
Network Working Group R. Hamilton
Internet-Draft J. Iyengar
Intended status: Informational I. Swett
Expires: July 16, 2016 A. Wilk
 Google
 January 13, 2016

QUIC: A UDP-Based Secure and Reliable Transport for HTTP/2
draft-tsvwg-quic-protocol-02

Abstract

 QUIC (Quick UDP Internet Connection) is a new multiplexed and secure
 transport atop UDP, designed from the ground up and optimized for
 HTTP/2 semantics. While built with HTTP/2 as the primary application
 protocol, QUIC builds on decades of transport and security
 experience, and implements mechanisms that make it attractive as a
 modern general-purpose transport. QUIC provides multiplexing and
 flow control equivalent to HTTP/2, security equivalent to TLS, and
 connection semantics, reliability, and congestion control equivalent
 to TCP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 16, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Hamilton, et al. Expires July 16, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft QUIC January 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Contributors . 3
2. Acknowledgments . 3
3. Introduction . 4
4. Conventions and Definitions 4
5. A QUIC Overview . 5
5.1. Connection Establishment Latency 5
5.2. Flexible Congestion Control 6
5.3. Stream and Connection Flow Control 6
5.4. Multiplexing . 7
5.5. Authenticated and Encrypted Header and Payload 7
5.6. Forward Error Correction 7
5.7. Connection Migration 8

6. Packet Types and Formats 8
6.1. QUIC Public Packet Header 8
6.2. Special Packets . 12
6.2.1. Version Negotiation Packet 12
6.2.2. Public Reset Packet 13

6.3. Regular Packets . 13
6.3.1. Frame Packet . 14
6.3.2. FEC Packet . 15

7. Life of a QUIC Connection 15
7.1. Connection Establishment 15
7.2. Data Transfer . 16
7.2.1. Life of a QUIC Stream 16

7.3. Connection Termination 18
8. Frame Types and Formats 19
8.1. Frame Types . 19
8.2. STREAM Frame . 19
8.3. ACK Frame . 21
8.3.1. Entropy Accumulation 25

8.4. STOP_WAITING Frame 25
8.5. WINDOW_UPDATE Frame 26
8.6. BLOCKED Frame . 27
8.7. CONGESTION_FEEDBACK Frame 27
8.8. PADDING Frame . 27
8.9. RST_STREAM Frame . 27
8.10. PING frame . 28
8.11. CONNECTION_CLOSE frame 28
8.12. GOAWAY Frame . 29

Hamilton, et al. Expires July 16, 2016 [Page 2]

Internet-Draft QUIC January 2016

9. QUIC Transport Parameters 30
9.1. Required Parameters 30
9.2. Optional Parameters 30

10. QuicErrorCodes . 30
11. Priority . 32
12. HTTP/2 Layering over QUIC 32
12.1. Stream Management 32
12.2. HTTP/2 Header Compression 33
12.3. Parsing HTTP/2 Headers 33
12.4. Persistent Connections 33
12.5. QUIC Negotiation in HTTP 33

13. Handshake Protocol Requirements 34
13.1. Connection Establishment in 0-RTT 34
13.2. Source Address Spoofing Defense 34
13.3. Opaque Source Address Tokens 34
13.4. Transport Parameter Negotiation 35
13.5. Certificate Compression 35
13.6. Server Config Update 35

14. Recent Changes By Version 35
15. References . 36
15.1. Normative References 36
15.2. Informative References 36
15.3. URIs . 37

 Authors' Addresses . 37

1. Contributors

 This protocol is the outcome of work by many engineers, not just the
 authors of this document. The design and rationale behind QUIC draw
 significantly from work by Jim Roskind [1]. In alphabetical order,
 the contributors to the project are: Britt Cyr, Ryan Hamilton, Jana
 Iyengar, Fedor Kouranov, Charles Krasic, Jo Kulik, Adam Langley, Jim
 Roskind, Robbie Shade, Satyam Shekhar, Cherie Shi, Ian Swett, Raman
 Tenneti, Antonio Vicente, Patrik Westin, Alyssa Wilk, Dale Worley,
 Dan Zhang, Daniel Ziegler.

2. Acknowledgments

 Special thanks are due to the following for helping shape QUIC and
 its deployment: Chris Bentzel, Misha Efimov, Roberto Peon, Alistair
 Riddoch, Siddharth Vijayakrishnan, and Assar Westerlund. QUIC has
 also benefited immensely from discussions with folks in private
 conversations and public ones on the proto-quic@chromium.org mailing
 list.

Hamilton, et al. Expires July 16, 2016 [Page 3]

Internet-Draft QUIC January 2016

3. Introduction

 QUIC (Quick UDP Internet Connection) is a new multiplexed and secure
 transport atop UDP, designed from the ground up and optimized for
 HTTP/2 semantics. While built with HTTP/2 as the primary application
 protocol, QUIC builds on decades of transport and security
 experience, and implements mechanisms that make it attractive as a
 modern general-purpose transport. QUIC provides multiplexing and
 flow control equivalent to HTTP/2, security equivalent to TLS, and
 connection semantics, reliability, and congestion control equivalent
 to TCP.

 QUIC operates entirely in userspace, and is currently shipped to
 users as a part of the Chromium browser, enabling rapid deployment
 and experimentation. As a userspace transport atop UDP, QUIC allows
 innovations which have proven difficult to deploy with existing
 protocols as they are hampered by legacy clients and middleboxes, or
 by prolonged Operating System development and deployment cycles.

 An important goal for QUIC is to inform better transport design
 through rapid experimentation. As a result, we hope to inform and
 where possible migrate distilled changes into TCP and TLS, which tend
 to have much longer iteration cycles.

 This document describes the conceptual design and the wire
 specification of the QUIC protocol. Accompanying documents describe
 the combined crypto and transport handshake [QUIC-CRYPTO], and loss
 recovery and congestion control [draft-quic-loss-recovery].
 Additional resources, including a more detailed rationale document,
 are available on the Chromium QUIC webpage [2].

4. Conventions and Definitions

 All integer values used in QUIC, including length, version, and type,
 are in little-endian byte order, and not in network byte order. QUIC
 does not enforce alignment of types in dynamically sized frames.

 A few terms that are used throughout this document are defined below.

 o "Client": The endpoint initiating a QUIC connection.

 o "Server": The endpoint accepting incoming QUIC connections.

 o "Endpoint": The client or server end of a connection.

 o "Stream": A bi-directional flow of bytes across a logical channel
 within a QUIC connection.

https://datatracker.ietf.org/doc/html/draft-quic-loss-recovery

Hamilton, et al. Expires July 16, 2016 [Page 4]

Internet-Draft QUIC January 2016

 o "Connection": A conversation between two QUIC endpoints with a
 single encryption context that multiplexes streams within it.

 o "Connection ID": The identifier for a QUIC connection.

 o "QUIC Packet": A well-formed UDP payload that can be parsed by a
 QUIC receiver. QUIC packet size in this document refers to the
 UDP payload size.

5. A QUIC Overview

 We now briefly describe QUIC's key mechanisms and benefits. QUIC is
 functionally equivalent to TCP+TLS+HTTP/2, but implemented on top of
 UDP. Key advantages of QUIC over TCP+TLS+HTTP/2 include:

 o Connection establishment latency

 o Flexible congestion control

 o Multiplexing without head-of-line blocking

 o Authenticated and encrypted header and payload

 o Stream and connection flow control

 o Forward error correction

 o Connection migration

5.1. Connection Establishment Latency

 QUIC combines the crypto and transport handshakes, reducing the
 number of roundtrips required for setting up a secure connection.
 QUIC connections are commonly 0-RTT, meaning that on most QUIC
 connections, data can be sent immediately without waiting for a reply
 from the server, as compared to the 1-3 roundtrips required for
 TCP+TLS before application data can be sent.

 QUIC provides a dedicated stream (Stream ID 1) to be used for
 performing the handshake, but the details of this handshake protocol
 are out of this document's scope. For a complete description of the
 current handshake protocol, please see the QUIC Crypto Handshake
 [3]document. QUIC current handshake will be replaced by TLS 1.3 in
 the future.

Hamilton, et al. Expires July 16, 2016 [Page 5]

Internet-Draft QUIC January 2016

5.2. Flexible Congestion Control

 QUIC has pluggable congestion control and richer signaling than TCP,
 which enables QUIC to provide richer information to congestion
 control algorithms than TCP. Currently, the default congestion
 control is a reimplementation of TCP Cubic; we are currently
 experimenting with alternative approaches.

