
OAuth H. Tschofenig
Internet-Draft Nokia Siemens Networks
Intended status: Informational P. Hunt
Expires: June 19, 2013 Oracle Corporation
 December 16, 2012

OAuth 2.0 Security: Going Beyond Bearer Tokens
draft-tschofenig-oauth-security-01.txt

Abstract

 The OAuth working group has finished work on the OAuth 2.0 core
 protocol as well as the Bearer Token specification. The Bearer Token
 is a TLS-based solution for ensuring that neither the interaction
 with the Authorization Server (when requesting a token) nor the
 interaction with the Resource Server (for accessing a protected
 resource) leads to token leakage. There has, however, always been
 the desire to develop a security solution that is "better" than
 Bearer Tokens (or at least different) where the Client needs to show
 possession of some keying material when accessing a Resource Server.
 This document tries to capture the discussion and to come up with
 requirements to process the work on solutions.

 This document aims to discuss threats, security requirements and
 desired design properties of an enhanced OAuth security mechanism.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 19, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Tschofenig & Hunt Expires June 19, 2013 [Page 1]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Security and Privacy Threats 3
4. Threat Mitigation . 4
4.1. Confidentiality Protection 5
4.2. Sender Constraint . 6
4.3. Key Confirmation . 6
4.4. Summary . 7

5. Requirements . 8
6. Use Cases . 12
6.1. Access to an 'Unprotected' Resource 12
6.2. Offering Application Layer End-to-End Security 13
6.3. Preventing Access Token Re-Use by the Resource Server . . 13
6.4. TLS Channel Binding Support 14

7. Security Considerations 14
8. Next Steps . 14
9. IANA Considerations . 15
10. Acknowledgments . 15
11. References . 16
11.1. Normative References 16
11.2. Informative References 16

 Authors' Addresses . 17

1. Introduction

 OAuth 1.0 [RFC5849] included a mechanism for putting a digital
 signature (when using asymmetric keys) and a keyed message digest
 (when using symmetric keys) to a resource request when presenting the
 OAuth access token. OAuth 2.0 [RFC6749] generalized the protocol and
 the Bearer Token security specification [RFC6750] is close to
 publication as an RFC.

 Figure 1 shows the OAuth 2.0 exchange at an abstract level and
 illustrates the main entities. For most parts of this document the
 focus is on the interaction between the Client and the Authorization
 Server and between the Client and the Resource Server.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Tschofenig & Hunt Expires June 19, 2013 [Page 2]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 +--------+ +---------------+
 | |--(A)- Authorization Request ->| Resource |
 | | | Owner |
 | |<-(B)-- Authorization Grant ---| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(C)-- Authorization Grant -->| Authorization |
 | Client | | Server |
 | |<-(D)----- Access Token -------| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(E)----- Access Token ------>| Resource |
 | | | Server |
 | |<-(F)--- Protected Resource ---| |
 +--------+ +---------------+

 Figure 1: OAuth: Abstract Protocol Flow

 From a security point of view the following aspects of the OAuth 2.0
 specification are worth mentioning:

 o Standardization of a JSON-based format and the content of the
 access token are still work in progress [I-D.ietf-oauth-json-web-
 token]. The same is true for the JSON-based security mechanisms.

 o The interaction to obtain an access token in step #1 mandates to
 implement and to use TLS with server-side authentication to
 protect the confidentiality of the transmitted information.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document uses the terminology defined in RFC 4949 [RFC4949].
 The terms 'keyed hash' and 'keyed message digest' are used
 interchangable. For privacy related matters we utilize the
 terminology defined in [I-D.iab-privacy-considerations].

 This document uses OAuth 2.0 terminology [RFC6749]. In particular,
 the terms Client, Resource Server, Authorization Server, and Access
 Token are used.

3. Security and Privacy Threats

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc6749

Tschofenig & Hunt Expires June 19, 2013 [Page 3]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 The following list presents several common threats against protocols
 utilizing some form of tokens. This list of threats is based on NIST
 Special Publication 800-63 [NIST800-63]. We exclude a discussion of
 threats related to any form of identity proofing and authentication
 of the Resource Owner to the Authorization Server since these
 procedures are not part of the OAuth 2.0 protocol specificaiton
 itself.

