Internet Engineering Task Force

Internet-Draft

Intended status: Informational Expires: December 29, 2012

Huawei Technologies (USA) B. Li Huawei Technologies J. Schoenwaelder Jacobs University Bremen R. Penno Cisco Systems, Inc.

T. Tsou, Ed.

June 27, 2012

DS-Lite Failure Detection and Failover draft-tsou-softwire-bfd-ds-lite-03

Abstract

In DS-Lite, the tunnel is stateless, not associated with any state information, and no failure detection and failover mechanism is available. This makes it difficult to manage and diagnose if there is a problem. This draft analyzes the applicability of some of the possible solutions.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 29, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to <u>BCP 78</u> and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

<u>1</u> .	Introduction	. 3
<u>2</u> .	Terminology	. <u>3</u>
<u>3</u> .	Solutions	. <u>3</u>
3	<u>.1</u> . Bidirectional Forwarding Detection (BFD)	. <u>3</u>
	<u>3.1.1</u> . DS-Lite Scenario	. <u>4</u>
	<u>3.1.2</u> . Parameters for BFD	. <u>4</u>
	3.1.3. Elements of Procedure	. <u>5</u>
	3.1.4. Implementation Considerations	. <u>5</u>
3	<u>.2</u> . Port Control Protocol (PCP)	. <u>6</u>
3	<u>.3</u> . ICMP Echo (Request) / Echo Reply (PING)	. <u>6</u>
<u>4</u> .	Failover	. 7
<u>5</u> .	IANA Considerations	. 7
<u>6</u> .	Security Considerations	. <u>7</u>
<u>7</u> .	Acknowledgements	. 7
<u>8</u> .	References	. <u>7</u>
8	<u>.1</u> . Normative References	. 7
8	<u>.2</u> . Informative References	. <u>8</u>
Autl	hors' Addresses	. 8

1. Introduction

In DS-Lite [RFC6333], the IPv4-in-IPv6 DS-Lite tunnel is stateless, no status information about the tunnel is available, and no keepalive mechanism is available. It is difficult to know whether the tunnel is up or down; and if there is a link problem, the Basic Bridging BroadBand (B4) element can not automatically switch to another Address Family Transition Router (AFTR) so as to continue the network service automatically, without the involvement of operators. This lack of failure detection and failover creates problems for network operation and maintenance.

Possible solutions for failure detection include the usage of Bidirectional Forwarding Detection (BFD), the Port Control Protocol (PCP), and ICMP Echo (Request) / Echo Reply (PING). The properties of these solutions are discussed in this document and guidelines are provided how to implement failure detection and automatic failover.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2. Terminology

AFTR: Address Family Transition Router.

B4: Basic Bridging BroadBand.

BBF: BroadBand Forum.

BFD: Bidirectional Forwarding Detection.

CPE: Customer Premise Equipment (i.e., the DS-Lite B4).

FQDN Fully Qualified Domain Name.

PCP Port Control Protocol.

3. Solutions

3.1. Bidirectional Forwarding Detection (BFD)

Bidirectional Forwarding Detection [RFC5880] (BFD) is a mechanism intended to detect faults in a bidirectional path. It is usually used in conjunction with applications like OSPF, IS-IS, for fast fault recovery and fast re-route [RFC5882]. BFD is being made

mandatory for keep-alive for subscriber sessions, including DS-Lite, by the BroadBand Forum (BBF) [WT-146].

BFD can be used in DS-Lite, by creating a BFD session between the B4 element and the AFTR to provide tunnel status information. If a fault is detected, the B4 element can try to create a DS-Lite tunnel with another AFTR and terminate the existing one, so as to continue network service.

[I-D.vinokour-bfd-dhcp] proposes using a DHCP option to distribute BFD parameters to B4 elements. But in case of DS-Lite, some of the key BFD parameters are already available (e.g., peer IP address), and other parameters can be negotiated by BFD signaling or statically configured, so that no extra DHCP option(s) need to be defined.

