
Workgroup: Network Working Group

Internet-Draft: draft-tuexen-opsawg-pcapng-05

Published: 29 July 2022

Intended Status: Informational

Expires: 30 January 2023

Authors: M. Tuexen, Ed.

Muenster Univ. of Appl. Sciences

F. Risso

Politecnico di Torino

J. Bongertz

Airbus DS CyberSecurity

G. Combs

Wireshark

G. Harris E. Chaudron

Red Hat

M. Richardson

Sandelman

PCAP Next Generation (pcapng) Capture File Format

Abstract

This document describes a format to record captured packets to a

file. This format is extensible; Wireshark can currently read and

write it, and libpcap can currently read some pcapng files.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the OPSAWG Working Group

mailing list (opsawg@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/opsawg/.

Source for this draft and an issue tracker can be found at https://

github.com/pcapng/pcapng.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 January 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/opsawg/
https://mailarchive.ietf.org/arch/browse/opsawg/
https://github.com/pcapng/pcapng
https://github.com/pcapng/pcapng
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

2.1. Acronyms

3. General File Structure

3.1. General Block Structure

3.2. Block Types

3.3. Logical Block Hierarchy

3.4. Physical File Layout

3.5. Options

3.5.1. Custom Options

3.6. Data format

3.6.1. Endianness

3.6.2. Alignment

4. Block Definition

4.1. Section Header Block

4.2. Interface Description Block

4.3. Enhanced Packet Block

4.3.1. Enhanced Packet Block Flags Word

4.4. Simple Packet Block

4.5. Name Resolution Block

4.6. Interface Statistics Block

4.7. Decryption Secrets Block

4.8. Custom Block

5. Vendor-Specific Custom Extensions

5.1. Supported Use-Cases

5.2. Controlling Copy Behavior

5.3. Strings vs. Octets

5.4. Endianness Issues

6. Recommended File Name Extension: .pcapng

7. Conclusions

8. Implementations

9. Security Considerations

¶

¶

https://trustee.ietf.org/license-info

Extensibility:

Portability:

Merge/Append data:

SHB:

IDB:

10. IANA Considerations

10.1. Standardized Block Type Codes

11. Contributors

12. Acknowledgments

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Packet Block (obsolete!)

Authors' Addresses

1. Introduction

The problem of exchanging packet traces becomes more and more

critical every day; unfortunately, no standard solutions exist for

this task right now. One of the most accepted packet interchange

formats is the one defined by libpcap, which is rather old and is

lacking in functionality for more modern applications particularly

from the extensibility point of view.

This document proposes a new format for recording packet traces. The

following goals are being pursued:

It should be possible to add new standard

capabilities to the file format over time, and third parties

should be able to enrich the information embedded in the file

with proprietary extensions, with tools unaware of newer

extensions being able to ignore them.

A capture trace must contain all the information

needed to read data independently from network, hardware and

operating system of the machine that made the capture.

It should be possible to add data at the end of

a given file, and the resulting file must still be readable.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.1. Acronyms

The following acronyms are used throughout this document:

Section Header Block

Interface Description Block

¶

¶

¶

¶

¶

¶

¶

¶

¶

ISB:

EPB:

SPB:

NRB:

CB:

Interface Statistics Block

Enhanced Packet Block

Simple Packet Block

Name Resolution Block

Custom Block

3. General File Structure

3.1. General Block Structure

A capture file is organized in blocks, that are appended one to

another to form the file. All the blocks share a common format,

which is shown in Figure 1.

Figure 1: Basic block structure.

The fields have the following meaning:

Block Type (32 bits): a unique unsigned value that identifies the

block. Values whose Most Significant Bit (MSB) is equal to 1 are

reserved for local use. They can be used to make extensions to

the file format to save private data to the file. The list of

currently defined types can be found in Section 10.1.

Block Total Length (32 bits): an unsigned value giving the total

size of this block, in octets. For instance, the length of a

block that does not have a body is 12 octets: 4 octets for the

Block Type, 4 octets for the initial Block Total Length and 4

octets for the trailing Block Total Length. This value MUST be a

multiple of 4.

¶

¶

¶

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type |

 +-+

 4 | Block Total Length |

 +-+

 8 / Block Body /

 / variable length, padded to 32 bits /

 +-+

 | Block Total Length |

 +-+

¶

*

¶

*

¶

Block Body: content of the block.

