-key concept, which
 requires the OAuth client when presenting an OAuth access token to
 also demonstrate knowledge of keying material that is bound to the
 token.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 18, 2014.

Bradley, et al. Expires July 18, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Protocol Specification 3
3.1. Binding a Key to an Access Token 4
3.1.1. Symmetric Keys 4
3.1.2. Asymmetric Keys 7

3.2. Accessing a Protected Resource 9
3.2.1. Symmetric Keys 9
3.2.2. Asymmetric Keys 11

4. Security Considerations 11
4.1. Security Threats . 12
4.2. Threat Mitigation . 12
4.3. Summary of Recommendations 13

5. IANA Considerations . 14
5.1. OAuth Parameters Registration 14
5.2. The 'hotk' JSON Web Token Claims 15
5.3. The 'hotk' OAuth Access Token Type 15
5.4. Profile Registry . 15

6. Acknowledgements . 16
7. References . 16
7.1. Normative References 16
7.2. Informative References 17

 Authors' Addresses . 17

1. Introduction

 At the time of writing the OAuth 2.0 [3] and accompanying protocols
 offer one main security mechanism to access protected resources,
 namely the bearer token. In [12] a bearer token is defined as

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bradley, et al. Expires July 18, 2014 [Page 2]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 A security token with the property that any party in possession of
 the token (a "bearer") can use the token in any way that any other
 party in possession of it can. Using a bearer token does not
 require a bearer to prove possession of cryptographic key
 material.

 The bearer token meets the security needs of number of use cases
 OAuth had been designed for. There are, however, scenarios that
 require stronger security properties and ask for active participation
 of the OAuth client software in form of cryptographic computations
 when presenting an access token to a resource server.

 This specification defines a new security mechanism for usage with
 OAuth that combines various existing specifications to offer enhanced
 security properties for OAuth. The incredients for this security
 solution are:

 1. A mechanism for dynamic key distribution.

 2. Data elements to bind emphemeral keying material to an access
 token. For the access token we assume a JSON Web Token (JWT) [6]
 in this specification to specify a complete solution. Future
 specifications may make this functionality available to other
 access token formats as well.

 3. A mechanism to allow the OAuth client to demonstrate a proof of
 possession.

 The rest of the document describes how these different components
 work together.

2. Terminology

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 specification are to be interpreted as described in [1].

3. Protocol Specification

 To describe the architecture of the proposed security mechanism it is
 best to start by looking at the main OAuth 2.0 protocol exchange
 sequence. Figure 1 shows the abstract OAuth 2.0 protocol exchanges
 graphically. The exchange in this document will focus on two
 interactions, namely

 1. to allow the client to obtain the ephemeral asymmetric
 credentails in step (D)

Bradley, et al. Expires July 18, 2014 [Page 3]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 2. to use the obtained asymmetric credentials for the interaction
 with the resource server in step (E)

 +--------+ +---------------+
 | |--(A)- Authorization Request ->| Resource |
 | | | Owner |
 | |<-(B)-- Authorization Grant ---| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(C)-- Authorization Grant -->| Authorization |
 | Client | | Server |
 | |<-(D)----- Access Token -------| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(E)----- Access Token ------>| Resource |
 | | | Server |
 | |<-(F)--- Protected Resource ---| |
 +--------+ +---------------+

 Figure 1: Abstract OAuth 2.0 Protocol Flow

3.1. Binding a Key to an Access Token

 OAuth 2.0 offers different ways to obtain an access token, namely
 using authorization grants and using a refresh token. The core OAuth
 specification defines four authorization grants, see Section 1.3 of
 [3], and [11] adds an assertion-based authorization grant to that
 list.

 This document extends the communication with the token endpoint. The
 token endpoint, which is described in Section 3.2 of [3], is used
 with every authorization grant except for the implicit grant type.
 In the implicit grant type the access token is issued directly.

 Two types of keying material can be bound to an access token, namely
 symmetric keys and asymmetric keys, and we explain them in separate
 sub-sections.