3.1.1. DS-Lite Scenario

In DS-Lite [RFC6333], the BFD packet SHOULD be sent through an IPv4in-IPv6 tunnel, as shown in Figure 1. The IPv4 addresses of the B4 element and the AFTR SHOULD be the endpoints of a BFD session.

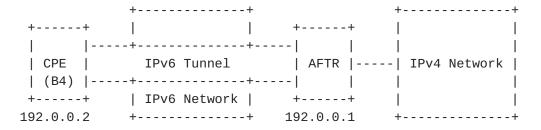


Figure 1: DS-Lite Scenario

3.1.2. Parameters for BFD

In order to set up a BFD session, the following parameters are needed, as shown in <u>Section 4.1 of [RFC5880]</u>:

- o Peer IP address
- o My Discriminator
- o Your Discriminator
- o Desired Min TX Interval
- o Required Min RX Interval
- o Required Min Echo RX Interval

In DS-Lite [RFC6334], the B4's WAN-side IPv4 address is the wellknown address 192.0.0.2, and the AFTR's well-known IPv4 address is 192.0.0.1, as defined in section 5.7 of [RFC6333]. The B4 element needs to create an IPv6 tunnel to an AFTR so as to get network connectivity to the AFTR, and send IPv4 BFD packets through the tunnel to manage it.

The other parameters listed above can be negotiated by BFD signaling, and initial values can be configured on B4 elements and AFTRs.

3.1.3. Elements of Procedure

When a B4 element gets online, it will be assigned an IPv6 prefix or address, and also the FQDN of the AFTR, as defined in [RFC6334]. The B4 element will create an IPv6 tunnel to the AFTR with which the B4 element can initiate a BFD session to the AFTR. BFD packets will be sent through the DS-Lite tunnel. As defined in section 4 of [RFC5881], BFD control packets MUST be sent in UDP packets with destination port 3784, and BFD echo packets MUST be sent in UDP packets with destination port 3785.

When sending out the first BFD packet, the B4 element can generate a unique local discriminator, and set the remote discriminator to zero. When the AFTR receives the first BFD packet from a B4 element, the AFTR will also generate a corresponding local discriminator, and put it in the response packet to the B4 element. This will finish the discriminator negotiation in the B4 to AFTR direction, without any manual configuration.

When an AFTR receives the first packet from a B4 element, the AFTR will get the IPv6 address and discriminator of the B4 element, so that the AFTR can initiate the BFD session in the other direction and a similar discriminator negotiation can be carried out.

3.1.4. Implementation Considerations

BFD is usually used for quick fault detection, at a very small time scale, e.g. milliseconds. But in DS-Lite, it may not be necessary to detect faults in such a short time. On the other hand, an AFTR may need to support tens of thousands of B4 elements, which means an AFTR will need to support the same number of BFD sessions. In order to meet performance requirements on an AFTR, it may be necessary to extend the time period between BFD packet transmissions to a longer time, e.g., 10s or 30s.

Compared to other solutions, BFD has a simple and fixed packet format, which is easy to implement by logic devices (e.g., ASIC, FPGA). Complicated protocols are usually processed by software which is relatively slow. An AFTR may need to support 10000-20000 users, and if the protocol is handled by software, it will bring extra load to the AFTR.

3.2. Port Control Protocol (PCP)

PCP [I-D.ietf-pcp-base-26] is a NAT traversal tool. It can also be used for network connectivity test if PCP is supported in the network. A common use case of PCP is to create a pinhole so that external users can visit the servers located behind a NAT. The lifetime of the pinhole mapping is usually long, e.g., hours, and the lifetime will be refreshed periodically by the client before it is expired. For the purpose of network connectivity tests, a B4 element can create a mapping in the CGN via PCP, with a short life time, e.g., 10s of seconds, and keep on refreshing the mapping before it expires. If any refresh requests fail, the B4 element knows that something is wrong with the link or the PCP server or the CGN.

In order to detect the network connectivity of the DS-Lite tunnel, the encapsulation mode MUST be used for PCP: PCP packets are sent through the DS-Lite tunnel. Encapsulation mode and plain mode are two alternatives for PCP, there is no consensus yet which one should be preferred in the PCP specification.

