
Workgroup: Remote ATtestation ProcedureS

Internet-Draft:

draft-tschofenig-rats-psa-token-10

Published: 6 September 2022

Intended Status: Informational

Expires: 10 March 2023

Authors: H. Tschofenig

Arm Limited

S. Frost

Arm Limited

M. Brossard

Arm Limited

A. Shaw

HP Labs

T. Fossati

Arm Limited

Arm's Platform Security Architecture (PSA) Attestation Token

Abstract

The Platform Security Architecture (PSA) is a family of hardware and

firmware security specifications, as well as open-source reference

implementations, to help device makers and chip manufacturers build

best-practice security into products. Devices that are PSA compliant

are able to produce attestation tokens as described in this memo,

which are the basis for a number of different protocols, including

secure provisioning and network access control. This document

specifies the PSA attestation token structure and semantics.

The PSA attestation token is a profiled Entity Attestation Token

(EAT).

This specification describes what claims are used in an attestation

token generated by PSA compliant systems, how these claims get

serialized to the wire, and how they are cryptographically

protected.

Note to Readers

Source for this draft and an issue tracker can be found at https://

github.com/thomas-fossati/draft-psa-token.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

¶

¶

https://github.com/thomas-fossati/draft-psa-token
https://github.com/thomas-fossati/draft-psa-token
https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Conventions and Definitions

2.1. Glossary

3. PSA Attester Model

4. PSA Claims

4.1. Caller Claims

4.1.1. Nonce

4.1.2. Client ID

4.2. Target Identification Claims

4.2.1. Instance ID

4.2.2. Implementation ID

4.2.3. Certification Reference

4.3. Target State Claims

4.3.1. Security Lifecycle

4.3.2. Boot Seed

4.4. Software Inventory Claims

4.4.1. Software Components

4.5. Verification Claims

4.5.1. Verification Service Indicator

4.5.2. Profile Definition

5. Backwards Compatibility Considerations

6. Token Encoding and Signing

7. Freshness Model

8. Collated CDDL

9. Implementation Status

10. Security and Privacy Considerations

11. Verification

12. IANA Considerations

12.1. CBOR Web Token Claims Registration

12.1.1. Client ID Claim

¶

¶

¶

¶

https://trustee.ietf.org/license-info

RoT:

12.1.2. Security Lifecycle Claim

12.1.3. Implementation ID Claim

12.1.4. Boot Seed Claim

12.1.5. Certification Reference Claim

12.1.6. Software Components Claim

12.1.7. Verification Service Indicator Claim

12.2. Media Type Registration

12.3. CoAP Content-Formats Registration

12.3.1. Registry Contents

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Example

Acknowledgments

Contributors

Authors' Addresses

1. Introduction

Trusted execution environments are now present in many devices,

which provide a safe environment to place security sensitive code

such as cryptography, secure boot, secure storage, and other

essential security functions. These security functions are typically

exposed through a narrow and well-defined interface, and can be used

by operating system libraries and applications. Various APIs have

been developed by Arm as part of the Platform Security Architecture

[PSA] framework. This document focuses on the output provided by

PSA's Initial Attestation API. Since the tokens are also consumed by

services outside the device, there is an actual need to ensure

interoperability. Interoperability needs are addressed here by

describing the exact syntax and semantics of the attestation claims,

and defining the way these claims are encoded and cryptographically

protected.

Further details on concepts expressed below can be found in the PSA

Security Model documentation [PSA-SM].

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.1. Glossary

Root of Trust, the minimal set of software, hardware and data

that has to be implicitly trusted in the platform - there is no

¶

¶

¶

SPE:

NSPE:

software or hardware at a deeper level that can verify that the

Root of Trust is authentic and unmodified. An example of RoT is

an initial bootloader in ROM, which contains cryptographic

functions and credentials, running on a specific hardware

platform.

Secure Processing Environment, a platform's processing

environment for software that provides confidentiality and

integrity for its runtime state, from software and hardware,

outside of the SPE. Contains trusted code and trusted hardware.

(Equivalent to Trusted Execution Environment (TEE), or "secure

world".)

Non Secure Processing Environment, the security domain

outside of the SPE, the Application domain, typically containing

the application firmware, operating systems, and general

hardware. (Equivalent to Rich Execution Environment (REE), or

"normal world".)

3. PSA Attester Model

Figure 1 outlines the structure of the PSA Attester according to the

conceptual model described in Section 3.1 of [I-D.ietf-rats-

architecture].

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-21#section-3.1

Verifier

Evidence

Attesting Environment

Main Main Initial
Bootloader Boot Attestation

State Service

Updateable Application Application PSA RoT
PSA RoT RoT Loader Parameters

Target Environment

Figure 1: PSA Attester

The PSA Attester is a relatively straightforward embodiment of the

RATS Attester with exactly one Attesting Environment and one Target

Environment.

The Attesting Environment is responsible for collecting the

information to be represented in PSA claims and to assemble them

into Evidence. It is made of two cooperating components:

The Main Bootloader (executing at boot-time) measures the loaded

software components, collects the relevant PSA RoT parameters,

and stores the recorded information in secure memory (Main Boot

State) from where the Initial Attestation Service will, when

asked for a platform attestation report, retrieve them.

