
Network Working Group H. Tschofenig
Internet-Draft Nokia Siemens Networks
Intended status: Informational B. Aboba
Expires: November 10, 2012 Microsoft Corporation
 J. Peterson
 NeuStar, Inc.
 D. McPherson
 Verisign
 May 9, 2012

Trends in Web Applications and the Implications on Standardization
draft-tschofenig-post-standardization-02.txt

Abstract

 Advancements in the design of web browsers have introduced
 fundamental changes to the architecture of application protocols.
 The widespread availability and growing sophistication of JavaScript
 interpreters in browsers enables web servers to push to browsers all
 of the application logic required to implement a client-server
 protocol. Consequently, many client-server applications that once
 required an installed client on a host computer now can rely simply
 on a modern browser to act as a client for the purposes of a
 particular application. For example, where once email clients
 required a custom application to access an inbox, increasingly a web
 browser can serve this purpose as well as the purpose-built
 applications of the past. Similarly, HTTP with the assistance of
 JavaScript can subsume the functions performed by the protocols like
 POP3 and IMAP. The need for Internet standards beyond HTTP to
 implement an email inbox application consequently diminishes - why
 author standards and worry about interoperability of clients and
 servers when the server can simply push to the client all the code it
 needs to be interoperable?

 Many client-server applications on the Internet could potential
 migrate to this code distribution methodology.

 [Note: A separate mailing list has been created for discussions
 related to this document and it can be found here:

https://www.ietf.org/mailman/listinfo/webapps]

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

Tschofenig, et al. Expires November 10, 2012 [Page 1]

https://www.ietf.org/mailman/listinfo/webapps
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft Web Applications: Trends and Implications May 2012

 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 10, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Tschofenig, et al. Expires November 10, 2012 [Page 2]

Internet-Draft Web Applications: Trends and Implications May 2012

Table of Contents

1. Introduction . 4
2. Impact for the Standardization Community 6
3. Limitations of Mobile Code Distribution 9
3.1. Performance Limitations 9
3.2. Transport Protocol Limitations 10

 3.3. Security, Privacy, and Cryptographic Processing
 Limitations . 11

3.4. Source Code Hiding Limitations 12
4. Recommendations . 13
5. Conclusions . 14
6. Security Considerations 16
7. IANA Considerations . 17
8. Acknowledgements . 18
9. Informative References . 19

 Authors' Addresses . 22

Tschofenig, et al. Expires November 10, 2012 [Page 3]

Internet-Draft Web Applications: Trends and Implications May 2012

1. Introduction

 The generic nature of the personal computer has enabled application
 providers to write general purpose programs and to make it available
 for download. This flexibility has lead to lots of innovation on the
 Internet but has also introduced security challenges since it is
 difficult for end users to judge the trustworthiness of downloaded
 programs in any reasonable way. Consequently, many users are very
 suspicious about any download they are asked to accept. An important
 goal of those deploying applications is to reach a widespread
 deployment as fast as possible and to react to changing needs as
 quickly as possible, which to a large extent requires the ability to
 continously update code on end devices. With operating system
 updates happening less frequently and the acceptance for software
 downloads decreasing the browser was seen by many as an ideal
 platform for dynamically downloaded running code. JavaScript was
 initially perceived as being quite limited in functionality but has
 been supported by all browsers. This perception has changed over the
 last couple of years when it became the scripting language
 implemented in the majority of browsers, also referred as the
 'assembly language of the Internet'.

 For application developers writing code running on Web servers as
 well as for applications that are downloaded to the end device the
 desire was always to develop the application once without having to
 consider all the different runtimes (operating systems or browsers).
 Now, with the PC and the cellular phone segments getting increasingly
 blurry this desire is stronger than ever considering the increased
 number of obstacles that have to be dealt with. For example, it is
 highly unlikely that an application will work on various different
 devices even if all the devices were produced by a single mobile
 phone vendor. Getting users to download new applications, and to
 install software updates also leaves software developers in a
 difficult situation.

 How can software be developed so that it can (1) be updated instantly
 when a new version becomes available, (2) be used across a wide range
 of devices, and (3) be as powerful as regular desktop applications?
 This sounds almost impossible but with the increased capabilities of
 Web browsers, and JavaScript in particular, it seems that the
 Internet community has gotten a couple of steps closer to achieve
 this goal.