 One example of richer information is that each packet, both original
 and retransmitted, carries a new packet sequence number. This allows
 a QUIC sender to distinguish ACKs for retransmissions from ACKs for
 original transmissions, thus avoiding TCP's retransmission ambiguity
 problem. QUIC ACKs also explicitly carry the delay between the
 receipt of a packet and its acknowledgment being sent, and together
 with the monotonically-increasing packet numbers, this allows for
 precise roundtrip-time (RTT) calculation.

 Finally, QUIC's ACK frames support up to 256 NACK ranges, so QUIC is
 more resilient to reordering than TCP (with SACK), as well as able to
 keep more bytes on the wire when there is reordering or loss. Both
 client and server have a more accurate picture of which packets the
 peer has received.

5.3. Stream and Connection Flow Control

 QUIC implements stream- and connection-level flow control, closely
 following HTTP/2's flow control. QUIC's stream-level flow control
 works as follows. A QUIC receiver advertises the absolute byte
 offset within each stream upto which the receiver is willing to
 receive data. As data is sent, received, and delivered on a
 particular stream, the receiver sends WINDOW_UPDATE frames that
 increase the advertised offset limit for that stream, allowing the
 peer to send more data on that stream.

 In addition to per-stream flow control, QUIC implements connection-
 level flow control to limit the aggregate buffer that a QUIC receiver
 is willing to allocate to a connection. Connection flow control
 works in the same way as stream flow control, but the bytes delivered
 and highest received offset are all aggregates across all streams.

 Similar to TCP's receive-window autotuning, QUIC implements
 autotuning of flow control credits for both stream and connection
 flow controllers. QUIC's autotuning increases the size of the
 credits sent per WINDOW_UPDATE frame if it appears to be limiting the
 sender's rate, and throttles the sender when the receiving
 application is slow.

Hamilton, et al. Expires July 16, 2016 [Page 6]

Internet-Draft QUIC January 2016

5.4. Multiplexing

 HTTP/2 on TCP suffers from head-of-line blocking in TCP. Since
 HTTP/2 multiplexes many streams atop TCP's single-bytestream
 abstraction, a loss of a TCP segment results in blocking of all
 subsequent segments until a retransmission arrives, irrespective of
 the HTTP/2 stream that is encapsulated in subsequent segments.

 Because QUIC is designed from the ground up for multiplexed
 operation, lost packets carrying data for an individual stream
 generally only impact that specific stream. Each stream frame can be
 immediately dispatched to that stream on arrival, so streams without
 loss can continue to be reassembled and make forward progress in the
 application.

 Caveat: QUIC currently compresses HTTP headers via HTTP/2 HPACK
 header compression, which imposes head-of-line blocking for header
 frames only.

5.5. Authenticated and Encrypted Header and Payload

 TCP headers appear in plaintext on the wire and not authenticated,
 causing a plethora of injection and header manipulation issues for
 TCP, such as receive-window manipulation and sequence-number
 overwriting. While some of these are active attacks, others are
 mechanisms used by middleboxes in the network sometimes in an attempt
 to transparently improve TCP performance. However, even
 "performance-enhancing" middleboxes still effectively limit the
 evolvability of the transport protocol, as has been observed in the
 design of MPTCP and in its subsequent deployability issues.

 QUIC packets are always authenticated and typically the payload is
 fully encrypted. The parts of the packet header which are not
 encrypted are still authenticated by the receiver, so as to thwart
 any packet injection or manipulation by third parties. QUIC protects
 connections from witting or unwitting middlebox manipulation of end-
 to-end communication.

 Caveat: PUBLIC_RESET packets that reset a connection are currently
 not authenticated.

5.6. Forward Error Correction

 In order to recover lost packets without waiting for a
 retransmission, QUIC currently employs a simple XOR-based FEC scheme.
 An FEC packet contains parity of the packets in the FEC group. If
 one of the packets in the group is lost, the contents of that packet
 can be recovered from the FEC packet and the remaining packets in the

Hamilton, et al. Expires July 16, 2016 [Page 7]

Internet-Draft QUIC January 2016

 group. The sender may decide whether to send FEC packets to optimize
 specific scenarios (e.g., beginning and end of a request).

5.7. Connection Migration

 TCP connections are identified by a 4-tuple of source address, source
 port, destination address and destination port. A well-known problem
 with TCP is that connections do not survive IP address changes (for
 example, by switching from WiFi to cellular) or port number changes
 (when a client's NAT binding expires causing a change in the port
 number seen at the server). While MPTCP addresses the connection
 migration problem for TCP, it is still plagued by lack of middlebox
 support and lack of OS deployment.

 QUIC connections are identified by a 64-bit Connection ID, randomly
 generated by the client. QUIC can survive IP address changes and NAT
 re-bindings since the Connection ID remains the same across these
 migrations. QUIC also provides automatic cryptographic verification
 of a migrating client, since a migrating client continues to use the
 same session key for encrypting and decrypting packets.

6. Packet Types and Formats

 QUIC has Special Packets and Regular Packets. There are two types of
 Special Packets: Version Negotiation Packets and Public Reset
 Packets, and two types of Regular Packets: Frame Packets, and FEC
 Packets. All QUIC packets should be sized to fit within the path's
 MTU to avoid IP fragmentation. Path MTU discovery is a work in
 progress, and the current QUIC implementation uses a 1350-byte
 maximum QUIC packet size for IPv6, 1370 for IPv4.

6.1. QUIC Public Packet Header

 All QUIC packets on the wire begin with a public header sized between
 2 and 19 bytes. The wire format for the public header is as follows:

Hamilton, et al. Expires July 16, 2016 [Page 8]

Internet-Draft QUIC January 2016

 0 1 2 3 4 8
 +--------+--------+--------+--------+--------+--- ---+
 | Public | Connection ID (0, 8, 32, or 64) ... | ->
 |Flags(8)| (variable length) |
 +--------+--------+--------+--------+--------+--- ---+

 9 10 11 12
 +--------+--------+--------+--------+
 | QUIC Version (32) | ->
 | (optional) |
 +--------+--------+--------+--------+

 13 14 15 16 17 18
 +--------+--------+--------+--------+--------+--------+
 | Packet Number (8, 16, 32, or 48) |
 | (variable length) |
 +--------+--------+--------+--------+--------+--------+

 The payload may include various type-dependent header bytes as
 described below.

 The fields in the public header are the following:

 o Public Flags:

 * 0x01 = PUBLIC_FLAG_VERSION. Interpretation of this flag
 depends on whether the packet is sent by the server or the
 client. When sent by the client, setting it indicates that the
 header contains a QUIC Version (see below). This bit must be
 set by a client in all packets until confirmation from the
 server arrives agreeing to the proposed version is received by
 the client. A server indicates agreement on a version by
 sending packets without setting this bit. When this bit is set
 by the server, the packet is a Version Negotiation Packet.
 Version Negotiation is described in more detail later.

 * 0x02 = PUBLIC_FLAG_RESET. Set to indicate that the packet is a
 Public Reset packet.

 * Two bits at 0x0C indicate the size of the Connection ID that is
 present in the packet. These bits must be set to 0x0C in all
 packets until negotiated to a different value for a given
 direction (e.g., client may request fewer bytes of the
 Connection ID be presented).

 + 0x0C indicates an 8-byte Connection ID is present

Hamilton, et al. Expires July 16, 2016 [Page 9]

Internet-Draft QUIC January 2016

 + 0x08 indicates that a 4-byte Connection ID is present

 + 0x04 indicates that a 1-byte Connection ID is used

 + 0x00 indicates that the Connection ID is omitted

 * Two bits at 0x30 indicate the number of low-order-bytes of the
 packet number that are present in each packet. The bits are
 only used for Frame Packets. For Public Reset and Version
 Negotiation Packets (sent by the server) which don't have a
 packet number, these bits are not used and must be set to 0.
 Within this 2 bit mask:

 + 0x30 indicates that 6 bytes of the packet number is present

 + 0x20 indicates that 4 bytes of the packet number is present

 + 0x10 indicates that 2 bytes of the packet number is present

 + 0x00 indicates that 1 byte of the packet number is present

 * 0x40 is reserved for multipath use.