The Initial Attestation Service (executing at run-time in SPE)

answers requests coming from NSPE via the PSA attestation API

[PSA-API], collects and formats the claims from Main Boot State,

and uses the Initial Attestation Key (IAK) to sign the

attestation report.

¶

¶

¶

*

¶

*

¶

The Target Environment can be broken down into four macro "objects",

some of which may or may not be present depending on the device

architecture:

(A subset of) the PSA RoT parameters, including Instance and

Implementation IDs.

The updateable PSA RoT, including the Secure Partition Manager

and all PSA RoT services.

The (optional) Application RoT, that is any application-defined

security service, possibly making use of the PSA RoT services.

The loader of the application software running in NSPE.

A reference implementation of the PSA Attester is provided by [TF-

M].

4. PSA Claims

This section describes the claims to be used in a PSA attestation

token.

CDDL [RFC8610] along with text descriptions is used to define each

claim independent of encoding. The following CDDL type(s) are reused

by different claims:

4.1. Caller Claims

4.1.1. Nonce

The Nonce claim is used to carry the challenge provided by the

caller to demonstrate freshness of the generated token.

The EAT [I-D.ietf-rats-eat] nonce (claim key 10) is used. The

following constraints apply to the nonce-type:

The length MUST be either 32, 48, or 64 bytes.

Only a single nonce value is conveyed. Per [I-D.ietf-rats-eat]

the array notation is not used for encoding the nonce value.

This claim MUST be present in a PSA attestation token.

¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

psa-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64¶

¶

¶

* ¶

*

¶

¶

psa-nonce = (

 nonce-label => psa-hash-type

)

¶

4.1.2. Client ID

The Client ID claim represents the security domain of the caller.

In PSA, a security domain is represented by a signed integer whereby

negative values represent callers from the NSPE and where positive

IDs represent callers from the SPE. The value 0 is not permitted.

For an example definition of client IDs, see the PSA Firmware

Framework [PSA-FF].

It is essential that this claim is checked in the verification

process to ensure that a security domain, i.e., an attestation

endpoint, cannot spoof a report from another security domain.

This claim MUST be present in a PSA attestation token.

4.2. Target Identification Claims

4.2.1. Instance ID

The Instance ID claim represents the unique identifier of the

Initial Attestation Key (IAK). The full definition is in [PSA-SM].

The EAT ueid (claim key 256) of type RAND is used. The following

constraints apply to the ueid-type:

The length MUST be 33 bytes.

The first byte MUST be 0x01 (RAND) followed by the 32-bytes key

hash.

This claim MUST be present in a PSA attestation token.

¶

¶

¶

¶

¶

psa-client-id-nspe-type = -2147483648...0

psa-client-id-spe-type = 1..2147483647

psa-client-id-type = psa-client-id-nspe-type / psa-client-id-spe-type

psa-client-id = (

 psa-client-id-key => psa-client-id-type

)

¶

¶

¶

* ¶

*

¶

¶

psa-instance-id-type = bytes .size 33

psa-instance-id = (

 ueid-label => psa-instance-id-type

)

¶

4.2.2. Implementation ID

The Implementation ID claim uniquely identifies the implementation

of the immutable PSA RoT. A verification service uses this claim to

locate the details of the PSA RoT implementation from an Endorser or

manufacturer. Such details are used by a verification service to

determine the security properties or certification status of the PSA

RoT implementation.

The value and format of the ID is decided by the manufacturer or a

particular certification scheme. For example, the ID could take the

form of a product serial number, database ID, or other appropriate

identifier.

This claim MUST be present in a PSA attestation token.

Note that this identifies the PSA RoT implementation, not a

particular instance. To uniquely identify an instance, see the

Instance ID claim Section 4.2.1.

4.2.3. Certification Reference

The Certification Reference claim is used to link the class of chip

and PSA RoT of the attesting device to an associated entry in the

PSA Certification database. It MUST be represented as a string made

of nineteen numeric characters: a thirteen-digit [EAN-13], followed

by a dash "-", followed by the five-digit versioning information

described in [PSA-Cert-Guide].

Linking to the PSA Certification entry can still be achieved if this

claim is not present in the token by making an association at a

Verifier between the reference value and other token claim values -

for example, the Implementation ID.

¶

¶

¶

¶

psa-implementation-id-type = bytes .size 32

psa-implementation-id = (

 psa-implementation-id-key => psa-implementation-id-type

)

¶

¶

¶

psa-certification-reference-type = text .regexp "[0-9]{13}-[0-9]{5}"

psa-certification-reference = (

 ? psa-certification-reference-key =>

 psa-certification-reference-type

)

¶

4.3. Target State Claims

4.3.1. Security Lifecycle

The Security Lifecycle claim represents the current lifecycle state

of the PSA RoT. The state is represented by an integer that is

divided to convey a major state and a minor state. A major state is

mandatory and defined by [PSA-SM]. A minor state is optional and

'IMPLEMENTATION DEFINED'. The PSA security lifecycle state and

implementation state are encoded as follows:

version[15:8] - PSA security lifecycle state, and

version[7:0] - IMPLEMENTATION DEFINED state.