Block Total Length: total size of this block, in octets. This

field is duplicated to permit backward file navigation.

This structure, shared among all blocks, makes it easy to process a

file and to skip unneeded or unknown blocks. Some blocks can contain

other blocks inside (nested blocks). Some of the blocks are

mandatory, i.e. a capture file is not valid if they are not present,

other are optional.

The General Block Structure allows defining other blocks if needed.

A parser that does not understand them can simply ignore their

content.

3.2. Block Types

The currently standardized Block Type codes are specified in Section

10.1; they have been grouped in the following four categories:

The following MANDATORY block MUST appear at least once in each

file:

Section Header Block (Section 4.1): it defines the most important

characteristics of the capture file.

The following OPTIONAL blocks MAY appear in a file:

Interface Description Block (Section 4.2): it defines the most

important characteristics of the interface(s) used for capturing

traffic. This block is required in certain cases, as described

later.

Enhanced Packet Block (Section 4.3): it contains a single

captured packet, or a portion of it. It represents an evolution

of the original, now obsolete, Packet Block (Appendix A). If this

appears in a file, an Interface Description Block is also

required, before this block.

Simple Packet Block (Section 4.4): it contains a single captured

packet, or a portion of it, with only a minimal set of

information about it. If this appears in a file, an Interface

Description Block is also required, before this block.

Name Resolution Block (Section 4.5): it defines the mapping from

numeric addresses present in the packet capture and the canonical

name counterpart.

Interface Statistics Block (Section 4.6): it defines how to store

some statistical data (e.g. packet dropped, etc) which can be

* ¶

*

¶

¶

¶

¶

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

useful to understand the conditions in which the capture has been

made. If this appears in a file, an Interface Description Block

is also required, before this block.

Custom Block (Section 4.8): it contains vendor-specific data in a

portable fashion.

The following OBSOLETE block SHOULD NOT appear in newly written

files (but is documented in the Appendix for reference):

Packet Block (Appendix A): it contains a single captured packet,

or a portion of it. It is OBSOLETE, and superseded by the

Enhanced Packet Block (Section 4.3).

The following EXPERIMENTAL blocks are considered interesting but the

authors believe that they deserve more in-depth discussion before

being defined:

Alternative Packet Blocks

Compression Block

Encryption Block

Fixed Length Block

Directory Block

Traffic Statistics and Monitoring Blocks

Event/Security Blocks

Requests for new standardized Block Type codes should be made by

creating a pull request to update this document as described in

Section 10.1.

3.3. Logical Block Hierarchy

The blocks build a logical hierarchy as they refer to each other.

Figure 2 shows the logical hierarchy of the currently defined blocks

in the form of a "tree view":

¶

*

¶

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

Figure 2: Logical Block Hierarchy of a pcapng File

For example: each captured packet refers to a specific capture

interface, the interface itself refers to a specific section.

3.4. Physical File Layout

The file MUST begin with a Section Header Block. However, more than

one Section Header Block can be present in the capture file, each

one covering the data following it until the next one (or the end of

file). A Section includes the data delimited by two Section Header

Blocks (or by a Section Header Block and the end of the file),

including the first Section Header Block.

In case an application cannot read a Section because of different

version number, it MUST skip everything until the next Section

Header Block. Note that, in order to properly skip the blocks until

the next section, all blocks MUST have the fields Type and Length at

the beginning. In order to properly skip blocks in the backward

direction, all blocks MUST have the Length repeated at the end of

the block. These are mandatory requirements that MUST be maintained

in future versions of the block format.

Figure 3 shows a typical file layout, with a single Section Header

that covers the whole file.

Figure 3: File structure example: Typical layout with a single Section

Header Block

Figure 4 shows a file that contains three headers, and is normally

the result of file concatenation. An application that understands

only version 1.0 of the file format skips the intermediate section

and restart processing the packets after the third Section Header.

Section Header

|

+- Interface Description

| +- Simple Packet

| +- Enhanced Packet

| +- Interface Statistics

|

+- Name Resolution

¶

¶

¶

¶

+-+

| SHB v1.0 | Data |

+-+

¶

Figure 4: File structure example: three Section Header Blocks in a

single file

Figure 5 shows a file comparable to a "classic libpcap" file - the

minimum for a useful capture file. It contains a single Section

Header Block (SHB), a single Interface Description Block (IDB) and a

few Enhanced Packet Blocks (EPB).