3.1.1. Symmetric Keys

 In case a symmetric key shall be bound to an access token then the
 following procedure is applicable. In the request message from the
 OAuth client to the authorization server the following parameters
 MUST be included:

Bradley, et al. Expires July 18, 2014 [Page 4]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 token_type: REQUIRED. For the symmetric holder-of-the-key variant
 the value MUST be set to "hotk-sk".

 profile: REQUIRED. The profile parameter provides information about
 what mechanisms the client supports to provide proof of
 possession of the key towards a resource server. The value
 MUST be taken from the algorithm registry created in

Section 5.4. Algorithm names are case-sensitive. If the
 client supports more than one profile then each individual
 value MUST be separated by a comma.

 For example, the client makes the following HTTP request using TLS
 (extra line breaks are for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &token_type=hotk-sk
 &profile=jws,mac

 Example Request to the Authorization Server

 If the access token request is valid and authorized, the
 authorization server issues an access token and optionally a refresh
 token. If the request client authentication failed or is invalid,
 the authorization server returns an error response as described in
 Section 5.2 of [3].

 The authorization server MUST include the following parameters in a
 successful response, if it supports any of the profiles listed by the
 client.

 id: REQUIRED. An ephemeral and unique key identifier. The
 authorization server MUST NOT select the same key identifier
 twice within the lifetime of the access token, which is
 indicated by the 'expires_in' parameter.

 key: REQUIRED. A fresh and unique shared symmetric secret with
 sufficient entrophy.

 profile: REQUIRED. The profile parameter provides further
 information about how the client has to provide proof of

Bradley, et al. Expires July 18, 2014 [Page 5]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 possession of the key with the resource server. The
 authorization server chooses a value from the list of supported
 mechanisms supported by the client.

 For example:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":"SlAV.....32hkKG",
 "token_type":"hotk-sk",
 "expires_in":3600,
 "refresh_token":"8xLOxBtZp8",
 "id":"client12345@example.com",
 "key":"adijq39jdlaska9asud",
 "profile":"jws"
 }

 The content of the 'access_token' MUST contain
 the key identifier value in the 'hotk' element,
 as shown in the example below.

 {"typ":"JWT",
 "alg":"HS256"
 }
 .
 {"iss":"authorization-server-id",
 "exp":1300819380,
 "hotk":"client12345@example.com"
 }
 .
 bbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZC

 DISCUSSION: Should we put the encrypted key into the access token?
 This would make the mechanism more similar to a Kerberos-based
 scheme.

 The key identifier, the key, and the profile name MUST NOT include
 characters other than:

 %x20-21 / %x23-5B / %x5D-7E
 ; Any printable ASCII character except for <"> and <\>

Bradley, et al. Expires July 18, 2014 [Page 6]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

3.1.2. Asymmetric Keys

 In case an asymmetric key shall be bound to an access token then the
 following procedure is applicable. In the request message from the
 OAuth client to the authorization server the following parameters
 MUST be included:

 token_type: REQUIRED. For the asymmetric holder-of-the-key variant
 the value MUST be set to "hotk-pk".

 pk_info: REQUIRED. This field contains information about the public
 key the client would like to bind to the access token in the
 JSON Web Key format. The public key is "application/x-www-
 form-urlencoded" encoded.

 For example, the client makes the following HTTP request using TLS
 (extra line breaks are for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &token_type=hotk-pk
 &pk_info=eZQQYbYS6WxS...lxlOB

 whereby the content of the pk_info field represents the following
 structure:

 {"keys":
 [
 {"alg":"RSA",
 "mod": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx
 4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
 tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
 QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
 SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "exp":"AQAB",
 "kid":"2011-04-29"}
]
 }

 Example Request to the Authorization Server

Bradley, et al. Expires July 18, 2014 [Page 7]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 If the access token request is valid and authorized, the
 authorization server issues an access token and optionally a refresh
 token. If the request client authentication failed or is invalid,
 the authorization server returns an error response as described in
 Section 5.2 of [3].