The PSA lifecycle states are illustrated in Figure 2. For PSA, a

Verifier can only trust reports from the PSA RoT when it is in

SECURED or NON_PSA_ROT_DEBUG major states.

This claim MUST be present in a PSA attestation token.

Enrol Provisioning Lockdown

Verifier Secured

Blocklist
Non-PSA RoT Debug Recoverable

PSA RoT Debug

Terminate

Decommissioned

Figure 2: PSA Lifecycle States

¶

* ¶

* ¶

¶

¶

¶

4.3.2. Boot Seed

The Boot Seed claim represents a value created at system boot time

that will allow differentiation of reports from different boot

sessions.

This claim MAY be present in a PSA attestation token.

If present, it MUST be between 8 and 32 bytes.

4.4. Software Inventory Claims

4.4.1. Software Components

The Software Components claim is a list of software components that

includes all the software loaded by the PSA RoT. This claim SHALL be

included in attestation tokens produced by an implementation

conformant with [PSA-SM].

Each entry in the Software Components list describes one software

component using the attributes described in the following

subsections. Unless explicitly stated, the presence of an attribute

is OPTIONAL.

psa-lifecycle-unknown-type = 0x0000..0x00ff

psa-lifecycle-assembly-and-test-type = 0x1000..0x10ff

psa-lifecycle-psa-rot-provisioning-type = 0x2000..0x20ff

psa-lifecycle-secured-type = 0x3000..0x30ff

psa-lifecycle-non-psa-rot-debug-type = 0x4000..0x40ff

psa-lifecycle-recoverable-psa-rot-debug-type = 0x5000..0x50ff

psa-lifecycle-decommissioned-type = 0x6000..0x60ff

psa-lifecycle-type =

 psa-lifecycle-unknown-type /

 psa-lifecycle-assembly-and-test-type /

 psa-lifecycle-psa-rot-provisioning-type /

 psa-lifecycle-secured-type /

 psa-lifecycle-non-psa-rot-debug-type /

 psa-lifecycle-recoverable-psa-rot-debug-type /

 psa-lifecycle-decommissioned-type

psa-lifecycle = (

 psa-lifecycle-key => psa-lifecycle-type

)

¶

¶

¶

¶

psa-boot-seed-type = bytes .size (8..32)

psa-boot-seed = (

 psa-boot-seed-key => psa-boot-seed-type

)

¶

¶

¶

Note that, as described in [I-D.ietf-rats-architecture], a relying

party will typically see the result of the verification process from

the Verifier in form of an attestation result, rather than the

"naked" PSA token from the attesting endpoint. Therefore, a relying

party is not expected to understand the Software Components claim.

Instead, it is for the Verifier to check this claim against the

available endorsements and provide an answer in form of an "high

level" attestation result, which may or may not include the original

Software Components claim.

4.4.1.1. Measurement Type

The Measurement Type attribute (key=1) is short string representing

the role of this software component.

The following measurement types MAY be used:

"BL": a Boot Loader

"PRoT": a component of the PSA Root of Trust

"ARoT": a component of the Application Root of Trust

"App": a component of the NSPE application

"TS": a component of a Trusted Subsystem

4.4.1.2. Measurement Value

The Measurement Value attribute (key=2) represents a hash of the

invariant software component in memory at startup time. The value

MUST be a cryptographic hash of 256 bits or stronger.

This attribute MUST be present in a PSA software component.

¶

psa-software-component = {

 ? &(measurement-type: 1) => text

 &(measurement-value: 2) => psa-hash-type

 ? &(version: 4) => text

 &(signer-id: 5) => psa-hash-type

 ? &(measurement-desc: 6) => text

}

psa-software-components = (

 psa-software-components-key => [+ psa-software-component]

)

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

4.4.1.3. Version

The Version attribute (key=4) is the issued software version in the

form of a text string. The value of this attribute will correspond

to the entry in the original signed manifest of the component.

4.4.1.4. Signer ID

The Signer ID attribute (key=5) is the hash of a signing authority

public key for the software component. The value of this attribute

will correspond to the entry in the original manifest for the

component. This can be used by a Verifier to ensure the components

were signed by an expected trusted source.

This attribute MUST be present in a PSA software component to be

compliant with [PSA-SM].

4.4.1.5. Measurement Description

The Measurement Description attribute (key=6) contains a string

identifying the hash algorithm used to compute the corresponding

Measurement Value. The string SHOULD be encoded according to [IANA-

HashFunctionTextualNames].

4.5. Verification Claims

4.5.1. Verification Service Indicator

The Verification Service Indicator claim is a hint used by a relying

party to locate a verification service for the token. The value is a

text string that can be used to locate the service (typically, a URL

specifying the address of the verification service API). A Relying

Party may choose to ignore this claim in favor of other information.