 Token manufacture/modification:

 An attacker may generate a bogus
 tokens or modify the token content (such as authentication or
 attribute statements) of an existing token, causing Resource
 Server to grant inappropriate access to the Client. For example,
 an attacker may modify the token to extend the validity period. A
 Client may modify the token to have access to information that
 they should not be able to view.

 Token disclosure: Tokens may contain personal data, such as real
 name, age or birthday, payment information, etc.

 Token redirect:

 An attacker uses the token generated for consumption
 by the Resource Server to obtain access to another Resource
 Server.

 Token reuse:

 An attacker attempts to use a token that has already
 been used once with a Resource Server. The attacker may be an
 eavesdropper who observes the communication exchange or, worse,
 one of the communication end points. A Client may, for example,
 leak access tokens because it cannot keep secrets confidential. A
 Client may also re-use access tokens for some other Resource
 Servers. Finally, a Resource Server may use a token it had
 obtained from a Client and use it with another Resource Server
 that the Client interacts with. A Resource Server, offering
 relatively unimportant application services, may attempt to use an
 access token obtained from a Client to access a high-value
 service, such as a payment service, on behalf of the Client using
 the same access token.

 We excluded one threat from the list, namely 'token repudiation'.
 Token repudiation refers to a property whereby a Resource Server is
 given an assurance that the Authorization Server cannot deny to have
 created a token for the Client. We believe that such a property is
 interesting but most deployments prefer to deal with the violation of
 this security property through business actions rather than by using

 cryptography.

4. Threat Mitigation

Tschofenig & Hunt Expires June 19, 2013 [Page 4]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 The purpose of this section is to discuss ways to mitigate the
 threats without taking the current working group status into
 consideration.

 A large range of threats can be mitigated by protecting the content
 of the token, using a digital signature or a keyed message digest.
 Alternatively, the content of the token could be passed by reference
 rather than by value (requiring a separate message exchange to
 resolve the reference to the token content). To simplify the
 subsequent description we assume that the token itself is digitally
 signed by the Authorization Server and therefore cannot be modified.

 To deal with token redirect it is important for the Authorization
 Server to include the identifier of the intended recipient - the
 Resource Server. A Resource Server must not be allowed to accept
 access tokens that are not meant for its consumption.

 To provide protection against token disclosure two approaches are
 possible, namely (a) not to include sensitive information inside the
 token or (b) to ensure confidentiality protection. The latter
 approach requires at least the communication interaction between the
 Client and the Authorization Server as well as the interaction
 between the Client and the Resource Server to experience
 confidentiality protection. As an example, Transport Layer Security
 with a ciphersuite that offers confidentiality protection has to be
 applied. Encrypting the token content itself is another alternative.
 In our scenario the Authorization Server would, for example, encrypt
 the token content with a symmetric key shared with the Resource
 Server.

 To deal with token reuse more choices are available.

4.1. Confidentiality Protection

 In this approach confidentiality protection of the exchange is
 provided on the communication interfaces between the Client and the
 Resource Server, and between the Client and the Authorization Server.
 No eavesdropper on the wire is able to observe the token exchange.
 Consequently, a replay by a third party is not possible. An
 Authorization Server wants to ensure that it only hands out tokens to
 Clients it has authenticated first and who are authorized. For this
 purpose, authentication of the Client to the Authorization Server
 will be a requirement to ensure adequate protection against a range

Tschofenig & Hunt Expires June 19, 2013 [Page 5]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 of attacks. This is, however, true for the description in Section
4.2 and Section 4.3 as well. Furthermore, the Client has to make

 sure it does not distribute the access token to entities other than
 the intended the Resource Server. For that purpose the Client will
 have to authenticate the Resource Server before transmitting the
 access token.

