OAUTH H. Tschofenig ToC

Nokia Siemens

Internet-Draft
Networks

Intended status:
Informational

Expires: April 21, 2011 BT
October 18, 2010

B. Cook

Thoughts about Digital Signatures for the Open Web Authentication
(OAuth) Protocol
draft-tschofenig-oauth-signature-thoughts-00.txt

Abstract

The initial version of the Open Web Authentication Protocol (OAuth
1.0), often referred to as the community addition, included an
mechanism for putting a digital signature (when using asymmetric keys)
or a keyed message digest (when using symmetric keys) to a resource
request when presenting the OAuth token. This cryptographic mechanism
has lead to lots of discussions, particularly about the problems
implementers had, the use cases it supports, and the benefit-cost
tradeoff.

This document tries to describe the use of the so-called 'OAuth
Signature' mechamism in an unbiased and less emotional way with the
main purpose to conclude the discussions.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on April 21, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.



This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Introduction
Terminology
Security Threats
Threat Mitigation
4.1. Confidentiality Protection
4.2. Sender Constraint
4.3. Key Confirmation
Summary
Operational Considerations
Security Considerations
Conclusion

IANA Considerations
Acknowledgments

References

11.1. Normative References
11.2. Informative References
8§ Authors' Addresses

S

B |2 |© 00N o o
EBleRRP

1. Introduction TOC

The initial version of the Open Web Authentication Protocol (OAuth 1.0)
included an mechanism for putting a digital signature (when using
asymmetric keys) or a keyed message digest (when using symmetric keys)
to a resource request when presenting the OAuth token. OAuth 2.0
generalized the structure a bit and the abstract and simplified
description of the protocol has the following structure:



+' User
____________ - | - - —————
Service / \ : Management
Interaction / \ : of Resources
consent
+---:-+ Carol
1. |Carol| as
Obtain > | Asserting
Access .' +o---- + Party
Token.'
1
Vl
Fotooot +--:--+ Bob
|Alice|<--mcmmmmm e >|Bob | as
| | 2. Authenticated | | Relying
+----- + Request + +----- + Party

Access Token

Figure 1: OAuth Simplified

We use symbolic names in Figure 1 (OAuth Simplified). A few remarks
about the figure. In addition to illustrating the message exchange
between Alice, Bob, and Carl it also highlights the importance of the
user in the exchange in providing consent, triggering the entire
interaction as part of invoking a service, and in managing a resource
that is work delegating access to.

From a cryptographic point of view the following aspects of the OAuth
1.0 specification are worth mentioning:

*The format and content of the Access Token is not specified.

*The authenticated request shown in (2) is essentially a basic
HTTP authentication mechanism that supports symmetric as well as
asymmetric credentials. The purpose is to authenticate Alice to
Bob; no mutual authentication. The procedure for obtaining these
credentials is outside the scope. To ensure liveness of the
authentication a timestamp and a nonce is included in the request
(and is included in the digital signature and the keyed message
digest).



*The authenticated request signing is optional to implement and
optional to use. When the authenticated request signature is
omitted (called bearer token) then TLS. Details about what
ciphersuite to use with TLS and what required features are needed
are not available.

OAuth 2.0 [I-D.ietf-ocauth-v2] (Hammer-Lahav, E., Recordon, D., and D.
Hardt, “The OAuth 2.0 Protocol,” July 2010.) currently does not provide
text for authenticated requests in the specification nor does it
mandate the use of TLS.

2. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]
(Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels,” March 1997.).

This document uses the terminology defined in RFC 4949 [RFC4949
(Shirey, R., “Internet Security Glossary, Version 2,” August 2007.).
The terms 'keyed hash' and 'keyed message digest' are used
interchangable.

All discussions in this document refer to the abstract names, namely
Alice, Bob, and Carol, shown in Figure 1 (OAuth Simplified).

3. Security Threats _TOoC

The following list presents several common threats against protocols
utilizing some form of tokens. This list of threats is based on NIST
Special Publication 800-63 [NIST800-63] (Burr, W., Dodson, D., Perlner,
R., Polk, T., Gupta, S., and E. Nabbus, “NIST Special Publication
800-63-1, INFORMATION SECURITY,” December 2008.). We exclude a
discussion of threats related to any form of registration and
authentication.