4.5.2. Profile Definition

The Profile Definition claim encodes the unique identifier that

corresponds to the EAT profile described by this document. This

allows a receiver to assign the intended semantics to the rest of

the claims found in the token.

¶

¶

¶

¶

¶

psa-verification-service-indicator-type = text

psa-verification-service-indicator = (

 ? psa-verification-service-indicator-key =>

 psa-verification-service-indicator-type

)

¶

¶

The EAT profile (claim key 265) is used. The following constraints

apply to its type:

The URI encoding MUST be used.

The value MUST be http://arm.com/psa/2.0.0.

This claim MUST be present in a PSA attestation token.

See Section 5, for considerations about backwards compatibility with

previous versions of the PSA attestation token format.

5. Backwards Compatibility Considerations

A previous version of this specification (identified by the

PSA_IOT_PROFILE_1 profile) used claim key values from the "private

use range" of the CWT Claims registry. These claim keys have now

been retired and their use is deprecated.

Table 1 provides the mappings between the deprecated and new claim

keys.

PSA_IOT_PROFILE_1
http://arm.com/psa/

2.0.0

Nonce -75008 10 (EAT nonce)

Instance ID -75009 256 (EAT euid)

Profile Definition -75000 265 (EAT eat_profile)

Client ID -75001 2394

Security Lifecycle -75002 2395

Implementation ID -75003 2396

Boot Seed -75004 2397

Certification Reference -75005 2398

Software Components -75006 2399

Verification Service

Indicator
-75010 2400

Table 1: Claim key mappings

The new profile introduces three further changes:

the "Boot Seed" claim is now optional and variable length (see

Section 4.3.2),

¶

* ¶

* ¶

¶

¶

psa-profile-type = "http://arm.com/psa/2.0.0"

psa-profile = (

 profile-label => psa-profile-type

)

¶

¶

¶

¶

*

¶

the "No Software Measurements" claim has been retired,

the "Certification Reference" syntax changed from EAN-13 to

EAN-13+5 (see Section 4.2.3).

Unless compatibility with existing infrastructure is a concern,

emitters (e.g., devices that implement the PSA Attestation API)

SHOULD produce tokens with the claim keys specified in this

document.

To simplify the transition to the token format described in this

document it is RECOMMENDED that receivers (e.g., PSA Attestation

Verifiers) accept tokens encoded according to the old profile

(PSA_IOT_PROFILE_1) as well as to the new profile (http://arm.com/

psa/2.0.0), at least for the time needed to their clients to

upgrade.

6. Token Encoding and Signing

The PSA attestation token is encoded in CBOR [RFC8949] format. Only

definite-length string, arrays, and maps are allowed.

Cryptographic protection is obtained by wrapping the psa-token map

in a COSE Web Token (CWT) [RFC8392]. For asymmetric key algorithms,

the signature structure MUST be COSE_Sign1. For symmetric key

algorithms, the signature structure MUST be COSE_Mac0.

Acknowledging the variety of markets, regulations and use cases in

which the PSA attestation token can be used, this specification does

not impose any strong requirement on the cryptographic algorithms

that need to be supported by Attesters and Verifiers. It is assumed

that the flexibility provided by the COSE format is sufficient to

deal with the level of cryptographic agility needed to adapt to

specific use cases. For interoperability considerations, it is

RECOMMENDED that commonly adopted algorithms are used, such as those

discussed in [COSE-ALGS]). It is expected that receivers (Verifiers

and Relying Parties) will accept a wider range of algorithms, while

Attesters would produce PSA tokens using only one such algorithm.

The CWT CBOR tag (61) is not used. An application that needs to

exchange PSA attestation tokens can wrap the serialised COSE_Sign1

or COSE_Mac0 in the media type defined in Section 12.2 or the CoAP

Content-Format defined in Section 12.3.

7. Freshness Model

The PSA Token supports the freshness models for attestation Evidence

based on nonces and epoch handles (Section 10.2 and 10.3 of [I-

D.ietf-rats-architecture]) using the nonce claim to convey the nonce

* ¶

*

¶

¶

¶

¶

¶

¶

¶

or epoch handle supplied by the Verifier. No further assumption on

the specific remote attestation protocol is made.¶

8. Collated CDDL

psa-token = {

 psa-nonce

 psa-instance-id

 psa-verification-service-indicator

 psa-profile

 psa-implementation-id

 psa-client-id

 psa-lifecycle

 psa-certification-reference

 ? psa-boot-seed

 psa-software-components

}

psa-client-id-key = 2394

psa-lifecycle-key = 2395

psa-implementation-id-key = 2396

psa-boot-seed-key = 2397

psa-certification-reference-key = 2398

psa-software-components-key = 2399

psa-verification-service-indicator-key = 2400

nonce-label = 10

ueid-label = 256

profile-label = 265

psa-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64

psa-boot-seed-type = bytes .size (8..32)

psa-boot-seed = (

 psa-boot-seed-key => psa-boot-seed-type

)