 * 0x80 is currently unused, and must be set to 0.

 o Connection ID: This is an unsigned 64 bit statistically random
 number selected by the client that is the identifier of the
 connection. Because QUIC connections are designed to remain
 established even if the client roams, the IP 4-tuple (source IP,
 source port, destination IP, destination port) may be insufficient
 to identify the connection. For each transmission direction, when
 less uniqueness is sufficient to identify the connection, a
 truncated transmitted Connection ID length is negotiable.

 o QUIC Version: A 32 bit opaque tag that represents the version of
 the QUIC protocol. Only present if the public flags contain
 FLAG_VERSION (i.e public_flags & FLAG_VERSION !=0). A client may
 set this flag, and include EXACTLY one proposed version, as well
 as including arbitrary data (conforming to that version). A
 server may set this flag when the client-proposed version was
 unsupported, and may then provide a list (0 or more) of acceptable
 versions, but MUST not include any data after the version(s).
 Examples of version values in recent experimental versions include
 "Q025" which corresponds to byte 9 containing 'Q", byte 10
 containing '0", etc. [See list of changes in various versions
 listed at the end of this document.]

Hamilton, et al. Expires July 16, 2016 [Page 10]

Internet-Draft QUIC January 2016

 o Packet Number: The lower 8, 16, 32, or 48 bits of the packet
 number, based on which FLAG_?BYTE_SEQUENCE_NUMBER flag is set in
 the public flags. Each Regular Packet (as opposed to the Special
 public reset and version negotiation packets) is assigned a packet
 number by the sender. The first packet sent by an endpoint shall
 have a packet number of 1, and each subsequent packet shall have a
 packet number one larger than that of the previous packet. The
 lower 64 bits of the packet number is used as part of a
 cryptographic nonce; therefore, a QUIC endpoint must not send a
 packet with a packet number that cannot be represented in 64 bits.
 If a QUIC endpoint transmits a packet with a packet number of
 (2^64-1), that packet must include a CONNECTION_CLOSE frame with
 an error code of QUIC_SEQUENCE_NUMBER_LIMIT_REACHED, and the
 endpoint must not transmit any additional packets. At most the
 lower 48 bits of a packet number are transmitted. To enable
 unambiguous reconstruction of the packet number by the receiver, a
 QUIC endpoint must not transmit a packet whose packet number is
 larger by (2^(bitlength-2)) than the largest packet number for
 which an acknowledgement is known to have been transmitted by the
 receiver. Therefore, there must never be more than (2^46) packets
 in flight. Any truncated packet number shall be inferred to have
 the value closest to the one more than the largest known packet
 number of the endpoint which transmitted the packet that
 originally contained the truncated packet number. The transmitted
 portion of the packet number matches the lowest bits of the
 inferred value.

 A Public Flags processing flowchart follows:

Hamilton, et al. Expires July 16, 2016 [Page 11]

Internet-Draft QUIC January 2016

Check the public flags in public header
 |
 |
 V
 +--------------+
 | Public Reset | YES
 | flag set? |---------------> Public Reset Packet
 +--------------+
 |
 | NO
 V
 +------------+ +-------------+
 | Version | YES | Packet sent | YES
 | flag set? |--------->| by server? |--------> Version Negotiation
 +------------+ +-------------+ Packet
 | |
 | NO | NO
 V V
 Regular Packet Regular Packet with
 QUIC Version present in header

6.2. Special Packets

6.2.1. Version Negotiation Packet

 A version negotiation packet is only sent by the server. Version
 Negotiation packets begin with an 8-bit public flags and 64-bit
 Connection ID. The public flags must set PUBLIC_FLAG_VERSION and
 indicate the 64-bit Connection ID. The rest of the Version
 Negotiation packet is a list of 4-byte versions which the server
 supports:

 0 1 2 3 4 5 6 7 8
+--------+--------+--------+--------+--------+--------+--------+--------
+--------+
| Public | Connection ID
(64) | ->
|
Flags(8)|
|
+--------+--------+--------+--------+--------+--------+--------+--------
+--------+

 9 10 11 12 13 14 15 16 17
+--------+--------+--------+--------+--------+--------+--------+--------
+---...--+
| 1st QUIC version supported | 2nd QUIC version supported | ...
| by server (32) | by server (32) |

+--------+--------+--------+--------+--------+--------+--------+--------
+---...--+

Hamilton, et al. Expires July 16, 2016 [Page 12]

Internet-Draft QUIC January 2016

6.2.2. Public Reset Packet

 A Public Reset packet begins with an 8-bit public flags and 64-bit
 Connection ID. The public flags must set PUBLIC_FLAG_RESET and
 indicate the 64-bit Connection ID. The rest of the Public Reset
 packet is encoded as if it were a crypto handshake message of the tag
 PRST (see [QUIC-CRYPTO]):

 0 1 2 3 4 8
 +--------+--------+--------+--------+--------+-- --+
 | Public | Connection ID (64) ... | ->
 |Flags(8)| |
 +--------+--------+--------+--------+--------+-- --+

 9 10 11 12 13 14
 +--------+--------+--------+--------+--------+--------+---
 | Quic Tag (32) | Tag value map ... ->
 | (PRST) | (variable length)
 +--------+--------+--------+--------+--------+--------+---

 Tag value map: The tag value map contains the following tag-values:

 o RNON (public reset nonce proof) - a 64-bit unsigned integer.
 Mandatory.

 o RSEQ (rejected packet number) - a 64-bit packet number.
 Mandatory.

 o CADR (client address) - the observed client IP address and port
 number. This is currently for debugging purposes only and hence
 is optional.

 (TODO: Public Reset packet should include authenticated (destination)
 server IP/port.)

6.3. Regular Packets

 Regular Packets are authenticated and encrypted. The Public Header
 is authenticated but not encrypted, and the rest of the packet
 starting with the Private Flags field is encrypted. Immediately
 following the Public Header, Regular Packets contain AEAD
 (authenticated encryption and associated data) data. This data must
 be decrypted in order for the contents to be interpreted. After
 decryption, the plaintext starts with a Private Header.

Hamilton, et al. Expires July 16, 2016 [Page 13]

Internet-Draft QUIC January 2016

 0 1
 +--------+--------+
 |Private | FEC (8)|
 |Flags(8)| (opt) |
 +--------+--------+

 The fields in the private header are the following:

 o Private Flags:

 * 0x01 = FLAG_ENTROPY - for data packets, signifies that this
 packet contains the 1 bit of entropy, for fec packets, contains
 the xor of the entropy of protected packets.

 * 0x02 = FLAG_FEC_GROUP - indicates whether the fec byte is
 present.

 * 0x04 = FLAG_FEC - signifies that this packet represents an FEC
 packet.

 o FEC (FEC Group Number Offset): An FEC Group Number is the Packet
 Number of the first packet in the FEC group. The FEC Group Number
 Offset is an 8 bit unsigned value which should be subtracted from
 the current packet's Packet Number to yield the FEC Group Number
 for this packet. This is only present if the private flags
 contain FLAG_FEC_GROUP. All packets within a single FEC group
 must have Packet Numbers encoded into an identical number of bytes
 (i.e., the Packet Number coding must not change during a group)

 (TODO: Document the inputs to encryption and decryption and describe
 trial decryption.)

6.3.1. Frame Packet

 Beyond the Private Header, Frame Packets have a payload that is a
 series of type-prefixed frames. The format of frame types is defined
 later in this document, but the general format of a Frame Packet is
 as follows:

 +--------+---...---+--------+---...---+
 | Type | Payload | Type | Payload |
 +--------+---...---+--------+---...---+

Hamilton, et al. Expires July 16, 2016 [Page 14]

Internet-Draft QUIC January 2016

6.3.2. FEC Packet

 FEC packets (those packets with FLAG_FEC set) have a payload that
 simply contains an XOR of the null-padded payload of each Data Packet
 in the FEC group. FEC packets must also have FLAG_FEC_GROUP set.

 +-----...----+
 | Redundancy |
 +-----...----+

7. Life of a QUIC Connection

7.1. Connection Establishment

 A QUIC client is the endpoint that initiates a connection. QUIC's
 connection establishment intertwines version negotiation with the
 crypto and transport handshakes to reduce connection establishment
 latency. We first describe version negotiation below.