4.2. Sender Constraint

 Instead of providing confidentiality protection the Authorization
 Server could also put the identifier of the Client into the protected
 token with the following semantic: 'This token is only valid when
 presented by a Client with the following identifer.' When the access
 token is then presented to the Resource Server how does it know that
 it was provided by the Client? It has to authenticate the Client!
 There are many choices for authenticating the Client to the Resource
 Server, for example by using client certificates in TLS [RFC5246], or
 pre-shared secrets within TLS [RFC4279]. The choice of the preferred
 authentication mechanism and credential type may depend on a number
 of factors, including

 o security properties

 o available infrastructure

 o library support

 o credential cost (financial)

 o performance

 o integration into the existing IT infrastructure

 o operational overhead for configuration and distribution of
 credentials

 This long list hints to the challenge of selecting at least one
 mandatory-to-implement Client authentication mechanism.

4.3. Key Confirmation

 A variation of the mechanism of sender authentication described in
Section 4.2 is to replace authentication with the proof-of-possession

 of a specific (session) key, i.e. key confirmation. In this model
 the Resource Server would not authenticate the Client itself but
 would rather verify whether the Client knows the session key
 associated with a specific access token. Examples of this approach
 can be found with the OAuth 1.0 MAC token [RFC5849], Kerberos
 [RFC4120] when utilizing the AP_REQ/AP_REP exchange (see also [I-D
 .hardjono-oauth-kerberos] for a comparison between Kerberos and

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc4120

 OAuth), the OAuth 2.0 MAC token [I-D.ietf-oauth-v2-http-mac], and the
 Holder-of-the-Key approach [I-D.tschofenig-oauth-hotk].

Tschofenig & Hunt Expires June 19, 2013 [Page 6]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 To illustrate key confirmation the first examples borrow from
 Kerberos and use symmetric key cryptography. Assume that the
 Authorization Server shares a long-term secret with the Resource
 Server, called K(Authorization Server-Resource Server). This secret
 would be established between them in an initial registration phase.
 When the Client requests an access token the Authorization Server
 creates a fresh and unique session key Ks and places it into the
 token encrypted with the long term key K(Authorization Server-
 Resource Server). Additionally, the Authorization Server attaches Ks
 to the response message to the Client (in addition to the access
 token itself) over a confidentiality protected channel. When the
 Client sends a request to the Resource Server it has to use Ks to
 compute a keyed message digest for the request (in whatever form or
 whatever layer). The Resource Server, when receiving the message,
 retrieves the access token, verifies it and extracts K(Authorization
 Server-Resource Server) to obtain Ks. This key Ks is then used to
 verify the keyed message digest of the request message.

 Note that in this example one could imagine that the mechanism to
 protect the token itself is based on a symmetric key based mechanism
 to avoid any form of public key infrastructure but this aspect is not
 further elaborated in the scenario.

 A similar mechanism can also be designed using asymmetric
 cryptography. When the Client requests an access token the
 Authorization Server creates an ephemeral public / privacy key pair
 (PK/SK) and places the public key PK into the protected token. When
 the Authorization Server returns the access token to the Client it
 also provides the PK/SK key pair over a confidentiality protected
 channel. When the Client sends a request to the Resource Server it
 has to use the privacy key SK to sign the request. The Resource
 Server, when receiving the message, retrieves the access token,
 verifies it and extracts the public key PK. It uses this ephemeral
 public key to verify the attached signature.

4.4. Summary

 As a high level message, there are various ways how the threats can
 be mitigated and while the details of each solution is somewhat
 different they all ultimately accomplish the goal.

 The three approaches are:

 Confidentiality Protection:

Tschofenig & Hunt Expires June 19, 2013 [Page 7]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 The weak point with this approach, which
 is briefly described in Section 4.1, is that the Client has to be
 careful to whom it discloses the access token. What can be done
 with the token entirely depends on what rights the token entitles
 the presenter and what constraints it contains. A token could
 encode the identifier of the Client but there are scenarios where
 the Client is not authenticated to the Resource Server or where
 the identifier of the Client rather represents an application
 class rather than a single application instance. As such, it is
 possible that certain deployments choose a rather liberal approach
 to security and that everyone who is in possession of the access
 token is granted access to the data.