PCP can detect the failure of more components of the DS-Lite system. Besides failures of the link and the routing, it also covers NAT functions.

3.3. ICMP Echo (Request) / Echo Reply (PING)

PING is commonly implemented using the Echo (Request) and Echo Response messages of the Internet Control Message Protocol (ICMP) [RFC0792] [RFC4443]. In case of DS-Lite, a B4 element can send Echo (Request) packets to the AFTR periodically. If the B4 element does not receive Echo Response packets for a certain number (e.g., 3) of Echo (Request) packets, then the B4 element decides that a fault has been detected.

In order to test the connectivity of DS-Lite tunnel, Echo (Request) packets MUST be sent using ICMPv4, rather than ICMPv6.

Since ICMP is an integral part of any IP implementation, the usage of PING to detect tunnel failures does not require any special implementation efforts on the B4 elements. However, on AFTRs that process ICMP messages in software rather than in hardware, the usage of PING might lead to scalability issues.

4. Failover

The FQDN of the AFTR is sent to the B4 element via a DHCP option, as defined in [RFC6334]. Multiple IP addresses can be configured for the FQDN of an AFTR on the DNS server. If a B4 element detects a failure on the link to the AFTR, the B4 element MUST terminate the current DS-Lite tunnel, choose another AFTR address in the list, and create a tunnel to the new AFTR. If necessary, the B4 element SHOULD re-configure the connectivity test tool accordingly and restart the test procedures.

Anycasts may also be used for failover. But there is an ICMP-error-message problem with anycast, that is, when a packet is sent from the AFTR to a B4 element, if one of the routers along the path generates an ICMP error message, e.g., Packet Too Big (PTB), then the error message may not be sent back to the source AFTR but to another AFTR.

5. IANA Considerations

This memo includes no request to IANA.

6. Security Considerations

In the DS-Lite [RFC6333] application, the B4 element may not be directly connected to the AFTR; there may be other routers between them. In such a deployment, there are potential spoofing problems, as described in [RFC5883]. Hence cryptographic authentication SHOULD be used with BFD as described in [RFC5880] if security is concerned.

7. Acknowledgements

The authors would like to thank Mohamed Boucadair for his useful comments.

References

8.1. Normative References

```
[I-D.ietf-pcp-base-26]
Wing, D., Cheshire, S., Boucadair, M., Penno, R., and P.
Selkirk, "Port Control Protocol (PCP)(work in progress)",
Jun 2012.
```

[RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,

- RFC 792, September 1981.
- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997.
- [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", RFC 4443, March 2006.
- [RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", <u>RFC 5880</u>, June 2010.
- [RFC5882] Katz, D. and D. Ward, "Generic Application of Bidirectional Forwarding Detection (BFD)", RFC 5882, June 2010.
- [RFC5883] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD) for Multihop Paths", RFC 5883, June 2010.
- [RFC6333] Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion", RFC 6333, August 2011.
- [RFC6334] Hankins, D. and T. Mrugalski, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite", RFC 6334, August 2011.
- [WT-146] Kavanagh, A., Klamm, F., Boucadair, W., and R. Dec, "WT-146 Subscriber Sessions (work in progress)", Apr 2012.

8.2. Informative References

[I-D.vinokour-bfd-dhcp]

Vinokour, V., "Configuring BFD with DHCP and Other Musings", May 2008.

Authors' Addresses

Tina Tsou (editor) Huawei Technologies (USA) 2330 Central Expressway Santa Clara CA 95050 USA

Phone: +1 408 330 4424

Email: tina.tsou.zouting@huawei.com

Brandon Li Huawei Technologies M6, No. 156, Beiqing Road, Haidian District Beijing 100094 China

Phone:

Email: brandon.lijian@huawei.com

Juergen Schoenwaelder Jacobs University Bremen Campus Ring 1 Bremen 28759 Germany

Phone:

Email: j.schoenwaelder@jacobs-university.de

Reinaldo Penno Cisco Systems, Inc. 170 West Tasman Drivee San Jose, California 95134 USA

Phone:

Email: repenno@cisco.com