 Each of the initial packets sent from the client to the server must
 set the version flag, and must specify the version of the protocol
 being used. Every packet sent by the client must have the version
 flag on, until it receives a packet from the server with the version
 flag off. After the server receives the first packet from the client
 with the version flag off, it must ignore any (possibly delayed)
 packets with the version flag on.

 When the server receives a packet with a Connection ID for a new
 connection, it will compare the client's version to the versions it
 supports. If the client's version is acceptable to the server, the
 server will use this protocol version for the lifetime of the
 connection. In this case, all packets sent by the server will have
 the version flag off.

 If the client's version is not acceptable to the server, a 1-RTT
 delay will be incurred. The server will send a Version Negotiation
 Packet to the client. This packet will have the version flag set and
 will include the server's set of supported versions.

 When the client receives a Version Negotiation Packet from the
 server, it will select an acceptable protocol version and resend all
 packets using this version. These packet must continue to have the
 version flag set and must include the new negotiated protocol
 version. Eventually, the client receives the first Regular Packet
 (i.e. not a Version Negotiation Packet) from the server indicating
 the end of version negotiation, and the client now sends all
 subsequent packets with the version flag off.

Hamilton, et al. Expires July 16, 2016 [Page 15]

Internet-Draft QUIC January 2016

 In order to avoid downgrade attacks, the version of the protocol that
 the client specified in the first packet and the set of versions
 supported by the server must be included in the crypto handshake
 data. The client needs to verify that the server's version list from
 the handshake matches the list of versions in the Version Negotiation
 Packet. The server needs to verify that the client's version from
 the handshake represents a version of the protocol that it does not
 actually support.

 The rest of the connection establishment is described in the
 handshake document [QUIC-CRYPTO]. The crypto handshake is performed
 over the dedicated crypto stream (Stream ID 1).

 During connection establishment, the handshake must negotiate various
 transport parameters. The currently defined transport parameters are
 described later in the document.

7.2. Data Transfer

 QUIC implements connection reliability, congestion control, and flow
 control. QUIC flow control closely follows HTTP/2's flow control.
 QUIC reliability and congestion control are described in an
 accompanying document. A QUIC connection uses a single packet
 sequence number space for shared congestion control and loss recovery
 across the connection.

 All data transferred in a QUIC connection, including the crypto
 handshake, is sent as data inside streams, but the ACKs acknowledge
 QUIC Packets.

 This section conceptually describes the use of streams for data
 transfer within a QUIC connection. The various frames that are
 mentioned in this section are described in the section on Frame Types
 and Formats.

7.2.1. Life of a QUIC Stream

 Streams are independent sequences of bi-directional data cut into
 stream frames. Streams can be created either by the client or the
 server, can concurrently send data interleaved with other streams,
 and can be cancelled. QUIC's stream lifetime is modeled closely
 after HTTP/2's [RFC7540]. (HTTP/2's usage of QUIC streams is
 described in more detail later in the document.)

 Stream creation is done implicitly, by sending a STREAM frame for a
 given stream. To avoid stream ID collision, the Stream-ID must be
 even if the server initiates the stream, and odd if the client
 initiates the stream. 0 is not a valid Stream-ID. Stream 1 is

https://datatracker.ietf.org/doc/html/rfc7540

Hamilton, et al. Expires July 16, 2016 [Page 16]

Internet-Draft QUIC January 2016

 reserved for the crypto handshake, which should be the first client-
 initiated stream. When using HTTP/2 over QUIC, Stream 3 is reserved
 for transmitting compressed headers for all other streams, ensuring
 reliable in-order delivery and processing of headers.

 Stream-IDs from each side of the connection must increase
 monotonically as new streams are created. E.g. Stream 2 may be
 created after stream 3, but stream 7 must not be created after stream
 9. The peer may receive streams out of order. For example, if a
 server receives packet 10 including frames for stream 9 before it
 receives packet 9 including frames for stream 7, it should handle
 this gracefully.

 If the endpoint receiving a STREAM frame does not want to accept the
 stream, it can immediately respond with a RST_STREAM frame (described
 below). Note, however, that the initiating endpoint may have already
 sent data on the stream as well; this data must be ignored.

 Once a stream is created, it can be used to send and receive data.
 This means that a series of stream frames can be sent by a QUIC
 endpoint on a stream until the stream is terminated in that
 direction.

 Either QUIC endpoint can terminate a stream normally. There are
 three ways that streams can be terminated:

 1. Normal termination: Since streams are bidirectional, streams can
 be "half-closed" or "closed". When one side of the stream sends
 a frame with the FIN bit set to true, the stream is considered to
 be "half-closed" in that direction. A FIN indicates that no
 further data will be sent from the sender of the FIN on this
 stream. When a QUIC endpoint has both sent and received a FIN,
 the endpoint considers the stream to be "closed". While the FIN
 should be sent with the last user data for a stream, the FIN bit
 can be sent on an empty stream frame following the last data on
 the stream.

 2. Abrupt termination: Either the client or server can send a
 RST_STREAM frame for a stream at any time. A RST_STREAM frame
 contains an error code to indicate the reason for failure (error
 codes are listed later in the document.) When a RST_STREAM frame
 is sent from the stream originator, it indicates a failure to
 complete the stream and that no further data will be sent on the
 stream. When a RST_STREAM frame is sent from the stream
 receiver, the sender, upon receipt, should stop sending any data
 on the stream. The stream receiver should be aware that there is
 a race between data already in transit from the sender and the
 time the RST_STREAM frame is received. In order to ensure that

Hamilton, et al. Expires July 16, 2016 [Page 17]

Internet-Draft QUIC January 2016

 the connection-level flow control is correctly accounted, even if
 a RST_STREAM frame is received, a sender needs to ensure that
 either: the FIN and all bytes in the stream are received by the
 peer or a RST_STREAM frame is received by the peer. This also
 means that the sender of a RST_STREAM frame needs to continue
 responding to incoming STREAM_FRAMEs on this stream with the
 appropriate WINDOW_UPDATEs to ensure that the sender does not get
 flow control blocked attempting to delivery the FIN.

 3. Streams are also terminated when the connection is terminated, as
 described in the next section.

7.3. Connection Termination

 Connections should remain open until they become idle for a pre-
 negotiated period of time. When a server decides to terminate an
 idle connection, it should not notify the client to avoid waking up
 the radio on mobile devices. A QUIC connection, once established,
 can be terminated in one of two ways:

 1. Explicit Shutdown: An endpoint sends a CONNECTION_CLOSE frame to
 the peer initiating a connection termination. An endpoint may
 send a GOAWAY frame to the peer prior to a CONNECTION_CLOSE to
 indicate that the connection will soon be terminated. A GOAWAY
 frame when sent signals to the peer that any active streams will
 continue to be processed, but the sender of the GOAWAY will not
 initiate any additional streams and will not accept any new
 incoming streams. On termination of the active streams, a
 CONNECTION_CLOSE may be sent. If an endpoint sends a
 CONNECTION_CLOSE frame while unterminated streams are active (no
 FIN bit or RST_STREAM frames have been sent or received for one
 or more streams), then the peer must assume that the streams were
 incomplete and were abnormally terminated.

 2. Implicit Shutdown: The default idle timeout for a QUIC connection
 is 30 seconds, and is a required parameter("ICSL") in connection
 negotiation. The maximum is 10 minutes. If there is no network
 activity for the duration of the idle timeout, the connection is
 closed. By default a CONNECTION_CLOSE frame will be sent. A
 silent close option can be enabled when it is expensive to send
 an explicit close, such as mobile networks that must wake up the
 radio.

 An endpoint may also send a PUBLIC_RESET packet at any time during
 the connection to abruptly terminate an active connection. A
 PUBLIC_RESET is the QUIC equivalent of a TCP RST.

Hamilton, et al. Expires July 16, 2016 [Page 18]

Internet-Draft QUIC January 2016

8. Frame Types and Formats

 QUIC Frame Packets are populated by frames. which have a Frame Type
 byte, which itself has a type-dependent interpretation, followed by
 type-dependent frame header fields. All frames are contained within
 single QUIC Packets and no frame can span across a QUIC Packet
 boundary.

8.1. Frame Types

 There are two interpretations for the Frame Type byte, resulting in
 two frame types: Special Frame Types, and Regular Frame Types.
 Special Frame Types encode both a Frame Type and corresponding flags
 all in the Frame Type byte, while Regular Frame Types use the Frame
 Type byte simply.