 The authorization server also places information about the public key
 used by the client into the access token to create the binding
 between the two. The new token type, called 'hotk-pk', is placed
 into the 'token_type' parameter.

 An example of a successful response is shown below:

Bradley, et al. Expires July 18, 2014 [Page 8]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFE....jr1zCsicMWpAA",
 "token_type":"hotk-pk",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"
 }

 whereby the content of the 'access_token' field, for example,
 contains an encoded JWT with the following raw structure:

 {"typ":"JWT",
 "alg":"HS256"}
 .
 {"iss":"authorization-server-id",
 "exp":1300819380,
 "hotk": {"keys":
 [
 {"alg":"RSA",
 "mod": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx
 4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
 tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
 QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
 SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
 "exp":"AQAB",
 "kid":"2011-04-29"}
]
 }
 }
 .
 bbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZC

 Example Response from the Authorization Server

3.2. Accessing a Protected Resource

 Accessing a protected resource depends on the chosen credential type.

3.2.1. Symmetric Keys

 When a symmetric key was used as a holder-of-the-key then the client
 has to demonstrate possession of the key that corresponds to the key
 identifier found in the access token.

Bradley, et al. Expires July 18, 2014 [Page 9]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 This specification defines three ways for providing this proof of
 possession, which are indicated as profiles in Section 3.1.1:

 jws: When the 'jws' profile is chosen then the client MUST compute
 the following string by concatenating together, in order, the
 following HTTP request elements:

 1. The HTTP request method in upper case. For example: "HEAD",
 "GET", "POST", etc.

 2. The HTTP request-URI as defined by Section 5.1.2 of [2].

 3. The hostname included in the HTTP request using the "Host"
 request header field in lower case.

 4. The port as included in the HTTP request using the "Host"
 request header field. If the header field does not include a
 port, the default value for the scheme MUST be used (e.g., 80
 for HTTP and 443 for HTTPS).

 5. The value of the "ext" "Authorization" request header field
 attribute if one was included in the request, otherwise, an
 empty string.

 Each element is followed by a new line character (%x0A) including
 the last element and even when an element value is an empty
 string. The resulting value MUST be put into the "request"
 element of a JSON document that is then subject to JWS processing
 [7]. The resulting JWS structure is put into the body of the HTTP
 request. A receiving authorization server MUST use the value in
 the 'kid' structure to identify the shared key and then use that
 key to verify the keyed message digest. Additionally, the content
 of the 'request' field needs to be verified against the HTTP
 header information. If any of these verification steps fail then
 the request to the protected resource MUST fail with a "401
 Unauthorized" error message back to the OAuth client.

 The following example shows and the corresponding encoding in a
 JWS structure:

Bradley, et al. Expires July 18, 2014 [Page 10]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 1) HTTP Request

 POST /request?b5=%3D%253D&a3=a&c%40=&a2=r%20b&c2&a3=2+q HTTP/1.1
 Host: example.com

 2) JWS Document

 {"typ":"HOTK-SK",
 "alg":"HS256",
 "kid":"client12345@example.com",
 "timestamp":"2012-07-15T10:20:00.000-05:00" }
 .
 {"request":"POST/request?b5=%3D%253D&a3=a&c%40=&a2=r%20b&c2&a3=
 2+qexample.com80"}
 .
 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 JWS Example

 mac: When the 'mac' profile is chosen then the client MUST follow
 the description in [10].

3.2.2. Asymmetric Keys

 The client accesses protected resources by presenting the access
 token to the resource server. It does so via a Transport Layer
 Security (TLS) secured channel. Since the client had previously
 bound a public key to an access token it selects this key for usage
 with TLS as described in [5].

 The resource server validates the access token and ensure it has not
 expired and that its scope covers the requested resource.
 Additionally, the resource server verifies that the public key
 presented during the TLS handshake corresponds to the public key that
 is contained in the access token.

 Note that this step confirms that the client is in possession of the
 private key corresponding to the public key previously bound to the
 access token. Information about the client authentication may be
 contained in the token in case the authorization server added this
 information when it authenticated the client.