 Sender Constraint:

 The weak point with this approach, which is
 briefly described in Section 4.2, is to setup the authentication
 infrastructure such that Clients can be authenticated towards
 Resource Servers. Additionally, Authorization Server must encode
 the identifier of the Client in the token for later verification
 by the Resource Server. Depending on the chosen layer for
 providing Client-side authentication there may be additional
 challenges due Web server load balancing, lack of API access to
 identity information, etc.

 Key Confirmation:

 The weak point with this approach, see Section 4.3,
 is the increased complexity: a complete key distribution protocol
 has to be defined.

 In all cases above it has to be ensured that the Client is able to
 keep the credentials secret.

5. Requirements

 In an attempt to address the threats described in Section 3 the
 Bearer Token, which corresponds to the description in Section 4.1,
 was standardized and the work on a JSON-based token format has been
 started [I-D.ietf-oauth-json-web-token]. The required capability to
 protected the content of a JSON token using integrity and
 confidentiality mechanisms is currently work in progress in the IETF
 JOSE working group.

 Consequently, the purpose of the remaining document is to provide
 security that goes beyond the Bearer Token offered security
 protection.

Tschofenig & Hunt Expires June 19, 2013 [Page 8]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 Luckily this is not the first security protocol that has been
 designed. In trying to seek guidance the authors found RFC 4962
 [RFC4962], which gives useful guidelines for designers of
 authentication and key management protocols. While RFC 4962 was
 written with the AAA framework used for network access authentication
 in mind the offered suggestions are useful for the design of other
 key management systems as well. The following requirements list
 applies OAuth 2.0 terminology to the requirements outlined in RFC

4962.

 These requirements include

 Cryptographic Algorithm Independent:

 The key management protocol MUST
 be cryptographic algorithm independent.

 Strong, fresh session keys:

 Session keys MUST be strong and fresh.
 Each session deserves an independent session key, i.e., one that
 is generated specifically for the intended use. In context of
 OAuth this means that keying material is created in such a way
 that can only be used by the combination of a Client instance,
 protected resource, and authorization scope.

 Limit Key Scope:

 Following the principle of least privilege, parties
 MUST NOT have access to keying material that is not needed to
 perform their role. Any protocol that is used to establish
 session keys MUST specify the scope for session keys, clearly
 identifying the parties to whom the session key is available.

 Replay Detection Mechanism:

 The key management protocol exchanges
 MUST be replay protected. Replay protection allows a protocol
 message recipient to discard any message that was recorded during
 a previous legitimate dialogue and presented as though it belonged
 to the current dialogue.

 Authenticate All Parties:

 Each party in the key management protocol
 MUST be authenticated to the other parties with whom they
 communicate. Authentication mechanisms MUST maintain the
 confidentiality of any secret values used in the authentication
 process. Secrets MUST NOT be sent to another party without

https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc4962

 confidentiality protection.

 Authorization:

Tschofenig & Hunt Expires June 19, 2013 [Page 9]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 Client and Resource Server authorization MUST be
 performed. These entities MUST demonstrate possession of the
 appropriate keying material, without disclosing it. Authorization
 is REQUIRED whenever a Client interacts with an Authorization
 Server. The authorization checking prevents an elevation of
 privilege attack, and it ensures that an unauthorized authorized
 is detected.

 Keying Material Confidentiality and Integrity:

 While preserving
 algorithm independence, confidentiality and integrity of all
 keying material MUST be maintained.

 Confirm Cryptographic Algorithm Selection:

 The selection of the
 "best" cryptographic algorithms SHOULD be securely confirmed. The
 mechanism SHOULD detect attempted roll-back attacks.

 Uniquely Named Keys:

 Key management proposals require a robust key
 naming scheme, particularly where key caching is supported. The
 key name provides a way to refer to a key in a protocol so that it
 is clear to all parties which key is being referenced. Objects
 that cannot be named cannot be managed. All keys MUST be uniquely
 named, and the key name MUST NOT directly or indirectly disclose
 the keying material.