 Currently defined Special Frame Types are:

 +------------------+-----------------------------+
 | Type-field value | Control Frame-type |
 +------------------+-----------------------------+
 | 1fdooossB | STREAM |
 | 01ntllmmB | ACK |
 | 001xxxxxB | CONGESTION_FEEDBACK |
 +------------------+-----------------------------+

 Currently defined Regular Frame Types are:

 +------------------+-----------------------------+
 | Type-field value | Control Frame-type |
 +------------------+-----------------------------+
 | 00000000B (0x00) | PADDING |
 | 00000001B (0x01) | RST_STREAM |
 | 00000010B (0x02) | CONNECTION_CLOSE |
 | 00000011B (0x03) | GOAWAY |
 | 00000100B (0x04) | WINDOW_UPDATE |
 | 00000101B (0x05) | BLOCKED |
 | 00000110B (0x06) | STOP_WAITING |
 | 00000111B (0x07) | PING |
 +------------------+-----------------------------+

8.2. STREAM Frame

 The STREAM frame is used to both implicitly create a stream and to
 send data on it, and is as follows:

Hamilton, et al. Expires July 16, 2016 [Page 19]

Internet-Draft QUIC January 2016

 0 1 ... SLEN
+--------+--------+--------+--------+--------+
|Type (8)| Stream ID (8, 16, 24, or 32 bits) |
| | (Variable length SLEN bytes) |
+--------+--------+--------+--------+--------+

 SLEN+1 SLEN+2 ... SLEN+OLEN
+--------+--------+--------+--------+--------+--------+--------+--------+
| Offset (0, 16, 24, 32, 40, 48, 56, or 64 bits) (variable length) |
| (Variable length: OLEN bytes) |
+--------+--------+--------+--------+--------+--------+--------+--------+

 SLEN+OLEN+1 SLEN+OLEN+2
+-------------+-------------+
| Data length (0 or 16 bits)|
| Optional(maybe 0 bytes) |
+------------+--------------+

 The fields in the STREAM frame header are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value containing
 various flags (1fdooossB):

 * The leftmost bit must be set to 1 indicating that this is a
 STREAM frame.

 * The 'f' bit is the FIN bit. When set to 1, this bit indicates
 the sender is done sending on this stream and wishes to "half-
 close" (described in more detail later.)

 * which is described in more detail later in this document.

 * The 'd' bit indicates whether a Data Length is present in the
 STREAM header. When set to 0, this field indicates that the
 STREAM frame extends to the end of the Packet.

 * The next three 'ooo' bits encode the length of the Offset
 header field as 0, 16, 24, 32, 40, 48, 56, or 64 bits long.

 * The next two 'ss' bits encode the length of the Stream ID
 header field as 8, 16, 24, or 32 bits long.

 o Stream ID: A variable-sized unsigned ID unique to this stream.

 o Offset: A variable-sized unsigned number specifying the byte
 offset in the stream for this block of data.

Hamilton, et al. Expires July 16, 2016 [Page 20]

Internet-Draft QUIC January 2016

 o Data length: An optional 16-bit unsigned number specifying the
 length of the data in this stream frame. The option to omit the
 length should only be used when the packet is a "full-sized"
 Packet, to avoid the risk of corruption via padding.

 A stream frame must always have either non-zero data length or the
 FIN bit set.

8.3. ACK Frame

 The ACK frame is sent to inform the peer which packets have been
 received, as well as which packets are still considered missing by
 the receiver (the contents of missing packets may need to be resent).
 The design of QUIC's ACK frame is different from TCP's and SCTP's
 SACK representations in that QUIC ACKs indicate the largest packet
 number observed thus far followed by a list of missing packet, or
 NACK, ranges indicating gaps in packets received below this packet
 number. To limit the NACK ranges to the ones that haven't yet been
 communicated to the peer, the peer periodically sends STOP_WAITING
 frames that signal the receiver to stop waiting for packets below a
 specified sequence number, raising the "least unacked" packet number
 at the receiver. A sender of an ACK frame thus reports only those
 NACK ranges between the received least unacked and the reported
 largest observed packet numbers. The frame is as follows:

Hamilton, et al. Expires July 16, 2016 [Page 21]

Internet-Draft QUIC January 2016

 0 1 N
 +--------+--------+---+
 | Type |Received| Largest Observed |
 | (8) |Entropy | (8, 16, 32, or 48 bits) |
 +--------+--------+---+

 N+1 N+2 N+3 N+4 N+8
 +--------+--------+---------+--------+--------------------------------+
Ack Delay	Num	Delta	First Timestamp
Time (16)	Timestamp	Largest	(32 bits)
	(8)	Observed	
 +--------+--------+---------+--------+--------------------------------+

 N+9 N+11 - X
 +--------+-------------------+
 | Delta | Time Since |
 |Largest | Previous Timestamp| <-- Repeat (NumTimestamp - 1) times
 |Observed| (16 bits) |
 +--------+-------------------+

 X X+1 - Y Y+1
 +--------+---+--------+
Number	Missing Packet Sequence Number Delta	Range
Ranges	(8, 16, 32, or 48 bits)	Length
(opt)	(repeats Number Ranges times)	(Repeat)
 +--------+---+--------+

 Y+2 Y+3 - Z
 +--------+---+
Number	Revived Packet Number
Revived	(8, 16, 32, or 48 bits, same as Largest Observed)
(opt)	(repeats Number Revived times)
 +--------+---+

 The fields in the ACK frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value containing
 various flags (01ntllmmB).

 * The first two bits must be set to 01 indicating that this is an
 ACK frame.

 * The 'n' bit indicates whether the frame has any NACK ranges.

 * The 't' bit indicates whether the ACK frame has been truncated.
 Truncation can happen when the complete ACK frame does not fit
 within a single QUIC Packet, or when the number of NACK ranges
 exceeds the maximum number of reportable NACK ranges (255).

Hamilton, et al. Expires July 16, 2016 [Page 22]

Internet-Draft QUIC January 2016

 When truncated, the ACK frame limits the largest observed
 packet number to the largest that can be reported, even though
 the receiver may have received packets with packet numbers
 larger than the largest observed.

 * The two 'll' bits encode the length of the Largest Observed
 field as 1, 2, 4, or 6 bytes long.

 * The two 'mm' bits encode the length of the Missing Packet
 Sequence Number Delta field as 1, 2, 4, or 6 bytes long.

 o Received Entropy: An 8 bit unsigned value specifying the
 cumulative hash of entropy in all received packets up to the
 largest observed packet. Entropy accumulation is described later
 in this section.

 o Largest Observed: A variable-sized unsigned value representing the
 largest packet number the peer has observed. When an ACK frame is
 truncated, it indicates a packet number greater than the specified
 largest observed has been received, but information about those
 additional receptions can't fit into this frame (typically due to
 packet size restrictions).

 o Ack Delay Time: A 16-bit unsigned float with 11 explicit bits of
 mantissa and 5 bits of explicit exponent, specifying the time
 elapsed in microseconds from when largest observed was received
 until this Ack frame was sent. The bit format is loosely modeled
 after IEEE 754. For example, 1 microsecond is represented as 0x1,
 which has an exponent of zero, presented in the 5 high order bits,
 and mantissa of 1, presented in the 11 low order bits. When the
 explicit exponent is greater than zero, an implicit high-order
 12th bit of 1 is assumed in the mantissa. For example, a floating
 value of 0x800 has an explicit exponent of 1, as well as an
 explicit mantissa of 0, but then has an effective mantissa of 4096
 (12th bit is assumed to be 1). Additionally, the actual exponent
 is one-less than the explicit exponent, and the value represents
 4096 microseconds. Any values larger than the representable range
 are clamped to 0xFFFF.

 o Timestamp Section:

 * Num Timestamp: An 8-bit unsigned value specifying the number of
 timestamps that are included in this ack frame. There will be
 this many pairs of <packet number, timestamp> following in the
 timestamps.

 * Delta Largest Observed: An 8-bit unsigned value specifying the
 packet number delta from the first timestamp to the largest

Hamilton, et al. Expires July 16, 2016 [Page 23]

Internet-Draft QUIC January 2016

 observed. Therefore, the packet number is the largest observed
 minus the delta largest observed.

 * First Timestamp: A 32-bit unsigned value specifying the time
 delta in microseconds, from the beginning of the connection of
 the arrival of the packet specified by Largest Observed minus
 Delta Largest Observed.