 This document describes these developments, highlights impacts for
 the standardization community, and provides recommendations for those
 developing applications.

 Note that the writeup heavily refers to JavaScript as a mechanism for

Tschofenig, et al. Expires November 10, 2012 [Page 4]

Internet-Draft Web Applications: Trends and Implications May 2012

 mobile code distribution. There is, however, nothing special about
 JavaScript as a language by itself and it may well be possible that
 other languages will be developed for usage in other environments
 offering similar or even superior capabilities.

Tschofenig, et al. Expires November 10, 2012 [Page 5]

Internet-Draft Web Applications: Trends and Implications May 2012

2. Impact for the Standardization Community

 In the application area communication protocols often follow the
 pattern where an end host utilizes some application service provider
 for communication setup and sometimes also for message routing
 towards the other communication end point. Examples of such a
 standardized communication protocols are the Post Office Protocol
 (POP) [1], the Internet Message Access Protocol (IMAP) [2], as well
 as the Session Initiation Protocol (SIP) [3] and the Extensible
 Messaging and Presence Protocol (XMPP) [4].

 Figure 1 shows a typical scenario where two hosts, Alice and Bob,
 interact with an application provider. A desired interoperability
 goal often has been to let a software vendor develop the software
 clients at the end hosts to interact with a random application
 provider offering the specific protocol implementation.

 | |
 | Application |
 | Service |
 | Provice |
 | Example.com |
 |_______________|
 _, .
 ,' `.
 _,' `.
 ,' `._
 -' -
 ,''''''''| ,''''''''|
 | End | | End |
 | Host | | Host |
 | Alice | | Bob |
 |........' |........'

 Figure 1: Communication Partners from a Single Domain

 Many protocols developed in the IETF also offer the ability to let
 users from different application service providers (via their end
 hosts) to communicate. Figure 2 shows this architecture graphically,
 where additional interoperability needs are created between the
 application service provider domains.

Tschofenig, et al. Expires November 10, 2012 [Page 6]

Internet-Draft Web Applications: Trends and Implications May 2012

 | | | |
 | Application | | Application |
 | Service |--------------| Service |
 | Provider | | Provider |
 | Example.com | | Example.org |
 |_______________| |_______________|
 _, .
 ,' `.
 _,' `.
 ,' `._
 -' -
 ,''''''''| ,''''''''|
 | End | | End |
 | Host | | Host |
 | Alice | | Bob |
 |........' |........'

 Figure 2: Communication Partners from Multiple Domains

 These two figures did not make the attempt to differentiate signaling
 message exchanges from the actual data traffic exchange. The data
 traffic may be exchanged directly between the end hosts themselves
 and therefore creates additional interoperability requirements when
 those software clients shall be developed by independent parties.

 While many standardization efforts in the IETF have considered the
 possibility for using proprietary protocols along the end host to
 application service provider leg, this has usually been considered as
 exception or a transition case. It is typically assumed that the
 desired end state of standardization is to move from a proprietary
 protocol to the standardized alternative in the long run, which
 allows client software vendors to interact with all forms of
 application service providers. Such an approach increases the need
 for standardization and requires far more interoperable network
 elements to exist.

 With a mobile code distribution platform as the Web with JavaScript
 offers it is possible to leave the end host to application service
 provider interaction largely non-standardized. Only very few
 standardization actions are required, to for example, enhance the
 capability of JavaScript to perform additional functions, such as the
 access to underlying hardware functions (e.g., microphone, GPS module
 or a camera).

 Quite clearly applications can be designed in a way that fewer
 standardized client-server protocols are needed. The question
 therefore remains for those actively pursuing standardization as to

Tschofenig, et al. Expires November 10, 2012 [Page 7]

Internet-Draft Web Applications: Trends and Implications May 2012

 where the limitations of the JavaScript-based mobile code
 distribution approach is. Section 3 tries to explore this aspect in
 more detail.

Tschofenig, et al. Expires November 10, 2012 [Page 8]

Internet-Draft Web Applications: Trends and Implications May 2012

3. Limitations of Mobile Code Distribution

 The usage of JavaScript is, however, not always the right choice for
 application developers and even though a number of new building
 blocks are being made available, such as HTML5 [5] and various
 JavaScript extensions, there are still a number of limitations in
 today's browser environment. We list a couple of those challenges,
 some of which will be resolved in the near future as standardization
 and deployment progresses, while others will remain a challenge for a
 long time.