4. Security Considerations

Bradley, et al. Expires July 18, 2014 [Page 11]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

4.1. Security Threats

 The following list presents several common threats against protocols
 utilizing some form of tokens. This list of threats is based on NIST
 Special Publication 800-63 [14]. We exclude a discussion of threats
 related to any form of registration and authentication.

 Token manufacture/modification: An attacker may craft a fake token
 or modify the token content (such as the authentication or
 attribute statements), causing a resource server to grant
 inappropriate access to the attacker. For example, an attacker
 may modify the token to extend the validity period or the scope to
 have extended access to information.

 Token disclosure: Tokens may contain authentication and attribute
 statements that include sensitive information.

 Token redirect: An attacker uses a token generated for consumption
 by one resource server to gain access to a different resource
 server that mistakenly believes the token to be for it.

 Token reuse: An attacker attempts to use a token that has already
 been used with that resource server in the past.

4.2. Threat Mitigation

 A large range of threats can be mitigated by protecting the contents
 of the access token by using a digital signature or a Message
 Authentication Code (MAC). Consequently, the token integrity
 protection MUST be sufficient to prevent the token from being
 modified.

 To deal with token redirect, it is important for the authorization
 server to include the identity of the intended recipients (the
 audience), typically a single resource server (or a list of resource
 servers), in the token. Restricting the use of the token to a
 specific scope is also RECOMMENDED.

 The authorization server MUST implement and use TLS. Which
 version(s) ought to be implemented will vary over time, and depend on
 the widespread deployment and known security vulnerabilities at the
 time of implementation. At the time of this writing, TLS version 1.2
 [8] is the most recent version. The client MUST validate the TLS
 certificate chain when making requests to protected resources,
 including checking the Certificate Revocation List (CRL) [9].

 For the interaction between the client and the resource server this
 specification requires a TLS extension for usage with out-of-band

Bradley, et al. Expires July 18, 2014 [Page 12]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 validation [5] to be used that allows clients to present raw public
 keys for asymmetric holder-of-the-key usage.

 With the usage of the holder-of-the-key concept it is not possible
 for any party other than the legitimate client to use an access token
 and to re-use it without knowing the corresponding asymmetric key
 pair. This mechanism prevents against token disclosure.

 With the usage of the asymmetric holder-of-the-key concept the
 following deployment consideration needs to be taken into
 consideration. In some deployments, including those utilizing load
 balancers, the TLS connection to the resource server terminates prior
 to the actual server that provides the resource. This could leave
 the token unprotected between the front end server where the TLS
 connection terminates and the back end server that provides the
 resource.

 Client implementations must be carefully implemented to avoid leaking
 the ephemeral credentials (either the private key from the asymmetric
 credential or the shared secret).

 Token replay is also not possible since an eavesdropper will also
 have to obtain the corresponding private key or shared secret that is
 bound to the access token. Nevertheless, it is good practice to
 limit the lifetime of the access token and therefore the lifetime of
 associated key.

4.3. Summary of Recommendations

 The following three items represent the main recommendations:

 Safeguard the private key/shared secret: Client implementations MUST
 ensure that the ephemeral private key / shared secret is not
 leaked to third parties, since those will be able to use the
 access token together with the keying material to gain access to
 protected resources.

 Switch keying material regularly: Clients can at any time create a
 new ephemeral credential and associate it with an access token.
 For example, a client presents a new public key when requesting an
 access token with the help of a refresh token. Nevertheless, the
 lifetime of these access token may be longer than the lifetime of
 bearer tokens.

 Issue scoped bearer tokens: Token servers SHOULD issue bearer tokens
 that contain an audience restriction, scoping their use to the
 intended relying party or set of relying parties.

Bradley, et al. Expires July 18, 2014 [Page 13]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

5. IANA Considerations

 This document requires IANA to take the following actions.

5.1. OAuth Parameters Registration

 This specification registers the following parameters in the OAuth
 Parameters Registry established by [3].