Token manufacture/modification: An attacker may generate a bogus
token or modify the token content (such as the authentication or
attribute statements) of an existing token, causing Bob to grant
inappropriate access to the Alice. For example, an attacker may
modify the token to extend the validity period; Alice may modify



the assertion to have access to information that they should not
be able to view.

Token disclosure: Tokens may contain authentication and attribute
statements that include sensitive information.

Token redirect: An attacker uses the token generated for
consumption by Bob to obtain access to a second Relying Party.

Token reuse: An attacker attempts to use a token that has already
been used once with Bob.

A Web authentication protocol must provide a consistent story on how to
deal with all these threats. We excluded one threat from the list,
namely 'token repudiation'. Token repudiation refers to a property
whereby Bob is given an assurance that Carol cannot deny to have
created a token for Alice. We believe that such a property is
interesting from theoretical point of view but most deployments perfer
to deal with the violation of this security property via business
actions rather than using cryptography.

4. Threat Mitigation TOC

A large range of threats can be mitigated by protecting the content of
the token, using a digitial signature or a keyed message digest.
Alternatively, the content of the token could be passed by reference
rather than by value (requiring a separate message exchange to resolve
the reference to the token content). To simplify the subsequent
description we assume that the token itself is digitally signed by
Carol and therefore cannot be modified. This also provides the basis
for non-repudiation.

To deal with token redirect it is important for Carol to include the
identity of the intended recipient, namely Bob. Carol would have to be
told that Bob is the intended recipient.

To provide protection against token disclosure two approaches are
possible, namely (a) not to include sensitive information inside the
token or (b) to ensure confidentiality protection. The latter feature
requires at least the communication interaction between the Alice and
Carol as well as the interaction between Alice and Bob to experience
confidentiality protection. As an example, Transport Layer Security
with a ciphersuite that offers confidentiality protection has to be
applied. Encrypting the token content is another alternative.

To deal with the last threat, namely token reuse, more choices are
available. First, it is highly advisable for Carol to restrict the
lifetime of the token by putting a validity time field inside the
protected part of the token. This is, however, largely independent of
the potential approaches described in the sub-sections below.



4.1. Confidentiality Protection TOC

In this approach confidentiality protection of the exchange is provided
on the communication interfaces between Alice and Bob, and Alice and
Carol. No eavesdropper on the wire is able to observe the token
exchange. Consequently, a replay is not possible. Carol wants to ensure
that it only hands out tokens to entities it has authenticated first
and who are authorized. For this purpose, authentication of Alice to
Carol will be a requirement. This is, however, true for the description
in Section 4.2 (Sender Constraint) and Section 4.3 (Key Confirmation)
as well. Furthermore, Alice has to make sure it does not distribute the
token to entities other than Bob. For that purpose Alice will have to
authenticate Bob before transmitting the token.

4.2. Sender Constraint TOC

Instead of providing confidentiality protection Carl could also put the
identity of Alice into the protected token with the following semantic:
'This token is only valid when presented by Alice.' When the token is
then presented to Bob how does he know that it was provided by Alice?
He has to authenticate Alice! There are many choices for authenticating
Alice to Bob, such as, client-side certificates in TLS [RFC5246
(Dierks, T. and E. Rescorla, “The Transport lLayer Security (TLS)
Protocol Version 1.2,” August 2008.), or pre-shared secrets within TLS
[REC4279] (Eronen, P. and H. Tschofenig, “Pre-Shared Key Ciphersuites
for Transport Layer Security (TLS),” December 2005.). The choice of the
preferred authentication mechanism and credential type may depend on a
number of factors, including

*security properties

*available infrastructure

*library support

*credential cost (financial)

*performance

*integration into the existing IT infrastructure

*operational overhead for configuration and distribution of
credentials



This long list hints to the challenge of selecting at least one
mandatory-to-implement mechanism.