3.1. Performance Limitations

 Early JavaScript implementations did not offer high performance.
 Over many years very little attention was paid to boost the
 performance until recently when the Google JavaScript engine V8 [6]
 started to compile JavaScript code directly into machine code when it
 is first executed. More details about the design can be found at
 [7].

 A more serious limitation is the graphics capabilities in browsers.
 Efforts are under way to enhance the API capabilities, for example
 WebGL [8] bringing 3D graphics to the browser with features similar
 to OpenGL ES 2.0 that can be used in HTML5 canvas elements but
 expensive computations on the end host need to migrate from the
 Central Processing Unit (CPU) to the Graphics Processing Unit (GPU)
 for proper performance. Simple 3D games (similar to the recently
 demonstrated Quake II port to HTML5 [9] utilizing JavaScript, the
 WebSocket API [10] and the Web Storage API [11]) can now be
 implemented but state-of-the-art games and virtual worlds are out of
 reach. The problem is with the number of polygons that many games
 and virtual worlds need to process and display. Games, like Quake,
 use a limited number of textures, and the complexity of the scene
 graph is small.

 In comparison to virtual worlds where the content is put together by
 users, in many games the playing field is carefully designed by
 experts. This has implications for the complexity of the scene
 graph. On the other hand, most virtual worlds do not rely on rapid
 communication updates in the same way that many action and tactic
 games do. Joshua Bell illustrated this with an example of 'a quiet
 scene with a single user running around in SecondLife [12]. A
 teleport to a region can easily have a scene graph with 2000 nodes, a
 couple hundred 3D textures, 4000 vertexes, and 20 MByte of vertex
 data. This corresponds to the maximum a graphics developer would
 typically like to have in a state-of-the-art game. In a busy scene
 with lot of user generated content and avatars the volume easily
 jumps up by a factor of five.' [13]. The size of the game itself

Tschofenig, et al. Expires November 10, 2012 [Page 9]

Internet-Draft Web Applications: Trends and Implications May 2012

 (often due to the high quality textures) and software updates is
 impressive; often reaching beyond several 100 Mbytes. Utilizing
 persistent storage and caching in combination with more aggressive
 client-server interactions demands a different style of programming
 and therefore also puts different constraints on the protocol design.
 This might also stress the current Mbyte limits for Web storage.

 Initial work to deal with more sophisticated graphics computation has
 started already, as described in the recently published article [14]
 about elevating JavaScript performance through offloading processing
 to the GPU. As stated in the announcement of the Jetpack 0.5 contest
 [15]: 'By giving webpages and add-ons easy access to the raw
 processing power available on most computers, the range of abilities
 that the web can have greatly increases.'.

3.2. Transport Protocol Limitations

 In [16] Jonathan Rosenberg argued that the new waist of the Internet
 hourglass is UDP and TCP, rather than IP as in the initial design.
 Today, application protocol designers may, however, get the
 impression that tunneling inside HTTP or even HTTPS is required to
 get an application running in a large number of environments,
 especially to reach a customer base that is connected to the Internet
 through an enterprise network. Needless to say that more complex
 tunneling leads to more complexity, the data transport adds overhead
 and the initial environment sensing phase adds delays. This is
 certainly true for the VoIP context where the payload data is
 comparatively small to the overall header size (including the TCP/
 HTTP headers). The work on Interactive Connectivity Establishment
 (ICE) [17] is relevant for the sensing phase and this functionality
 may need to be replicated in the browser environment. For this
 purpose it is more and more common to limit the number of individual
 connections and to instead multiplex them over a single transport
 connection. See, for example, SPDY [18] and developments in the VoIP
 context [19]. Worse than inefficiency is that some real-time
 applications do not behave well with the retransmission behavior of
 TCP. For real-time voice and video applications, for virtual worlds,
 and for many games it is acceptable to loose video and voice frames
 from time to time without waiting for retransmission.