 * Delta Largest Observed (Repeated): (Same as above.)

 * Time Since Previous Timestamp (Repeated): A 16-bit unsigned
 value specifying delta from the previous timestamp. It is
 encoded in the same format as the Ack Delay Time.

 o Missing Packet Section:

 * Num Ranges: An optional 8-bit unsigned value specifying the
 number of missing packet ranges between largest observed and
 least unacked. Only present if the 'n' flag bit is 1.

 * Missing Packet Sequence Number Delta: A variable-sized packet
 number delta. For the first missing packet range, it is a
 delta from the largest observed. For subsequent nack ranges,
 it is the number of packets received between ranges. In the
 case of the first nack range, a value of 0 specifies that the
 packet reported as the largest observed is missing. In the
 case of the later nack ranges, a value of 0 indicates the
 missing packet ranges are contiguous (used only when more than
 256 packets in a row were lost).

 * Range Length: An 8-bit unsigned value specifying one less than
 the number of sequential nacks in the range.

 o Revived Packet Section:

 * Num Revived: An 8-bit unsigned value specifying the number of
 revived packets, recovered via FEC. Just like the Num Ranges
 field, this field is only present if the 'n' flag bit is 1.

 * Revived Packet Sequence Number: A variable-sized unsigned value
 representing a packet the peer has revived via FEC. Its length
 is the same as the length of the Largest Observed field. All
 packet numbers in this list are sorted in ascending order
 (smallest first) and must also be present in the list of NACK
 ranges.

Hamilton, et al. Expires July 16, 2016 [Page 24]

Internet-Draft QUIC January 2016

8.3.1. Entropy Accumulation

 The entropy bits for a subset of packets (known to a receiver or
 sender) are accumulated into an 8 bit unsigned value, and similarly
 presented in both a STOP_WAITING frame and an ACK frame. If we
 defined E(k) to be the FLAG_ENTROPY bit present in packet number k,
 then the k'th packet's contribution C(k) is defined to be E(k) left
 shifted by k mod 8 bits. The accumulated entropy is then the
 bitwise-XOR sum of the contributions C(k), for all packets in the
 desired subset.

8.4. STOP_WAITING Frame

 The STOP_WAITING frame is sent to inform the peer that it should not
 continue to wait for packets with packet numbers lower than a
 specified value. The packet number is encoded in 1, 2, 4 or 6 bytes,
 using the same coding length as is specified for the packet number
 for the enclosing packet's header (specified in the QUIC Frame
 Packet's Public Flags field.) The frame is as follows:

 0 1 2 3 4 5 6 7
 +--------+--------+--------+--------+--------+--------+-------+-------+
 |Type (8)|Sent | Least unacked delta (8, 16, 32, or 48 bits) |
 | |Entropy | (variable length) |
 +--------+--------+--------+--------+--------+--------+-------+-------+

 The fields in the STOP_WAITING frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value that must be set
 to 0x06 indicating that this is a STOP_WAITING frame.

 o Sent Entropy: An 8-bit unsigned value specifying the cumulative
 hash of entropy in all sent packets up to the packet with packet
 number one less than the least unacked packet. [See "Entropy
 Accumulation" section in the ACK frame section for details of this
 calculation.]

 o Least Unacked Delta: A variable length packet number delta with
 the same length as the packet header's packet number. In the case
 of an FEC revived packet, the same length as the other packets in
 the FEC group. Subtract it from the header's packet number to
 determine the least unacked. The resulting least unacked is the
 smallest packet number of any packet for which the sender is still
 awaiting an ack. If the receiver is missing any packets smaller
 than this value, the receiver should consider those packets to be
 irrecoverably lost.

Hamilton, et al. Expires July 16, 2016 [Page 25]

Internet-Draft QUIC January 2016

8.5. WINDOW_UPDATE Frame

 The WINDOW_UPDATE frame is used to inform the peer of an increase in
 an endpoint's flow control receive window. The stream ID can be 0,
 indicating this WINDOW_UPDATE applies to the connection level flow
 control window, or > 0 indicating that the specified stream should
 increase its flow control window. The frame is as follows:

 An absolute byte offset is specified, and the receiver of a
 WINDOW_UPDATE frame may only send up to that number of bytes on the
 specified stream. Violating flow control by sending further bytes
 will result in the receiving endpoint closing the connection.

 On receipt of multiple WINDOW_UPDATE frames for a specific stream ID,
 it is only necessary to keep track of the maximum byte offset.

 Both stream and session windows start with a default value of 16 KB,
 but this is typically increased during the handshake. To do this, an
 endpoint should negotiate the SFCW (Stream Flow Control Window) and
 CFCW (Connection/Session Flow Control Window) parameters in the
 handshake. The value associated with each tag should be the number
 of bytes for initial stream window and initial connection window
 respectively.

 The frame is as follows:

 0 1 4 5 12
 +--------+--------+-- ... --+-------+--------+-- ... --+-------+
 |Type(8) | Stream ID (32 bits) | Byte offset (64 bits) |
 +--------+--------+-- ... --+-------+--------+-- ... --+-------+

 The fields in the WINDOW_UPDATE frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value that must be set
 to 0x04 indicating that this is a WINDOW_UPDATE frame.

 o Stream ID: ID of the stream whose flow control windows is being
 updated, or 0 to specify the connection-level flow control window.

 o Byte offset: A 64-bit unsigned integer indicating the absolute
 byte offset of data which can be sent on the given stream. In the
 case of connection level flow control, the cumulative number of
 bytes which can be sent on all currently open streams.

Hamilton, et al. Expires July 16, 2016 [Page 26]

Internet-Draft QUIC January 2016

8.6. BLOCKED Frame

 The BLOCKED frame is used to indicate to the remote endpoint that
 this endpoint is ready to send data (and has data to send), but is
 currently flow control blocked. This is a purely informational
 frame, which is extremely useful for debugging purposes. A receiver
 of a BLOCKED frame should simply discard it (after possibly printing
 a helpful log message). The frame is as follows:

 0 1 2 3 4
 +--------+--------+--------+--------+--------+
 |Type(8) | Stream ID (32 bits) |
 +--------+--------+--------+--------+--------+

 The fields in the BLOCKED frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value that must be set
 to 0x05 indicating that this is a BLOCKED frame.

 o Stream ID: A 32-bit unsigned number indicating the stream which is
 flow control blocked. A non-zero Stream ID field specifies the
 stream that is flow control blocked. When zero, the Stream ID
 field indicates that the connection is flow control blocked at the
 connection level.

8.7. CONGESTION_FEEDBACK Frame

 The CONGESTION_FEEDBACK frame is an experimental frame currently not
 used. It is intended to provide extra congestion feedback
 information outside the scope of the standard ack frame. A
 CONGESTION_FEEDBACK frame must have the first three bits of the Frame
 Type set to 001. The last 5 bits of the Frame Type field are
 reserved for future use.

8.8. PADDING Frame

 The PADDING frame pads a packet with 0x00 bytes. When this frame is
 encountered, the rest of the packet is expected to be padding bytes.
 The frame contains 0x00 bytes and extends to the end of the QUIC
 packet. A PADDING frame only has a Frame Type field, and must have
 the 8-bit Frame Type field set to 0x00.

8.9. RST_STREAM Frame

 The RST_STREAM frame allows for abnormal termination of a stream.
 When sent by the creator of a stream, it indicates the creator wishes
 to cancel the stream. When sent by the receiver of a stream, it

Hamilton, et al. Expires July 16, 2016 [Page 27]

Internet-Draft QUIC January 2016

 indicates an error or that the receiver did not want to accept the
 stream, so the stream should be closed. The frame is as follows:

 0 1 4 5 12 8 16
+-------+--------+-- ... ----+--------+-- ... ------+-------+-- ... ------+
|Type(8)| StreamID (32 bits) | Byte offset (64 bits)| Error code (32 bits)|
+-------+--------+-- ... ----+--------+-- ... ------+-------+-- ... ------+

 The fields in a RST_STREAM frame are as follows:

 o Frame type: The Frame Type is an 8-bit value that must be set to
 0x01 specifying that this is a RST_STREAM frame.

 o Stream ID: The 32-bit Stream ID of the stream being terminated.

 o Byte offset: A 64-bit unsigned integer indicating the absolute
 byte offset of the end of data for this stream.

 o Error code: A 32-bit QuicErrorCode which indicates why the stream
 is being closed. QuicErrorCodes are listed later in this
 document.