4.3. Key Confirmation TOC

A variation of the mechanism of sender authentication described in
Section 4.2 (Sender Constraint) is to replace authentication with the
proof-of-possession of a specific key, i.e. key confirmation. In this
model Bob would not authenticate Alice but would rather verify whether
Alice knows a secret. This mechanism corresponds to the message
signature approach defined by the OAuth 1.0 signature mechanisms
[RFC5849] (Hammer-Lahav, E., “The OAuth 1.0 Protocol,” April 2010.) or
by Kerberos [RFC4120] (Neuman, C., Yu, T., Hartman, S., and K. Raeburn,
“The Kerberos Network Authentication Service (V5),” July 2005.) when
utilizing the AP_REQ/AP_REP exchange (see [I-D.hardjono-oauth-kerberos]
(Hardjono, T., “OAuth 2.0 support for the Kerberos V5 Authentication
Protocol,” June 2010.) for a comparision between Kerberos and OAuth).
To illustrate key confirmation the first examples borrows from Kerberos
and symmetric key cryptography. Assume that Carol shares a long-term
secret with Bob, called K(Carol-Bob). This secret would be established
between them in an initial registration phase outside the scope of the
actual protocol run. When Alice requests a token Carol creates a fresh
and unique key Ks and places it into the token encrypted with K(Carol-
Bob). Additionally, Carol attaches Ks when it sends the token to Alice
over a confidentialy protected channel. When Alice sends a request to
Bob it has to use Ks to sign the request (in whatever form or whatever
layer). Bob, when receiving the message, retrieves the token, verifies
it and uses K(Carol-Bob) to decrypt Ks and to verify the signature.
Note that in this example one could imagine that the mechanism to
protect the token itself is based on a symmetric key based mechanism to
avoid any form of public key infrastructure but this aspect is not
further eleborated in the scenario.

A similar mechanism can also be designed using asymmetric cryptography.
When Alice requests a token Carol creates an ephemeral public / privacy
key pair PK/SK and places the public key PK into the protected token.
When Carol returns the token to Alice it also provides the PK/SK key
pair over a confidentialy protected channel. When Alice sends a request
to Bob it has to use the privacy key SK to sign the request. Again, the
details are secondary. Bob, when receiving the message, retrieves the
token, verifies it and extracts the public key PK. It uses this
ephemeral public key to verify the attached signature.

T0C



5. Summary

In the design of the OAuth security mechanisms the following design
decisions have to be made:

Threats: Section 3 (Security Threats) lists a few security threats.
Are these the threats you care about? Are threats missing?

Threat Mitigation: Section 4 (Threat Mitigation) illustrates how to
address the threats listed in Section 3 (Security Threats). Do
you agree that these are the approaches to address the threats?
Do you agree that the three approaches to address token re-use
(see Section 4.1 (Confidentiality Protection), Section 4.2
(Sender Constraint), and Section 4.3 (Key Confirmation)) are
roughly equivalent from a security point of view (even though
they are not equivalent from an operational perspective)?

Token Protection and Token Content: Do you agree that many security
properties are dependent on the token content and the token
protection?

6. Operational Considerations TOC

It is worth pointing out that the operational aspects in the deployment
of OAuth have an impact on the design. While the authors believe that
the three approaches to address token re-use are equivalent there are
operational challenges with each of them. The purpose of the discussion
in this section is therefore to determine, which approach encourages
good practices that lead to better security of the overall system based
on the most likely behavior of its actors.

The three approaches are:

Confidentiality Protection: The weak point with this approach, see
Section 4.1 (Confidentiality Protection), is that Alice has to be
careful to whom she discloses the token. Everyone who is in
possession of the token is granted access to the data.
Furthermore, Alice has to trust Bob to secure the token at rest;
unauthorized disclosure could be harmful particularly when the
token has a rather long lifetime. Intiuitively, one would argue
that tokens are easy to mint and used for a small time duration
only.

Sender Constraint: The weak point with this approach, see
Section 4.2 (Sender Constraint), is to setup the authentication
infrastructure such that Alice can be authenticated towards Bob.
Additionally, Carol to correctly encode Alice's identity in the




token for verification by Bob. Depending on the chosen layer for
providing client-side authentication there may be additional
challenges due Web server load balancing, lack of API access to
identity information, etc.

Key Confirmation: The weak point with this approach, see
Section 4.3 (Key Confirmation), is the increased complexity: a
key distribution protocol has to be defined.