 Adding the support for UDP to browsers again adds complexity, as the
 experience with Voice over IP showed, particularly when the protocols
 are not multiplexed together, so that it is necessary to identify
 multiple working end-to-end paths for the traversal of Network
 Address Translators (NATs) and firewalls. With the transition to
 IPv6 the number of NATs is likely to increase. Furthermore, in many
 cases it might be desired to perform route optimization for data
 traffic and to exchange it directly between the two endpoints

Tschofenig, et al. Expires November 10, 2012 [Page 10]

Internet-Draft Web Applications: Trends and Implications May 2012

 whenever possible to reduce the financial costs and the added delay
 of using an anchor point. For example, Google Talk only requires the
 involvement of relays for 8% of their calls, as reported in [20] by
 utilizing ICE.

 It should be noted that audio and video streaming capabilities have
 been available in the browser for a while with plug-in support. More
 sophisticated audio support, such as tagging audio with x/y positions
 for 3D audio, is not even possible with the Adobe Flash application
 today. The challenge with video support in browsers is based on the
 lack of universal support of a specific video codec. The lack of
 hardware support is secondary although relevant for increased
 performance and lower energy consumption. Naturally, supporting
 different codecs makes the work of web developers and content
 distributors difficult.

3.3. Security, Privacy, and Cryptographic Processing Limitations

 Many protocol mechanisms have several built-in cryptographic
 primitives and and the same capabilities must be available in the
 browser in order to migrate applications that use these capabilities.
 For example, JavaScript allows cryptographic operations to be
 implemented (see [21] for a JavaScript AES or other cryptographic
 functions [22] implementation) but access to hardware crypto-
 processors, smart cards [23] or to key storages from JavaScript is
 still at an early stage and, at the time of writing, not available as
 a standardized JavaScript API.

 The security model of JavaScript is different than the one offered by
 Widgets [24] (available with different platforms/operating systems,
 such as Mac OS X (via the dashboard), Windows 7, Opera, etc.) or
 classical operating systems. JavaScript code does not declare what
 operations it is intended to perform. Even with Widgets there is the
 question of who verifies any of these privileges. It can hardly be
 assumed that the end user will be bothered with such a responsibility
 (due to the lack of his or her expertise. Furthermore, the semantic
 of end-to-end security is challenged when the distinct communication
 legs support protocols with different semantics, and dissimilar
 encodings. Imagine a browser that sends location data encoded in
 JSON [25], for example using [26], to a web server, which converts it
 to XML, for example into the PIDF-LO format [27] to interoperate with
 another application service provider. Consequently, this server then
 uses XMPP to deliver notifications to its users, for example using
 [28]. No two of these encodings offer the same privacy mechanisms
 nor security properties.

 The privacy implications of a heavily JavaScript-centered Web
 environment are not yet well understood. For example, the SIP

Tschofenig, et al. Expires November 10, 2012 [Page 11]

Internet-Draft Web Applications: Trends and Implications May 2012

 privacy mechanisms, described in [29], [30], and [31]) rely to a
 large degree on the end point to select independent RTP/SRTP relays,
 and to obfuscate important header fields based on the context
 provided by the user. One could argue that these standardized SIP
 privacy extensions represent a community design even though those who
 deploy ultimately make the final decisions about what policies to
 use. When the executable code itself is provided by the application
 service provider then the privacy functionality for data minimization
 can change at any point in time with little possibility that the user
 will notice. Only the application service provider makes decisions
 about what functionality it desires without having to consult or
 agree with anyone else.

3.4. Source Code Hiding Limitations

 In many commercial environments it is not desirable to make source
 code available to the public. With JavaScript the source code is
 sent from the server to the browser and only compression and
 obfuscation tools are available [32]. However, the only way to
 protect code is to not expose it to observers, instead leaving the
 important code on the server-side and have a minimal public
 Javascript code segment use asynchronous message exchanges with the
 server.

Tschofenig, et al. Expires November 10, 2012 [Page 12]

Internet-Draft Web Applications: Trends and Implications May 2012

4. Recommendations

 This section lists a few basic questions for protocol authors. We
 hope that in answering these questions honestly a thought process
 will be triggered that may lead you to re-consider your design before
 starting the standardization effort that may not lead to successful
 deployment. Note: We use the term 'protocol' below to refer to a
 protocol extension, a single protocol, or to a complete protocol
 suite, or an entire architecture.