psa-client-id-nspe-type = -2147483648...0

psa-client-id-spe-type = 1..2147483647

psa-client-id-type = psa-client-id-nspe-type / psa-client-id-spe-type

psa-client-id = (

 psa-client-id-key => psa-client-id-type

)

psa-certification-reference-type = text .regexp "[0-9]{13}-[0-9]{5}"

psa-certification-reference = (

 ? psa-certification-reference-key =>

 psa-certification-reference-type

)

psa-implementation-id-type = bytes .size 32

psa-implementation-id = (

 psa-implementation-id-key => psa-implementation-id-type

)

psa-instance-id-type = bytes .size 33

psa-instance-id = (

 ueid-label => psa-instance-id-type

)

psa-nonce = (

 nonce-label => psa-hash-type

)

psa-profile-type = "http://arm.com/psa/2.0.0"

psa-profile = (

 profile-label => psa-profile-type

)

psa-lifecycle-unknown-type = 0x0000..0x00ff

psa-lifecycle-assembly-and-test-type = 0x1000..0x10ff

psa-lifecycle-psa-rot-provisioning-type = 0x2000..0x20ff

psa-lifecycle-secured-type = 0x3000..0x30ff

psa-lifecycle-non-psa-rot-debug-type = 0x4000..0x40ff

psa-lifecycle-recoverable-psa-rot-debug-type = 0x5000..0x50ff

psa-lifecycle-decommissioned-type = 0x6000..0x60ff

psa-lifecycle-type =

 psa-lifecycle-unknown-type /

 psa-lifecycle-assembly-and-test-type /

 psa-lifecycle-psa-rot-provisioning-type /

 psa-lifecycle-secured-type /

 psa-lifecycle-non-psa-rot-debug-type /

 psa-lifecycle-recoverable-psa-rot-debug-type /

 psa-lifecycle-decommissioned-type

psa-lifecycle = (

 psa-lifecycle-key => psa-lifecycle-type

)

psa-software-component = {

 ? &(measurement-type: 1) => text

 &(measurement-value: 2) => psa-hash-type

 ? &(version: 4) => text

 &(signer-id: 5) => psa-hash-type

 ? &(measurement-desc: 6) => text

}

psa-software-components = (

 psa-software-components-key => [+ psa-software-component]

)

psa-verification-service-indicator-type = text

psa-verification-service-indicator = (

 ? psa-verification-service-indicator-key =>

 psa-verification-service-indicator-type

)

¶

9. Implementation Status

Implementations of this specification are provided by the Trusted

Firmware-M project [TF-M], the Veraison project [Veraison], and the

Xclaim [Xclaim] library. All three implementations are released as

open-source software.

10. Security and Privacy Considerations

This specification re-uses the EAT specification and therefore the

CWT specification. Hence, the security and privacy considerations of

those specifications apply here as well.

Since CWTs offer different ways to protect the token, this

specification profiles those options and allows signatures using

public key cryptography as well as message authentication codes

(MACs). COSE_Sign1 is used for digital signatures and COSE_Mac0 for

MACs, as defined in the COSE specification [STD96]. Note, however,

that the use of MAC authentication is NOT RECOMMENDED due to the

associated infrastructure costs for key management and protocol

complexities.

Attestation tokens contain information that may be unique to a

device and therefore they may allow to single out an individual

device for tracking purposes. Deployments that have privacy

requirements must take appropriate measures to ensure that the token

is only used to provision anonymous/pseudonym keys.

11. Verification

To verify the token, the primary need is to check correct encoding

and signing as detailed in Section 6. In particular, the Instance ID

claim is used (together with the kid in the COSE header, if present)

to assist in locating the public key used to verify the signature

covering the CWT token. The key used for verification is supplied to

the Verifier by an authorized Endorser along with the corresponding

Attester's Instance ID.

In addition, the Verifier will typically operate a policy where

values of some of the claims in this profile can be compared to

reference values, registered with the Verifier for a given

deployment, in order to confirm that the device is endorsed by the

manufacturer supply chain. The policy may require that the relevant

claims must have a match to a registered reference value. All claims

may be worthy of additional appraisal. It is likely that most

deployments would include a policy with appraisal for the following

claims:

Implementation ID - the value of the Implementation ID can be

used to identify the verification requirements of the deployment.

¶

¶

¶

¶

¶

¶

*

¶

Software Component, Measurement Value - this value can uniquely

identify a firmware release from the supply chain. In some cases,

a Verifier may maintain a record for a series of firmware

releases, being patches to an original baseline release. A

verification policy may then allow this value to match any point

on that release sequence or expect some minimum level of maturity

related to the sequence.

Software Component, Signer ID - where present in a deployment,

this could allow a Verifier to operate a more general policy than

that for Measurement Value as above, by allowing a token to

contain any firmware entries signed by a known Signer ID, without

checking for a uniquely registered version.

Certification Reference - if present, this value could be used as

a hint to locate security certification information associated

with the attesting device. An example could be a reference to a

[PSACertified] certificate.

The protocol used to convey Endorsements and Reference Values to the

Verifier is not in scope for this document.