 Prevent the Domino Effect:

 Compromise of a single Client MUST NOT
 compromise keying material held by any other Client within the
 system, including session keys and long-term keys. Likewise,
 compromise of a single Resource Server MUST NOT compromise keying
 material held by any other Resource Server within the system. In
 the context of a key hierarchy, this means that the compromise of
 one node in the key hierarchy must not disclose the information
 necessary to compromise other branches in the key hierarchy.
 Obviously, the compromise of the root of the key hierarchy will
 compromise all of the keys; however, a compromise in one branch
 MUST NOT result in the compromise of other branches. There are
 many implications of this requirement; however, two implications
 deserve highlighting. First, the scope of the keying material
 must be defined and understood by all parties that communicate
 with a party that holds that keying material. Second, a party
 that holds keying material in a key hierarchy must not share that
 keying material with parties that are associated with other

 branches in the key hierarchy.

 Bind Key to its Context:

Tschofenig & Hunt Expires June 19, 2013 [Page 10]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 Keying material MUST be bound to the
 appropriate context. The context includes the following.

 * The manner in which the keying material is expected to be used.

 * The other parties that are expected to have access to the
 keying material.

 * The expected lifetime of the keying material. Lifetime of a
 child key SHOULD NOT be greater than the lifetime of its parent
 in the key hierarchy.

 Any party with legitimate access to keying material can determine
 its context. In addition, the protocol MUST ensure that all
 parties with legitimate access to keying material have the same
 context for the keying material. This requires that the parties
 are properly identified and authenticated, so that all of the
 parties that have access to the keying material can be determined.
 The context will include the Client and the Resource Server
 identities in more than one form.

 Authorization Restriction:

 If Client authorization is restricted,
 then the Client SHOULD be made aware of the restriction.

 Client Identity Confidentiality:

 A Client has identity
 confidentiality when any party other than the Resource Server and
 the Authorization Server cannot sufficiently identify the Client
 within the anonymity set. In comparison to anonymity and
 pseudonymity, identity confidentiality is concerned with
 eavesdroppers and intermediaries. A key management protocol
 SHOULD provide this property.

 Resource Owner Identity Confidentiality:

 Resource servers SHOULD be
 prevented from knowing the real or pseudonymous identity of the
 Resource Owner, since the Authorization Server is the only entity
 involved in verifying the Resource Owner's identity.

 Collusion:

 Resource Servers that collude can be prevented from using
 information related to the Resource Owner to track the individual.
 That is, two different Resource Servers can be prevented from
 determining that the same Resource Owner has authenticated to both
 of them. This requires that each Authorization Server obtains

 different keying material as well as different access tokens with
 content that does not allow identification of the Resource Owner.

 AS-to-RS Relationship Anonymity:

Tschofenig & Hunt Expires June 19, 2013 [Page 11]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 The Authorization Server can be
 prevented from knowing which Resource Servers a Resource Owner
 interacts with. This requires avoiding direct communication
 between the Authorization Server and the Resource Server at the
 time when access to a protected resource by the Client is made.
 Additionally, the Client must not provide information about the
 Resource Server in the access token request. [QUESTION: Is this a
 desirable property given that it has other implications for
 security?]

 As an additional requirement a solution MUST enable support for
 channel bindings. The concept of channel binding, as defined in
 [RFC5056], allows applications to establish that the two end-points
 of a secure channel at one network layer are the same as at a higher
 layer by binding authentication at the higher layer to the channel at
 the lower layer.

 Furthermore, there are performance concerns specifically with the
 usage of asymmetric cryptography. As such, the requirement can be
 phrases as 'faster is better'. [QUESTION: How are we trading the
 benefits of asymmetric cryptography against the performance impact?]

 Finally, there are threats that relate to the experience of the
 software developer as well as operational policies. For example, a
 frequently raised concern is the absent of verifying that the
 server's presented identity matches its reference identity so it can
 authenticate the communication endpoint and authorize it. Verifying
 the server identity in TLS is discussed at length in [RFC6125].
 There are also various guesses about what application developers are
 able to implement correctly and easily and to what degree they can
 rely on third party libraries.[QUESTION: How do we reflect these
 requirements in the design?]

6. Use Cases

 This section lists use cases that provide additional requirements and
 constrain the solution space.