 1. Does your standardization effort fall priminarily into the
 client-to-server interaction described in this document? If the
 answer is "yes", is there a story how the involved stakeholders
 can innovate at a high speed?

 2. Are you attempting to offer functionality typically found at the
 application layer at the lower layers? If so, have you carefully
 investigated the cost vs. benefit tradeoff?

 3. Does your protocol design involve other stakeholders whoes goals
 are either not known or potentially not aligned with the goals of
 your envisioned deployment, i.e. for successful deployment do you
 require cooperation of stakeholders who may have disincentives
 (or unclear incentives) to deploy your protocol?

 4. When designing your protocol have you considered the Web
 application environment? Do you understand Web development
 yourself or do you have experts from the Web development
 community involved in your work?

 5. Does your protocol design offer the ability to carry payloads on
 HTTP/HTTPS?

 6. Why is the current Web framework unable to meet your application
 requirements? Have you documented the reasons?

 7. Have you implemented your protocol in a tyipcal Web development
 programming language? Hands-on experience may help you to detect
 problems with using your application design in a Web context in
 early stages of the design.

 8. Is your protocol deployed already? If not, who do you envision
 to implement and deploy it?

Tschofenig, et al. Expires November 10, 2012 [Page 13]

Internet-Draft Web Applications: Trends and Implications May 2012

5. Conclusions

 This document aims to highlight recent trends in Web application
 development with impact to Internet standardization. In a nutshell,
 there is a certain class of applications for which the
 standardization need is diminishing: chances are good that your
 standardization work will not be relevant relevant in such an
 environment.

 A lot of this change is driven by mobile code distribution using
 JavaScript executed on the end host (typically in the Web browser)
 while server-to-server communication is not yet impacted.

 We are, however, already seeing server-side JavaScript
 implementations. NodeJS [33] is such an example that is built on
 top of the V8 JavaScript engine. It runs multiple concurrent
 JavaScript execution engines in one thread allowing to develop a
 massively concurrent Web server in JavaScript, addressing a
 typical pain point for server developers when implementing
 distributed systems. As another example, CommonJS [34] defines
 APIs that handle many common application needs, including those
 that go beyond the usage in Web browsers (such as regular command
 line programs).

 Hence, just as the barriers for rapidly deploying code have dropped
 on the client side; the server side will likely follow.

 Even if there are challenges for standardization there are other
 areas where work is needed:

 o The development of of protocol mechanisms to support a larger
 range of applications will have an important role to play in the
 future. Examples of such efforts include the currenly ongoing
 work on 'BiDirectional or Server-Initiated HTTP' in the HYBI
 working group [35]. For future work on improving the performance
 of the Web, for example [36], improvements in HTTP, or common
 security functionality for the Web as standardized in the Web
 Security working group [37].

 o In those areas where application islands want to interact with
 larger eco-systems the need for cross-domain communication arises.
 Often, this is done in a proprietary way but for larger
 distributed systems and for common functions standardized
 solutions are valuable. This can be observed today within the
 VoIP environment, although much slower than expected, in the case
 of Voice over IP peering but also in the Internet identity
 management community under the umbrella of 'data portability'
 [38]. As recent IETF work in this area the Open Authentication

Tschofenig, et al. Expires November 10, 2012 [Page 14]

Internet-Draft Web Applications: Trends and Implications May 2012

 Protocol (oauth) [39] working group could be referenced. OAuth
 deals with more sophisticated security protocol interactions that
 require multiple parties to participate in an interoperable way.

 o Everyone knows that protocol design is hard regardless whether it
 happens inside a standards developing organization, like the IETF
 or W3C, or in some other less structured community. For Web
 developers the standardization results are often only visible if
 they appear in form of rich JavaScript libraries and development
 frameworks, such as JQuery [40], the Prototype JavaScript
 Framework [41], MooTools [42], YUI [43] and Narwahl [44]. In
 order to have an impact in the Web community it is essential for
 working groups participants to think about how to their protocols
 can be deployed in a Web environment, for by making JavaScript
 implementations available. The desire in the standards developing
 community, including the IETF, to be programming language agnostic
 and to avoid API standardization may need to be re-visited in
 light of these recent developments. Extending JavaScript may, for
 example, require new Document Object Models (DOMs) [45] and these
 could serve as a valuable contribution.