12. IANA Considerations

12.1. CBOR Web Token Claims Registration

IANA has registered the following claims in the "CBOR Web Token

(CWT) Claims" registry [IANA-CWT].

12.1.1. Client ID Claim

Claim Name: psa-client-id

Claim Description: PSA Client ID

JWT Claim Name: N/A

Claim Key: 2394

Claim Value Type(s): signed integer

Change Controller: Hannes Tschofenig

Specification Document(s): Section 4.1.2 of RFCthis

12.1.2. Security Lifecycle Claim

Claim Name: psa-security-lifecycle

Claim Description: PSA Security Lifecycle

*

¶

*

¶

*

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

JWT Claim Name: N/A

Claim Key: 2395

Claim Value Type(s): unsigned integer

Change Controller: Hannes Tschofenig

Specification Document(s): Section 4.3.1 of RFCthis

12.1.3. Implementation ID Claim

Claim Name: psa-implementation-id

Claim Description: PSA Implementation ID

JWT Claim Name: N/A

Claim Key: 2396

Claim Value Type(s): byte string

Change Controller: Hannes Tschofenig

Specification Document(s): Section 4.2.2 of RFCthis

12.1.4. Boot Seed Claim

Claim Name: psa-boot-seed

Claim Description: PSA Boot Seed

JWT Claim Name: N/A

Claim Key: 2397

Claim Value Type(s): byte string

Change Controller: Hannes Tschofenig

Specification Document(s): Section 4.3.2 of RFCthis

12.1.5. Certification Reference Claim

Claim Name: psa-certification-reference

Claim Description: PSA Certification Reference

JWT Claim Name: N/A

Claim Key: 2398

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Claim Value Type(s): text string

Change Controller: Hannes Tschofenig

Specification Document(s): Section 4.2.3 of RFCthis

12.1.6. Software Components Claim

Claim Name: psa-software-components

Claim Description: PSA Software Components

JWT Claim Name: N/A

Claim Key: 2399

Claim Value Type(s): array

Change Controller: Hannes Tschofenig

Specification Document(s): Section 4.4.1 of RFCthis

12.1.7. Verification Service Indicator Claim

Claim Name: psa-verification-service-indicator

Claim Description: PSA Verification Service Indicator

JWT Claim Name: N/A

Claim Key: 2400

Claim Value Type(s): text string

Change Controller: Hannes Tschofenig

Specification Document(s): Section 4.5.1 of RFCthis

12.2. Media Type Registration

IANA is requested to register the "application/psa-attestation-

token" media type [RFC2046] in the "Media Types" registry [IANA-

MediaTypes] in the manner described in RFC 6838 [RFC6838], which can

be used to indicate that the content is a PSA Attestation Token.

Type name: application

Subtype name: psa-attestation-token

Required parameters: n/a

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

Optional parameters: n/a

Encoding considerations: binary

Security considerations: See the Security Considerations section

of RFCthis

Interoperability considerations: n/a

Published specification: RFCthis

Applications that use this media type: Attesters and Relying

Parties sending PSA attestation tokens over HTTP(S), CoAP(S), and

other transports.

Fragment identifier considerations: n/a

Additional information:

Magic number(s): n/a

File extension(s): n/a

Macintosh file type code(s): n/a

Person & email address to contact for further information: Hannes

Tschofenig, Hannes.Tschofenig@arm.com

Intended usage: COMMON

Restrictions on usage: none

Author: Hannes Tschofenig, Hannes.Tschofenig@arm.com

Change controller: IESG

Provisional registration? No

12.3. CoAP Content-Formats Registration

IANA is requested to register the CoAP Content-Format ID for the

"application/psa-attestation-token" media type in the "CoAP Content-

Formats" registry [IANA-CoAP-Content-Formats].

12.3.1. Registry Contents

Media Type: application/psa-attestation-token

Encoding: -

Id: [[To-be-assigned by IANA]]

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

- ¶

- ¶

- ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

[COSE-ALGS]

[EAN-13]

[I-D.ietf-rats-eat]

[IANA-CWT]

[PSA-Cert-Guide]

[PSA-FF]

[PSA-SM]

[RFC2046]

[RFC2119]

[RFC6838]

Reference: RFCthis

13. References

13.1. Normative References

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053,

August 2022, <https://www.rfc-editor.org/rfc/rfc9053>.

GS1, "International Article Number - EAN/UPC barcodes",

2019, <https://www.gs1.org/standards/barcodes/ean-upc>.

Lundblade, L., Mandyam, G., and J. O'Donoghue,

"The Entity Attestation Token (EAT)", Work in Progress,

Internet-Draft, draft-ietf-rats-eat-14, 10 July 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-rats-

eat-14>.

IANA, "CBOR Web Token (CWT) Claims", 2022, <https://

www.iana.org/assignments/cwt/cwt.xhtml#claims-registry>.

PSA Certified, "PSA Certified Level 2 Step by Step

Guide Version 1.1", 2020, <https://www.psacertified.org/

app/uploads/2020/07/JSADEN011-PSA_Certified_Level_2_Step-

by-Step-1.1-20200403.pdf>.