6.1. Access to an 'Unprotected' Resource

 This use case is for a web client that needs to access a resource
 where no integrity and confidentiality protection is provided for the
 exchange of data using TLS following the OAuth-based request. In
 accessing the resource, the request, which includes the access token,
 must be protected against replay, and modification.

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc6125

Tschofenig & Hunt Expires June 19, 2013 [Page 12]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 While it is possible to utilize bearer tokens in this scenario, as
 described in [RFC6750], with TLS protection when the request to the
 protected resource is made there may be the desire to avoid using TLS
 between the client and the resource server at all. In such a case
 the bearer token approach is not possible since it relies on TLS for
 ensuring integrity and confidentiality protection of the access token
 exchange since otherwise replay attacks are possible: First, an
 eavesdropper may steal an access token and represent it at a
 different resource server. Second, an eavesdropper may steal an
 access token and replay it against the same resource server at a
 later point in time. In both cases, if the attack is successful, the
 adversary gets access to the resource owners data or may perform an
 operation selected by the adversary (e.g., sending a message). Note
 that the adversary may obtain the access token (if the
 recommendations in [RFC6749] and [RFC6750] are not followed) using a
 number of ways, including eavesdropping the communication on the
 wireless link.

 Consequently, the important assumption in this use case is that a
 resource server does not have TLS support and the security solution
 should work in such a scenario. Furthermore, it may not be necessary
 to provide authentication of the resource server towards the client.

6.2. Offering Application Layer End-to-End Security

 In Web deployments resource servers are often placed behind load
 balancers. Note that the load balancers are deployed by the same
 organization that operates the resource servers. These load
 balancers may terminate Transport Layer Security (TLS) and the
 resulting HTTP traffic may be transmitted in clear from the load
 balancer to the resource server. With application layer security
 independent of the underlying TLS security it is possible to allow
 application servers to perform cryptographic verification on an end-
 to-end basis.

 The key aspect in this use case is therefore to offer end-to-end
 security in the presence of load balancers via application layer
 security.

6.3. Preventing Access Token Re-Use by the Resource Server

 Imagine a scenario where a resource server that receives a valid
 access token re-uses it with other resource server. The reason for
 re-use may be malicious or may well be legimiate. In a legimiate use
 case consider a case where the resource server needs to consult third
 party resource servers to complete the requested operation. In both
 cases it may be assumed that the scope of the access token is
 sufficiently large that it allows such a re-use. For example,

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

 imagine a case where a company operates email services as well as
 picture sharing services and that company had decided to issue access
 tokens with a scope that allows access to both services.

Tschofenig & Hunt Expires June 19, 2013 [Page 13]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 With this use case the desire is to prevent such access token re-use.
 This also implies that the legimiate use cases require additional
 enhancements for request chaining.

6.4. TLS Channel Binding Support

 In this use case we consider the scenario where an OAuth 2.0 request
 to a protected resource is secured using TLS but the client and the
 resource server demand that the underlying TLS exchange is bound to
 additional application layer security to prevent cases where the TLS
 connection is terminated at a load balancer or a TLS proxy is used
 that splits the TLS connection into two separate connections.

 In this use case additional information is conveyed to the resource
 server to ensure that no entity entity has tampered with the TLS
 connection.

7. Security Considerations

 The main focus of this document is on security.

8. Next Steps

 From this description so far a few observations and next steps can be
 derived:

 1. Bearer Tokens are a viable solution for protecting against the
 threats described in Section 3. Further standardization work on
 OAuth security mechanisms needs to provide additional security
 benefits on top of those provided by the bearer token solution.

 2. The requirements listed in Section 5 aim to provide a starting
 point for a discussion on a security solution that provides
 additional security and privacy benefits for OAuth 2.0.

 3. It is likely that implementers will find security solutions hard
 to implement and hard to configure right. Additional guidance
 and the availability to libraries may help to improve security on
 the Internet for OAuth-based implementations. Fundamentally,
 there is the question about a design that is based on symmetric
 vs. asymmetric cryptography. Ideally, only a single solution
 should be developed (or a very small number) since the
 differences between different variations of such as protocol are
 minor.

 4. A standardized solution for the token format is needed to
 mitigate a number of attacks and this work is already ongoing
 under the name of JWT [I-D.ietf-oauth-json-web-token].