 Offering almost unlimited capabilities to JavaScript/HTML running in
 a browser (in the same style as native applications run in an
 operating system environment) will raise security concerns and will
 consequently require countermeasures (such as 'deep inspection' and
 blocking). This in turn will sparkle new ideas to bypass limitations
 introduced, for example by utilizing new scripting languages with
 different capabilities, etc. This is an arms race that the IT
 industry is already able to observe already with deep packet
 inspection firewalls and peer-to-peer networks during the last few
 years.

 It is unavoidable to get the impression that the hard problems,
 particularly to security concerns regarding the distribution of new
 software in whatever form, have not been tackled. Instead, the
 browser becomes the new operating system, inherits the same
 weaknesses and is likely to share the same fate.

Tschofenig, et al. Expires November 10, 2012 [Page 15]

Internet-Draft Web Applications: Trends and Implications May 2012

6. Security Considerations

 This document includes discussions related to security.

Tschofenig, et al. Expires November 10, 2012 [Page 16]

Internet-Draft Web Applications: Trends and Implications May 2012

7. IANA Considerations

 This document does not require actions by IANA.

Tschofenig, et al. Expires November 10, 2012 [Page 17]

Internet-Draft Web Applications: Trends and Implications May 2012

8. Acknowledgements

 The authors would like to thank Gonzalo Camarillo, Robert Sparks,
 Alissa Cooper, Blaine Cook, Alexey Melnikov, Peter Saint-Andre,
 Jonathan Rosenberg, Lisa Dusseault, Joshua Bell, John Hurliman,
 Meadhbh Hamrick, Mark Nottingham, Anders Rundgren, Markus Isomaki,
 Spencer Dawkins, Jan Kall, Jan Ignatius and Thomas Roessler.

 An early version of this document was written to provide additional
 background for the IETF#80 IAB technical plenary discussion in
 Prague, March 2011. A number of persons provided their feedback,
 including Dave Crocker, Pete Resnick, Leslie Daigle, Harald
 Alvestrand, Jonathan Rosenberg, Dave Cridland, Nico Williams, Peter
 Saint-Andre, Graham Klyne, Philip Hallam-Baker, Scott Brim, Henry
 Sinnreich, Eliot Lear, Mark Nottingham, Paul Hoffman, Ted Hardie,
 Cyrus Daboo, Claudio Allocchio, and Sam Hartman. We thank them for
 the lively discussion.

Tschofenig, et al. Expires November 10, 2012 [Page 18]

Internet-Draft Web Applications: Trends and Implications May 2012

9. Informative References

 [1] Myers, J. and M. Rose, "Post Office Protocol - Version 3",
 STD 53, RFC 1939, May 1996.

 [2] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

 [3] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [4] Saint-Andre, P., Ed., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 3920, October 2004.

 [5] "W3C HTML Working Group Charter", Sep 2010.

 [6] "V8 JavaScript Engine", Sep 2010.

 [7] "V8 JavaScript Engine - Design Elements", Sep 2010.

 [8] "WebGL", Sep 2010.

 [9] "Quake II Google Web Toolkit (GWT) Port", Sep 2010.

 [10] "The WebSocket API", Sep 2010.

 [11] "Web Storage", Aug 2010.

 [12] "Second Life", Sep 2010.

 [13] "Private communication between Joshua Bell, Hannes Tschofenig
 and Jon Peterson about browser performance limitations",
 Aug 2010.

 [14] "Elevating JavaScript Performance Through GPU Power", Jan 2010.

 [15] "Jetpack 0.5 Contest: A Winner", Nov 2009.

 [16] Rosenberg, J., "UDP and TCP as the New Waist of the Internet
 Hourglass", draft-rosenberg-internet-waist-hourglass-00 (work
 in progress), February 2008.

 [17] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
 Protocol for Network Address Translator (NAT) Traversal for
 Offer/Answer Protocols", RFC 5245, April 2010.

 [18] "SPDY: An experimental protocol for a faster web", Oct 2011.

https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3920
https://datatracker.ietf.org/doc/html/draft-rosenberg-internet-waist-hourglass-00
https://datatracker.ietf.org/doc/html/rfc5245

Tschofenig, et al. Expires November 10, 2012 [Page 19]

Internet-Draft Web Applications: Trends and Implications May 2012

 [19] Westerlund, M., Burman, B., and C. Perkins, "RTP Multiplexing
 Architecture",

draft-westerlund-avtcore-multiplex-architecture-01 (work in
 progress), March 2012.