Arm, "Platform Security Architecture Firmware Framework

1.0 (PSA-FF)", February 2019, <https://

developer.arm.com/-/media/Files/pdf/

PlatformSecurityArchitecture/Architect/DEN0063-

PSA_Firmware_Framework-1.0.0-2.pdf>.

Arm, "Platform Security Architecture Security Model 1.0

(PSA-SM)", February 2019, <https://developer.arm.com/-/

media/Files/pdf/PlatformSecurityArchitecture/Architect/

DEN0079_PSA_SM_ALPHA-03_RC01.pdf>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/rfc/rfc2046>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

* ¶

https://www.rfc-editor.org/rfc/rfc9053
https://www.gs1.org/standards/barcodes/ean-upc
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-14
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-14
https://www.iana.org/assignments/cwt/cwt.xhtml#claims-registry
https://www.iana.org/assignments/cwt/cwt.xhtml#claims-registry
https://www.psacertified.org/app/uploads/2020/07/JSADEN011-PSA_Certified_Level_2_Step-by-Step-1.1-20200403.pdf
https://www.psacertified.org/app/uploads/2020/07/JSADEN011-PSA_Certified_Level_2_Step-by-Step-1.1-20200403.pdf
https://www.psacertified.org/app/uploads/2020/07/JSADEN011-PSA_Certified_Level_2_Step-by-Step-1.1-20200403.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079_PSA_SM_ALPHA-03_RC01.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079_PSA_SM_ALPHA-03_RC01.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079_PSA_SM_ALPHA-03_RC01.pdf
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119

[RFC8174]

[RFC8392]

[RFC8610]

[RFC8949]

[STD96]

[I-D.ietf-rats-architecture]

[IANA-CoAP-Content-Formats]

[IANA-HashFunctionTextualNames]

[IANA-MediaTypes]

[PSA]

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/rfc/rfc6838>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Jones, M., Wahlstroem, E., Erdtman, S., and H.

Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI

10.17487/RFC8392, May 2018, <https://www.rfc-editor.org/

rfc/rfc8392>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/rfc/

rfc8949>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", STD 96, RFC 9052, DOI 10.17487/

RFC9052, August 2022, <https://www.rfc-editor.org/rfc/

rfc9052>.

13.2. Informative References

Birkholz, H., Thaler, D., Richardson,

M., Smith, N., and W. Pan, "Remote Attestation Procedures

Architecture", Work in Progress, Internet-Draft, draft-

ietf-rats-architecture-21, 16 August 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-rats-

architecture-21>.

IANA, "CoAP Content-Formats", 2022,

<https://www.iana.org/assignments/core-parameters>.

IANA, "Hash Function Textual Names",

2022, <https://www.iana.org/assignments/hash-function-

text-names>.

IANA, "Media Types", 2022, <http://www.iana.org/

assignments/media-types>.

Arm, "Platform Security Architecture Resources", 2022,

<https://developer.arm.com/architectures/security-

https://www.rfc-editor.org/rfc/rfc6838
https://www.rfc-editor.org/rfc/rfc6838
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8392
https://www.rfc-editor.org/rfc/rfc8392
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc9052
https://www.rfc-editor.org/rfc/rfc9052
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-21
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-21
https://datatracker.ietf.org/doc/html/draft-ietf-rats-architecture-21
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/hash-function-text-names
https://www.iana.org/assignments/hash-function-text-names
http://www.iana.org/assignments/media-types
http://www.iana.org/assignments/media-types
https://developer.arm.com/architectures/security-architectures/platform-security-architecture/documentation

[PSA-API]

[PSACertified]

[TF-M]

[Veraison]

[Xclaim]

architectures/platform-security-architecture/

documentation>.

Arm, "PSA Attestation API 1.0", 2019, <https://

developer.arm.com/-/media/Files/pdf/

PlatformSecurityArchitecture/Implement/IHI0085-

PSA_Attestation_API-1.0.2.pdf>.

PSA Certified, "PSA Certified IoT Security

Framework", 2022, <https://psacertified.org>.

Linaro, "Trusted Firmware-M", 2022, <https://

www.trustedfirmware.org/projects/tf-m/>.

The Veraison Project, "Veraison psatoken package", 2022,

<https://github.com/veraison/psatoken>.

Lundblade, L., "Xclaim", 2022, <https://github.com/

laurencelundblade/xclaim>.