Tschofenig & Hunt Expires June 19, 2013 [Page 14]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 To make progress with the above-mentioned items before the next IETF
 meeting in Atlanta I therefore suggest to (a) solicit for document
 reviews regarding the JWT document, and (b) progress the work on the
 extended OAuth security mechanism. Regarding the latter aspect
 consider the following questions:

 Threats:

Section 3 lists a few security threats. Are these the
 threats you care about? Which threats missing?

 Requirements:

 The working group has expressed interest to work on an
 extended OAuth security mechanism. Assuming that the group wants
 to develop a key distribution protocol (as described in Section

4.3) are the requirements listed in Section 5 complete? Who is
 interested to develop early prototypes of support the standards
 development?

9. IANA Considerations

 This document does not require actions by IANA.

10. Acknowledgments

 The authors would like to thank the OAuth working group for their
 discussion input. A group of regular OAuth participants met at the
 IETF #82 meeting in Vancouver to discuss this topic in preparation
 for the face-to-face meeting. The participants were:

 o John Bradley

 o Brian Campbell

 o Phil Hunt

 o Leif Johansson

 o Mike Jones

 o Lucy Lynch

 o Tony Nadalin

 o Klaas Wierenga

 This document reuses content from [RFC4962] and the author would like
 thank Russ Housely and Bernard Aboba for their work on that document.

https://datatracker.ietf.org/doc/html/rfc4962

 Finally, I would like to thank Blaine Cook. This document was
 derived from an earlier draft that Blaine and I wrote.

Tschofenig & Hunt Expires June 19, 2013 [Page 15]

Internet-Draft Enhancing OAuth 2.0 Security December 2012

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", March 1997.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", RFC
4949, August 2007.

 [I-D.ietf-oauth-json-web-token]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", Internet-Draft draft-ietf-oauth-json-web-token-05,
 November 2012.

11.2. Informative References

 [RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management", BCP

132, RFC 4962, July 2007.

 [I-D.iab-privacy-considerations]
 Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", Internet-Draft

draft-iab-privacy-considerations-03, July 2012.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279, December
 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [I-D.hardjono-oauth-kerberos]
 Hardjono, T., "OAuth 2.0 support for the Kerberos V5
 Authentication Protocol", Internet-Draft draft-hardjono-

oauth-kerberos-01, December 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token-05
https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/draft-iab-privacy-considerations-03
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/draft-hardjono-oauth-kerberos-01
https://datatracker.ietf.org/doc/html/draft-hardjono-oauth-kerberos-01
https://datatracker.ietf.org/doc/html/rfc5849

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

Tschofenig & Hunt Expires June 19, 2013 [Page 16]

https://datatracker.ietf.org/doc/html/rfc5056

Internet-Draft Enhancing OAuth 2.0 Security December 2012

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [I-D.ietf-oauth-v2-http-mac]
 Richer, J., Mills, W., and H. Tschofenig, "OAuth 2.0
 Message Authentication Code (MAC) Tokens", Internet-Draft

draft-ietf-oauth-v2-http-mac-02, November 2012.

 [I-D.tschofenig-oauth-hotk]
 Bradley, J., Hunt, P., Nadalin, A., and H. Tschofenig,
 "The OAuth 2.0 Authorization Framework: Holder-of-the-Key
 Token Usage", Internet-Draft draft-tschofenig-oauth-

hotk-01, July 2012.

 [NIST800-63]
 Burr, W., Dodson, D., Perlner, R., Polk, T., Gupta, S.,
 and E. Nabbus, "NIST Special Publication 800-63-1,
 INFORMATION SECURITY", December 2008.

Authors' Addresses

 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Phil Hunt
 Oracle Corporation

 Email: phil.hunt@yahoo.com

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-http-mac-02
https://datatracker.ietf.org/doc/html/draft-tschofenig-oauth-hotk-01
https://datatracker.ietf.org/doc/html/draft-tschofenig-oauth-hotk-01
http://www.tschofenig.priv.at

Tschofenig & Hunt Expires June 19, 2013 [Page 17]