8.10. PING frame

 The PING frame can be used by an endpoint to verify that a peer is
 still alive. The PING frame contains no payload. The receiver of a
 PING frame simply needs to ACK the packet containing this frame. The
 PING frame should be used to keep a connection alive when a stream is
 open. The default is to do this after 15 seconds of quiescence,
 which is much shorter than most NATs time out. A PING frame only has
 a Frame Type field, and must have the 8-bit Frame Type field set to
 0x07.

8.11. CONNECTION_CLOSE frame

 The CONNECTION_CLOSE frame allows for notification that the
 connection is being closed. If there are streams in flight, those
 streams are all implicitly closed when the connection is closed.
 (Ideally, a GOAWAY frame would be sent with enough time that all
 streams are torn down.) The frame is as follows:

 0 1 4 5 6 7
 +--------+--------+-- ... -----+--------+--------+--------+----- ...
 |Type(8) | Error code (32 bits)| Reason phrase | Reason phrase
 | | | length (16 bits)|(variable length)
 +--------+--------+-- ... -----+--------+--------+--------+----- ...

 The fields of a CONNECTION_CLOSE frame are as follows:

Hamilton, et al. Expires July 16, 2016 [Page 28]

Internet-Draft QUIC January 2016

 o Frame Type: An 8-bit value that must be set to 0x02 specifying
 that this is a CONNECTION_CLOSE frame.

 o Error Code: A 32-bit field containing the QuicErrorCode which
 indicates the reason for closing this connection.

 o Reason Phrase Length: A 16-bit unsigned number specifying the
 length of the reason phrase. This may be zero if the sender
 chooses to not give details beyond the QuicErrorCode.

 o Reason Phrase: An optional human-readable explanation for why the
 connection was closed.

8.12. GOAWAY Frame

 The GOAWAY frame allows for notification that the connection should
 stop being used, and will likely be aborted in the future. Any
 active streams will continue to be processed, but the sender of the
 GOAWAY will not initiate any additional streams, and will not accept
 any new streams. The frame is as follows:

 0 1 4 5 6 7 8
 +--------+--------+-- ... -----+-------+-------+-------+------+
 |Type(8) | Error code (32 bits)| Last Good Stream ID (32 bits)| ->
 +--------+--------+-- ... -----+-------+-------+-------+------+

 9 10 11
 +--------+--------+--------+----- ...
 | Reason phrase | Reason phrase
 | length (16 bits)|(variable length)
 +--------+--------+--------+----- ...

 The fields of a GOAWAY frame are as follows:

 o Frame type: An 8-bit value that must be set to 0x06 specifying
 that this is a GOAWAY frame.

 o Error Code: A 32-bit field containing the QuicErrorCode which
 indicates the reason for closing this connection.

 o Last Good Stream ID: The last Stream ID which was accepted by the
 sender of the GOAWAY message. If no streams were replied to, this
 value must be set to 0.

 o Reason Phrase Length: A 16-bit unsigned number specifying the
 length of the reason phrase. This may be zero if the sender
 chooses to not give details beyond the error code.

Hamilton, et al. Expires July 16, 2016 [Page 29]

Internet-Draft QUIC January 2016

 o Reason Phrase: An optional human-readable explanation for why the
 connection was closed.

9. QUIC Transport Parameters

 The handshake is responsible for negotiating a variety of transport
 parameters for a QUIC connection.

9.1. Required Parameters

 o SFCW - Stream Flow Control Window. The size in bytes of the
 stream level flow control window.

 o CFCW - Connection Flow Control Window. The size in bytes of the
 connection level flow control window.

9.2. Optional Parameters

 o SRBF - Socket receive buffer size in bytes. The peer may want to
 limit their max CWND to something similar to the socket receive
 buffer if they fear the peer may sometimes be delayed in reading
 packets from kernel's socket buffer. Defaults to 256kbytes and
 has a minimum value of 16kbytes.

 o TCID - Connection ID truncation. Indicates support for truncated
 Connection IDs. If sent by a peer, indicates the connection IDs
 sent to the peer should be truncated to 0 bytes. Useful for cases
 when a client ephemeral port is only used for a single connection.

 o COPT - Connection Options are a repeated tag field. The field
 contains any connection options being requested by the client or
 server. These are typically used for experimentation and will
 evolve over time. Example use cases include changing congestion
 control algorithms and parameters such as initial window.

10. QuicErrorCodes

 The number to code mappings for QuicErrorCodes are currently defined
 in the Chromium source code in src/net/quic/quic_protocol.h. (TODO:
 hardcode numbers and add them here)

 o QUIC_NO_ERROR: There was no error. This is not valid for
 RST_STREAM frames or CONNECTION_CLOSE frames

 o QUIC_STREAM_DATA_AFTER_TERMINATION: There were data frames after
 the a fin or reset.

Hamilton, et al. Expires July 16, 2016 [Page 30]

Internet-Draft QUIC January 2016

 o QUIC_SERVER_ERROR_PROCESSING_STREAM: There was some server error
 which halted stream processing.

 o QUIC_MULTIPLE_TERMINATION_OFFSETS: The sender received two
 mismatching fin or reset offsets for a single stream.

 o QUIC_BAD_APPLICATION_PAYLOAD: The sender received bad application
 data.

 o QUIC_INVALID_PACKET_HEADER: The sender received a malformed packet
 header.

 o QUIC_INVALID_FRAME_DATA: The sender received an frame data. The
 more detailed error codes below are prefered where possible.

 o QUIC_INVALID_FEC_DATA: FEC data is malformed.

 o QUIC_INVALID_RST_STREAM_DATA: Stream rst data is malformed

 o QUIC_INVALID_CONNECTION_CLOSE_DATA: Connection close data is
 malformed.

 o QUIC_INVALID_ACK_DATA: Ack data is malformed.

 o QUIC_DECRYPTION_FAILURE: There was an error decrypting.

 o QUIC_ENCRYPTION_FAILURE: There was an error encrypting.

 o QUIC_PACKET_TOO_LARGE: The packet exceeded MaxPacketSize.

 o QUIC_PACKET_FOR_NONEXISTENT_STREAM: Data was sent for a stream
 which did not exist.

 o QUIC_CLIENT_GOING_AWAY: The client is going away (browser close,
 etc.)

 o QUIC_SERVER_GOING_AWAY: The server is going away (restart etc.)

 o QUIC_INVALID_STREAM_ID: A stream ID was invalid.

 o QUIC_TOO_MANY_OPEN_STREAMS: Too many streams already open.

 o QUIC_CONNECTION_TIMED_OUT: We hit our pre-negotiated (or default)
 timeout

 o QUIC_CRYPTO_TAGS_OUT_OF_ORDER: Handshake message contained out of
 order tags.

Hamilton, et al. Expires July 16, 2016 [Page 31]

Internet-Draft QUIC January 2016

 o QUIC_CRYPTO_TOO_MANY_ENTRIES: Handshake message contained too many
 entries.

 o QUIC_CRYPTO_INVALID_VALUE_LENGTH: Handshake message contained an
 invalid value length.

 o QUIC_CRYPTO_MESSAGE_AFTER_HANDSHAKE_COMPLETE: A crypto message was
 received after the handshake was complete.

 o QUIC_INVALID_CRYPTO_MESSAGE_TYPE: A crypto message was received
 with an illegal message tag.

 o QUIC_SEQUENCE_NUMBER_LIMIT_REACHED: Transmitting an additional
 packet would cause a packet number to be reused.

11. Priority

 (TODO: implement)

 QUIC will use the HTTP/2 prioritization mechanism. Roughly, a stream
 may be dependent on another stream. In this situation, the "parent"
 stream should effectively starve the "child" stream. In addition,
 parent streams have an explicit priority. Parent streams should not
 starve other parent streams, but should make progress proportional to
 their relative priority.

12. HTTP/2 Layering over QUIC

 Since QUIC integrates various HTTP/2 mechanisms with transport
 mechanisms, QUIC implements a number of features that are also
 specified in HTTP/2. As a result, QUIC allows HTTP/2 mechanisms to
 be replaced by QUIC's implementation, reducing complexity in the
 HTTP/2 protocol. This section briefly describes how HTTP/2 semantics
 can be offered over a QUIC implementation.