 [20] "Google Talk for Developers: Important Concepts", Sep 2010.

 [21] "JavaScript Implementation of AES Advanced Encryption Standard
 in Counter Mode", Sep 2010.

 [22] "crypto-js: JavaScript implementations of standard and secure
 cryptographic algorithms", Sep 2010.

 [23] "JavaScript Crypto", Sep 2010.

 [24] "W3C Web Applications (WebApps) Working Group", Sep 2010.

 [25] "JavaScript Object Notation (JSON)", Sep 2010.

 [26] "The GeoJSON Format Specification", Jun 2008.

 [27] Peterson, J., "A Presence-based GEOPRIV Location Object
 Format", RFC 4119, December 2005.

 [28] "XEP-0080: User Location", Sep 2009.

 [29] Peterson, J., "A Privacy Mechanism for the Session Initiation
 Protocol (SIP)", RFC 3323, November 2002.

 [30] Munakata, M., Schubert, S., and T. Ohba, "Guidelines for Using
 the Privacy Mechanism for SIP", RFC 5379, February 2010.

 [31] Munakata, M., Schubert, S., and T. Ohba, "User-Agent-Driven
 Privacy Mechanism for SIP", RFC 5767, April 2010.

 [32] Crockford, D., "(JavaScript) Minification v Obfuscation",
 Mar 2006.

 [33] "nodeJS", Sep 2010.

 [34] "CommonJS", Sep 2010.

 [35] "IETF BiDirectional or Server-Initiated HTTP (hybi) Working
 Group Charter", Mar 2011.

 [36] "Let's make the web faster", Sep 2010.

 [37] "IETF Web Security (websec) Working Group Charter", Mar 2011.

https://datatracker.ietf.org/doc/html/draft-westerlund-avtcore-multiplex-architecture-01
https://datatracker.ietf.org/doc/html/rfc4119
https://datatracker.ietf.org/doc/html/rfc3323
https://datatracker.ietf.org/doc/html/rfc5379
https://datatracker.ietf.org/doc/html/rfc5767

Tschofenig, et al. Expires November 10, 2012 [Page 20]

Internet-Draft Web Applications: Trends and Implications May 2012

 [38] "Data Portability Project: Share and Remix Data using Open
 Standards", Sep 2010.

 [39] "IETF Open Authentication Protocol (oauth) Working Group
 Charter", Sep 2010.

 [40] "jQuery: The Write Less, Do More, JavaScript Library",
 Sep 2010.

 [41] "Prototype JavaScript framework: Easy Ajax and DOM anipultion
 for dynamic web applications", Sep 2010.

 [42] "MooTools - a compact javascript framework", Sep 2010.

 [43] "Yahoo! User Interface Library 3", Sep 2010.

 [44] "Narwhal - A general purpose JavaScript platform", Sep 2010.

 [45] "Document Object Model", Sep 2010.

 [46] "W3C Workshop on Privacy for Advanced Web APIs", Jul 2010.

 [47] "W3C Geolocation Working Group", Sep 2010.

 [48] "Ajax (programming)", Sep 2010.

 [49] "Device APIs and Policy Working Group", Sep 2010.

 [50] Doty, N., Mulligan, D., and E. Wilde, "Privacy Issues of the
 W3C Geolocation API, UC Berkeley School of Information Report
 2010-038", Feb 2010.

 [51] "Adobe Flash Player", Sep 2010.

 [52] "Microsoft Silverlight", Sep 2010.

Tschofenig, et al. Expires November 10, 2012 [Page 21]

Internet-Draft Web Applications: Trends and Implications May 2012

Authors' Addresses

 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Bernard Aboba
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: bernarda@microsoft.com

 Jon Peterson
 NeuStar, Inc.
 1800 Sutter St Suite 570
 Concord, CA 94520
 US

 Email: jon.peterson@neustar.biz

 Danny McPherson
 Verisign
 US

 Email: danny@tcb.net

http://www.tschofenig.priv.at

Tschofenig, et al. Expires November 10, 2012 [Page 22]