 Parameter name: pk_info

 Parameter usage location: token request

 Change controller: IETF

 Specification document(s): [[this document]]

 Related information: None

 Parameter name: token_type

 Parameter usage location: token request, token response,
 authorization response

 Change controller: IETF

 Specification document(s): [[this document]]

 Related information: None

 Parameter name: profile

 Parameter usage location: token request, token response,
 authorization response

 Change controller: IETF

 Specification document(s): [[this document]]

 Related information: None

 Parameter name: id

 Parameter usage location: token response, authorization response

 Change controller: IETF

 Specification document(s): [[this document]]

Bradley, et al. Expires July 18, 2014 [Page 14]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 Related information: None

 Parameter name: key

 Parameter usage location: token response, authorization response

 Change controller: IETF

 Specification document(s): [[this document]]

 Related information: None

5.2. The 'hotk' JSON Web Token Claims

 [6] established the IANA JSON Web Token Claims registry for reserved
 JWT Claim Names and this document adds the 'hotk' name to that
 registry.

5.3. The 'hotk' OAuth Access Token Type

 Section 11.1 of [3] defines the OAuth Access Token Type Registry and
 this document adds another token type to this registry.

 Type name: hotk

 Additional Token Endpoint Response Parameters: (none)

 HTTP Authentication Scheme(s): Holder of the key confirmation using
 TLS

 Change controller: IETF

 Specification document(s): [[this document]]

5.4. Profile Registry

 This document asks IANA to create a registry for profiles of
 symmetric key-based holder-of-the-key mechanisms. The policy for
 adding new entries to the registry is "Specification Required". IANA
 is asked to populate the registry with the following values:

 o Profile name: jws

 o Change controller: IETF

 o Specification document(s): [[this document]]

 o Profile name: mac

Bradley, et al. Expires July 18, 2014 [Page 15]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 o Change controller: IETF

 o Specification document(s): [[this document]]

6. Acknowledgements

 The author would like to thank the OAuth working group and
 participants of the Internet Identity Workshop for their discussion
 input that lead to this document.

7. References

7.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [3] Hardt, D., "The OAuth 2.0 Authorization Framework", draft-
ietf-oauth-v2-31 (work in progress), August 2012.

 [4] Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-
key-19 (work in progress), December 2013.

 [5] Wouters, P., Tschofenig, H., Gilmore, J., Weiler, S., and
 T. Kivinen, "Using Raw Public Keys in Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", draft-ietf-tls-oob-pubkey-10 (work in progress),
 October 2013.

 [6] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", draft-ietf-oauth-json-web-token-14 (work in
 progress), December 2013.

 [7] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-19
 (work in progress), December 2013.

 [8] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [9] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-31
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-31
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-19
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-19
https://datatracker.ietf.org/doc/html/draft-ietf-tls-oob-pubkey-10
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token-14
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-19
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280

Bradley, et al. Expires July 18, 2014 [Page 16]

Internet-Draft OAuth 2.0 HOTK Token Usage January 2014

 [10] Richer, J., Mills, W., Tschofenig, H., and P. Hunt, "OAuth
 2.0 Message Authentication Code (MAC) Tokens", draft-ietf-

oauth-v2-http-mac-04 (work in progress), July 2013.

7.2. Informative References

 [11] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", draft-ietf-oauth-assertions-13
 (work in progress), December 2013.

 [12] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", draft-ietf-

oauth-v2-bearer-23 (work in progress), August 2012.

 [13] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [14] Burr, W., Dodson, D., Perlner, R., Polk, T., Gupta, S.,
 and E. Nabbus, "NIST Special Publication 800-63-1,
 INFORMATION SECURITY", December 2008.

Authors' Addresses

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com

 Phil Hunt
 Oracle Corporation

 Email: phil.hunt@yahoo.com

 Tony Nadalin
 Microsoft

 Email: tonynad@microsoft.com

 Hannes Tschofenig

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-http-mac-04
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-http-mac-04
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-assertions-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-bearer-23
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-bearer-23
https://datatracker.ietf.org/doc/html/rfc5849
http://www.tschofenig.priv.at

Bradley, et al. Expires July 18, 2014 [Page 17]