Appendix A. Example

The following example shows a PSA attestation token for an

hypothetical system comprising two measured software components (a

boot loader and a trusted RTOS). The attesting device is in a

lifecycle state Section 4.3.1 of SECURED. The attestation has been

requested from a client residing in the SPE:¶

https://developer.arm.com/architectures/security-architectures/platform-security-architecture/documentation
https://developer.arm.com/architectures/security-architectures/platform-security-architecture/documentation
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.2.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.2.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.2.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.2.pdf
https://psacertified.org
https://www.trustedfirmware.org/projects/tf-m/
https://www.trustedfirmware.org/projects/tf-m/
https://github.com/veraison/psatoken
https://github.com/laurencelundblade/xclaim
https://github.com/laurencelundblade/xclaim

The JWK representation of the IAK used for creating the COSE Sign1

signature over the PSA token is:

The resulting COSE object is:

{

 / eat_profile / 265: "http://arm.com/psa/2.0.0",

 / psa-client-id / 2394: 2147483647,

 / psa-security-lifecycle / 2395: 12288,

 / psa-implementation-id / 2396: h'000000000000000000000000000

0000000000000000000000000000000000000',

 / psa-boot-seed / 2397: h'0000000000000000',

 / psa-certification-reference / 2398: "1234567890123-12345",

 / psa-software-components / 2399: [

 {

 / measurement value / 2: h'0303030303030303030303030303030

303030303030303030303030303030303',

 / signer ID / 5: h'0404040404040404040404040404040

404040404040404040404040404040404'

 }

],

 / nonce / 10: h'01

0101010101010101010101',

 / ueid / 256: h'0102

020202020202020202020202',

 / psa-vsi / 2400: "https://veraison.example/v1/challenge-respo

nse"

}

¶

¶

{

 "kty": "EC",

 "crv": "P-256",

 "x": "MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",

 "y": "4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",

 "d": "870MB6gfuTJ4HtUnUvYMyJpr5eUZNP4Bk43bVdj3eAE"

}

¶

¶

Acknowledgments

Thanks to Carsten Bormann for help with the CDDL and Nicholas Wood

for ideas and comments.

Contributors

Laurence Lundblade

Security Theory LLC

Email: lgl@securitytheory.com

Tamas Ban

Arm Limited

Email: Tamas.Ban@arm.com

Sergei Trofimov

Arm Limited

Email: Sergei.Trofimov@arm.com

Authors' Addresses

Hannes Tschofenig

Arm Limited

Email: Hannes.Tschofenig@arm.com

18(

 [

 / protected / h'A10126',

 / unprotected / {},

 / payload / h'AA1901097818687474703A2F2F61726D2E636F6D2F

7073612F322E302E3019095A1A7FFFFFFF19095B19300019095C582000000000

0019095D48

000000000000000019095E73313233343536373839303132332D313233343519

095F81A202582003

0303030303030305582004

040404040404040404040A582001010101010101010101010101010101010101

0101010101010101010101010119010058210102020202020202020202020202

02020202020202020202020202020202020202190960782E68747470733A2F2F

7665726169736F6E2E6578616D706C652F76312F6368616C6C656E67652D7265

73706F6E7365',

 / signature / h'56F50D131FA83979AE064E76E70DC75C070B6D991A

EC08ADF9F41CAB7F1B7E2C47F67DACA8BB49E3119B7BAE77AEC6C89162713E0C

C6D0E7327831E67F32841A'

]

)

¶

¶

mailto:lgl@securitytheory.com
mailto:Tamas.Ban@arm.com
mailto:Sergei.Trofimov@arm.com
mailto:Hannes.Tschofenig@arm.com

Simon Frost

Arm Limited

Email: Simon.Frost@arm.com

Mathias Brossard

Arm Limited

Email: Mathias.Brossard@arm.com

Adrian Shaw

HP Labs

Email: adrianlshaw@acm.org

Thomas Fossati

Arm Limited

Email: Thomas.Fossati@arm.com

mailto:Simon.Frost@arm.com
mailto:Mathias.Brossard@arm.com
mailto:adrianlshaw@acm.org
mailto:Thomas.Fossati@arm.com

	Arm's Platform Security Architecture (PSA) Attestation Token
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	2.1. Glossary

	3. PSA Attester Model
	4. PSA Claims
	4.1. Caller Claims
	4.1.1. Nonce
	4.1.2. Client ID

	4.2. Target Identification Claims
	4.2.1. Instance ID
	4.2.2. Implementation ID
	4.2.3. Certification Reference

	4.3. Target State Claims
	4.3.1. Security Lifecycle
	4.3.2. Boot Seed

	4.4. Software Inventory Claims
	4.4.1. Software Components
	4.4.1.1. Measurement Type
	4.4.1.2. Measurement Value
	4.4.1.3. Version
	4.4.1.4. Signer ID
	4.4.1.5. Measurement Description

	4.5. Verification Claims
	4.5.1. Verification Service Indicator
	4.5.2. Profile Definition

	5. Backwards Compatibility Considerations
	6. Token Encoding and Signing
	7. Freshness Model
	8. Collated CDDL
	9. Implementation Status
	10. Security and Privacy Considerations
	11. Verification
	12. IANA Considerations
	12.1. CBOR Web Token Claims Registration
	12.1.1. Client ID Claim
	12.1.2. Security Lifecycle Claim
	12.1.3. Implementation ID Claim
	12.1.4. Boot Seed Claim
	12.1.5. Certification Reference Claim
	12.1.6. Software Components Claim
	12.1.7. Verification Service Indicator Claim

	12.2. Media Type Registration
	12.3. CoAP Content-Formats Registration
	12.3.1. Registry Contents

	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Example
	Acknowledgments
	Contributors
	Authors' Addresses