12.1. Stream Management

 When HTTP/2 headers and data are sent over QUIC, the QUIC layer
 handles most of the stream management. HTTP/2 Stream IDs are
 replaced by QUIC Stream IDs. HTTP/2 does not need to do any explicit
 stream framing when using QUIC---data sent over a QUIC stream simply
 consists of HTTP/2 headers or body. Requests and responses are
 considered complete when the QUIC stream is closed in the
 corresponding direction.

 Stream flow control is handled by QUIC, and does not need to be re-
 implemented in HTTP/2. QUIC's flow controller replaces the two
 levels of poorly matched flow controllers in current HTTP/2

Hamilton, et al. Expires July 16, 2016 [Page 32]

Internet-Draft QUIC January 2016

 deployments---one at the HTTP/2 level, and the other at the TCP
 level.

12.2. HTTP/2 Header Compression

 QUIC implements HPACK header compression [4] for HTTP/2, which
 unfortunately introduces some Head-of-Line blocking since HTTP/2
 header blocks must be decompressed in the order they were compressed.

 Since streams may be processed in arbitrary order at a receiver,
 strict ordering across headers is enforced by sending all headers on
 a dedicated headers stream, with Stream ID 3. An HTTP/2 receiver
 using QUIC would thus process data from a stream only after receiving
 the corresponding header on the headers stream.

 Future work will tweak the compressor and decompressor in QUIC so
 that the compressed output does not depend on unacked previous
 compressed state. This could be done, perhaps, by creating
 "checkpoints" of HPACK state which are updated when headers have been
 acked. When compressing headers QUIC would only compress relative to
 the previous "checkpoint".

12.3. Parsing HTTP/2 Headers

 Bytes sent on the dedicated headers stream are simply HTTP/2 HEADERS
 frames. The exact layout of these frames is described in RFC 7540
 [5].

12.4. Persistent Connections

 Unlike when using TCP, the underlying connection for QUIC is
 guaranteed to be persistent. The HTTP "Connection" header is
 therefore does not apply. For best performance, it is expected that
 clients will not close a QUIC connection until the user navigates
 away from all web pages using that connection, or until the server
 closes the connection.

12.5. QUIC Negotiation in HTTP

 The Alternate-Protocol header is used to negotiate use of QUIC on
 future HTTP requests. To specify QUIC as an alternate protocol
 available on port 123, a server uses:

 "Alternate-Protocol: 123:quic"

 When a client receives a Alternate-Protocol header advertising QUIC,
 it can then attempt to use QUIC for future secure connections on that
 domain. Since middleboxes and/or firewalls can block QUIC and/or UDP

https://datatracker.ietf.org/doc/html/rfc7540

Hamilton, et al. Expires July 16, 2016 [Page 33]

Internet-Draft QUIC January 2016

 communication, a client should implement a graceful fallback to TCP
 when QUIC reachability is broken.

 Note that the server may reply with multiple field values or a comma-
 separated field value for Alternate-Protocol to indicate the various
 transports it supports.

 A server can also send a header to notify that QUIC should not be
 used on this domain. If it sends the alternate-protocol-required
 header, the client should remember to not use QUIC on that domain in
 future, and not do any UDP probing to see if QUIC is available.

13. Handshake Protocol Requirements

 QUIC provides a dedicated stream (Stream ID 1) to be used for
 performing a combined connection and security handshake, but the
 details of this handshake protocol are out of this document's scope.
 However, QUIC does impose a number of requirements on any such
 handshake protocol. The following list of requirements documents
 properties of the current prototype handshake which should be
 provided by any future handshake protocol.

13.1. Connection Establishment in 0-RTT

 The QUIC handshake protocol manages to successfully achieve 0-RTT for
 most connections, and is critical to QUIC's latency improvements.

13.2. Source Address Spoofing Defense

 TCP verifies the client's address by burning a round trip on the SYN,
 SYN_ACK exchange. QUIC uses a source address token delivered by the
 server in a previous connection.

13.3. Opaque Source Address Tokens

 QUIC servers store a number of pieces of data in the source address
 token, for use on a subsequent connection from the same client. This
 includes recently used source addresses, measured bandwidth to the
 client, and server-designated connection IDs (for Stateless REJs).
 An alternative handshake protocol's analog of a source address token
 needs to be (i) opaque at the client, and (ii) large enough to permit
 these bits of information to be stored. Alternatively, the handshake
 protocol should have a different method to store this information at
 the client.

Hamilton, et al. Expires July 16, 2016 [Page 34]

Internet-Draft QUIC January 2016

13.4. Transport Parameter Negotiation

 In addition to negotiating crypto parameters, the QUIC handshake also
 negotiates QUIC and HTTP/2 level parameters, including max open QUIC
 streams and other QUIC connection options.

13.5. Certificate Compression

 The QUIC handshake compresses certificates so that an REJ, including
 the common Google certificate chain, is able to fit into two 1350
 byte packets. This helps to reduce the amplification attack
 footprint of QUIC without reducing 0-RTT rate.

13.6. Server Config Update

 QUIC uses a Server Config Update (SCUP) message to refresh the
 source-address token (STK) and server config mid-connection,
 extending the period over which 0-RTT connections can be established
 by the client.

14. Recent Changes By Version

 o Q009: added priority as the first 4 bytes on spdy streams.

 o Q010: renumber the various frame types

 o Q011: shrunk the fnv128 hash on NULL encrypted packets from 16
 bytes to 12 bytes.

 o Q012: optimize the ack frame format to reduce the size and better
 handle ranges of nacks, which should make truncated acks virtually
 impossible. Also adding an explicit flag for truncated acks and
 moving the ack outside of the connection close frame.

 o Q013: Compressed headers for *all* data streams are serialized
 into a reserved stream. This ensures serialized handling of
 headers, independent of stream cancellation notification.

 o Q014: Added WINDOW_UPDATE and BLOCKED frames, no behavioral
 change.

 o Q015: Removes the accumulated_number_of_lost_packets field from
 the TCP and inter arrival congestion feedback frames and adds an
 explicit list of recovered packets to the ack frame.

 o Q016: Breaks out the sent_info field from the ACK frame into a new
 STOP_WAITING frame.

Hamilton, et al. Expires July 16, 2016 [Page 35]

Internet-Draft QUIC January 2016

 o Changed GUID to Connection ID

 o Q017: Adds stream level flow control

 o Q018: Added a PING frame

 o Q019: Adds session/connection level flow control

 o Q020: Allow endpoints to set different stream/session flow control
 windows

 o Q021: Crypto and headers streams are flow controlled (at stream
 level)

 o Q023: Ack frames include packet timestamps

 o Q024: HTTP/2-style header compression

 o Q025: HTTP/2-style header keys. Removal of error_details from the
 RST_STREAM frame.

 o Q026: Token binding, adds expected leaf cert (XLCT) tag to client
 hello

 o Q027: Adds a nonce to the server hello

 o Q029: Server and client honor QUIC_STREAM_NO_ERROR on early
 response

 .

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", March 1997.

15.2. Informative References

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol Version 2 (HTTP/2)", May 2015.

 [QUIC-CRYPTO]
 Langley, A. and W. Chang, "QUIC Crypto", June 2015.

 [QUIC-CC] Iyengar, J. and I. Swett, "QUIC Loss Recovery and
 Congestion Control", December 2015.

Hamilton, et al. Expires July 16, 2016 [Page 36]

Internet-Draft QUIC January 2016

15.3. URIs

 [1] https://goo.gl/dMVtFi

 [2] https://www.chromium.org/quic

 [3] http://goo.gl/jOvOQ5

 [4] http://http2.github.io/http2-spec/compression.html

 [5] https://httpwg.github.io/specs/rfc7540.html#HEADERS

Authors' Addresses

 Ryan Hamilton
 Google

 Email: rch@google.com

 Janardhan Iyengar
 Google

 Email: jri@google.com

 Ian Swett
 Google

 Email: ianswett@google.com

 Alyssa Wilk
 Google

 Email: alyssar@google.com

https://goo.gl/dMVtFi
https://www.chromium.org/quic
http://goo.gl/jOvOQ5
http://http2.github.io/http2-spec/compression.html
https://httpwg.github.io/specs/rfc7540.html#HEADERS

Hamilton, et al. Expires July 16, 2016 [Page 37]