7. Security Considerations TOC

The main focus of this document is on security. Nevertheless, the
authors would like to point out that the design of the stoken encoding
and token content is currently not standardized. While this motivated
by the current OAuth deployment environment and the desire to offer
flexibility there are concerns about the ability of those deploying
OAuth making reasonable design choices. We recommend to consult 'How to
Implement Secure (Mostly) Stateless Tokens'
[I-D.rescorla-stateless-tokens] (Rescorla, E., “How to Implement Secure

(Mostly) Stateless Tokens,” March 2007.) before designing a custom
token format.

RFC 4962 [RFC4962] (Housley, R. and B. Aboba, “Guidance for
Authentication, Authorization, and Accounting (AAA) Key Management,”
July 2007.) gives useful guidelines for designers of key management
protocols. While the document was written with the AAA framework and
network access authentication in mind the offered suggestions are
useful for the design of OAuth and particularly interesting for
solutions belonging to the 'key confirmation' class. These requirements
include

1. Cryptographic algorithm independent

2. Strong, fresh session keys

3. Limit key scope

4. Replay detection mechanism

5. Authenticate all parties

6. Keying material confidentiality and integrity
7. Confirm ciphersuite selection

8. Uniquely named keys



9. Prevent the Domino effect

10. Bind key to its context

11. Confidentiality of identity

12. Authorization restriction
The authors believe it is useful to consider these requirements in the
protocol design since the 'token' terminology seems to implicitly
suggest to hand out cryptographic keying material and meta-data for

usage in multiple, potentially unbounded contexts, with a (very) long
lifetime.

8. Conclusion TOC

The authors argue that the best approach for providing security for
OAuth is to

1. describe security threats similar to the writeup in Section 3
(Security Threats).

2. offer recommendations for the protection and the content of the
token. A document with a detailed description of the token
encoding and the token content (including security protection)
is likely to provide users with help in designing their own
custom extensions. This document does not need to be part of
the OAuth 2.0 base specification.
[I-D.rescorla-stateless-tokens] (Rescorla, E., “How to
Implement Secure (Mostly) Stateless Tokens,” March 2007.) and
the Kerberos Token format [RFC4120] (Neuman, C., Yu, T.,
Hartman, S., and K. Raeburn, “The Kerberos Network
Authentication Service (V5),” July 2005.) will provide valuable
source of inspiration.

3. define a mandatory-to-implement solution based on 'key
confirmation' (using symmetric keys) since it provides the
fewest number of operational drawbacks. A symmetric key based
approach was chosen because of performance reasons even though
it requires Carol and Bob to share a long-term secret. It is
highly recommended to compare the design against the
requirements outlined in [RFC4962] (Housley, R. and B. Aboba,
“Guidance for Authentication, Authorization, and Accounting
(AAA) Key Management,” July 2007.).

4. strongly recommend the usage of TLS between Alice and Bob
mainly for the additional security services TLS provides, such



as confidentiality protection. TLS will be useful for access to
protected resources for the exchange of sensitive information.
In case that server-side authentication is a concern the usage
of channel bindings [RFC5056] (wWilliams, N., “On the Use of
Channel Bindings to Secure Channels,” November 2007.) should be

investigated since they allow binding an anonymous Diffie-
Hellman exchange during the TLS handshake with the high-layer
security exchange.

9. IANA Considerations TOC

This document does not require actions by IANA.

10. Acknowledgments TOC

The authors would like to thank the OAuth working group for their

discussion input.

11. References

T0C

11.1. Normative References

[RFC2119]

[I-D.ietf-
oauth-v2]

[RFC4949]

TOC
Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” March 1997.
Hammer-Lahav, E., Recordon, D., and D. Hardt, “The
OAuth 2.0 Protocol,” draft-ietf-oauth-v2-10 (work in
progress), July 2010 (TXT).
Shirey, R., “Internet Security Glossary, Version 2,”
RFC 4949, August 2007 (TXT).

11.2. Informative References

[RFC4279]

[RFC5246]

TOC
Eronen, P. and H. Tschofenig, “Pre-Shared Key
Ciphersuites for Transport Layer Security (TLS),”
RFC 4279, December 2005 (TXT).



ftp://ftp.isi.edu/in-notes/rfc2119.txt
ftp://ftp.isi.edu/in-notes/rfc2119.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-v2-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-v2-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-v2-10.txt
http://tools.ietf.org/html/rfc4949
http://www.rfc-editor.org/rfc/rfc4949.txt
http://tools.ietf.org/html/rfc4279
http://tools.ietf.org/html/rfc4279
http://www.rfc-editor.org/rfc/rfc4279.txt

[RFC4120]

[I-D.hardjono-
oauth-kerberos]

[I-D.rescorla-
stateless-
tokens]
[RFC4962]

[RFC5849]

[RFC5056]

[NIST800-63]

Authors' Addresses

Dierks, T. and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

Neuman, C., Yu, T., Hartman, S., and K. Raeburn,
“The Kerberos Network Authentication Service
(V5),” RFC 4120, July 2005 (TXT).

Hardjono, T., “OAuth 2.0 support for the Kerberos

V5 Authentication Protocol,” draft-hardjono-
oauth-kerberos-00 (work in progress), June 2010
(TXT).

Rescorla, E., “How to Implement Secure (Mostly)
Stateless Tokens,” draft-rescorla-stateless-
tokens-01 (work in progress), March 2007 (TXT).
Housley, R. and B. Aboba, “Guidance for
Authentication, Authorization, and Accounting
(AAA) Key Management,” BCP 132, RFC 4962,

July 2007 (TXT).

Hammer-Lahav, E., “The OAuth 1.0 Protocol,”

RFC 5849, April 2010 (TXT).

Williams, N., “On the Use of Channel Bindings to
Secure Channels,” RFC 5056, November 2007 (TXT).
Burr, W., Dodson, D., Perlner, R., Polk, T.,
Gupta, S., and E. Nabbus, “NIST Special
Publication 800-63-1, INFORMATION SECURITY,”
December 2008.

_T0C
Hannes Tschofenig
Nokia Siemens Networks
Linnoitustie 6
Espoo 02600
Finland

Phone: +358 (50) 4871445
Email: Hannes.Tschofenig@gmx.net

URI: http://www.tschofenig.priv.at

Blaine Cook
BT
Ireland

Email: romeda@gmail.com



http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc4120
http://tools.ietf.org/html/rfc4120
http://www.rfc-editor.org/rfc/rfc4120.txt
http://www.ietf.org/internet-drafts/draft-hardjono-oauth-kerberos-00.txt
http://www.ietf.org/internet-drafts/draft-hardjono-oauth-kerberos-00.txt
http://www.ietf.org/internet-drafts/draft-hardjono-oauth-kerberos-00.txt
http://www.ietf.org/internet-drafts/draft-rescorla-stateless-tokens-01.txt
http://www.ietf.org/internet-drafts/draft-rescorla-stateless-tokens-01.txt
http://www.ietf.org/internet-drafts/draft-rescorla-stateless-tokens-01.txt
http://tools.ietf.org/html/rfc4962
http://tools.ietf.org/html/rfc4962
http://tools.ietf.org/html/rfc4962
http://www.rfc-editor.org/rfc/rfc4962.txt
http://tools.ietf.org/html/rfc5849
http://www.rfc-editor.org/rfc/rfc5849.txt
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://www.rfc-editor.org/rfc/rfc5056.txt
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-63-Rev.%201
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-63-Rev.%201
mailto:Hannes.Tschofenig@gmx.net
http://www.tschofenig.priv.at
mailto:romeda@gmail.com

	Thoughts about Digital Signatures for the Open Web Authentication (OAuth) Protocoldraft-tschofenig-oauth-signature-thoughts-00.txt
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1.  Introduction
	2.  Terminology
	3.  Security Threats
	4.  Threat Mitigation
	4.1.  Confidentiality Protection
	4.2.  Sender Constraint
	4.3.  Key Confirmation
	5.  Summary
	6.  Operational Considerations
	7.  Security Considerations
	8.  Conclusion
	9.  IANA Considerations
	10.  Acknowledgments
	11.  References
	11.1. Normative References
	11.2. Informative References
	Authors' Addresses