Figure 5: File structure example: a pcapng file similar to a classical

libpcap file

Figure 6 shows a complex example file. In addition to the minimum

file above, it contains packets captured from three interfaces,

capturing on the third of which begins after packets have arrived on

other interfaces, and also includes some Name Resolution Blocks

(NRB) and an Interface Statistics Block (ISB).

Figure 6: File structure example: complex pcapng file

The last example should make it obvious that the block structure

makes the file format very flexible compared to the classical

libpcap format.

3.5. Options

All the block bodies MAY embed optional fields. Optional fields can

be used to insert some information that may be useful when reading

data, but that is not really needed for packet processing.

Therefore, each tool can either read the content of the optional

fields (if any), or skip some of them or even all at once.

A block that may contain options must be structured so that the

number of octets of data in the Block Body that precede the options

can be determined from that data; that allows the beginning of the

|-- 1st Section --|-- 2nd Section --|-- 3rd Section --|

| |

+-+

| SHB v1.0 | Data | SHB V1.1 | Data | SHB V1.0 | Data |

+-+

¶

+-+

| SHB | IDB | EPB | EPB | ... | EPB |

+-+

¶

+-+

| SHB | IDB | IDB | EPB | NRB |...| IDB | EPB | ISB | NRB | EPB |

+-+

¶

¶

options to be found. That is true for all standard blocks that

support options; for Custom Blocks that support options, the Custom

Data must be structured in such a fashion. This means that the Block

Length field (present in the General Block Structure, see Section

3.1) can be used to determine how many octets of optional fields, if

any, are present in the block. That number can be used to determine

whether the block has optional fields (if it is zero, there are no

optional fields), to check, when processing optional fields, whether

any optional fields remain, and to skip all the optional fields at

once.

Options are a list of Type - Length - Value fields, each one

containing a single value:

Option Type (16 bits): an unsigned value that contains the code

that specifies the type of the current TLV record. Option types

whose Most Significant Bit is equal to one are reserved for local

use; therefore, there is no guarantee that the code used is

unique among all capture files (generated by other applications),

and is most certainly not portable. For cross-platform globally

unique vendor-specific extensions, the Custom Option MUST be used

instead, as defined in Section 3.5.1).

Option Length (16 bits): an unsigned value that contains the

actual length of the following 'Option Value' field without the

padding octets.

Option Value (variable length): the value of the given option,

padded to a 32-bit boundary. The actual length of this field

(i.e. without the padding octets) is specified by the Option

Length field.

Requests for new standardized option codes for a given block should

be made by creating a pull request to update this document as

described in Section 10.1.

A given option may have a fixed length, in which case all instances

of that option have a length that is equal to the specified fixed

length, or a variable length, in which case the option has a minimum

length and all instances of that option must have a length equal to

or greater than the specified minimum length. The length of fixed-

length options, and the minimum length of variable-length options,

is specified in the description of the option; if the minimum length

of a variable-length option is not specified, a zero-length option

is valid. Software that reads these files SHOULD report options that

have an invalid length as errors; the software MAY stop processing

the file if it sees an option that has invalid length, or MAY ignore

the option and continue processing it. Software that writes these

files MUST NOT write files with options that have invalid lengths.

¶

¶

*

¶

*

¶

*

¶

¶

¶

If an option's value is a string, the value is not necessarily zero-

terminated. Software that reads these files MUST NOT assume that

strings are zero-terminated, and MUST treat a zero-value octet as a

string terminator.

Some options may be repeated several times; for example, a block can

have multiple comments, and an Interface Description Block can give

multiple IPv4 or IPv6 addresses for the interface if it has multiple

IPv4 or IPv6 addresses assigned to it. Other options may appear at

most once in a given block.

The option list is terminated by an option which uses the special

'End of Option' code (opt_endofopt). Code that writes pcapng files

MUST put an opt_endofopt option at the end of an option list. Code

that reads pcapng files MUST NOT assume an option list will have an

opt_endofopt option at the end; it MUST also check for the end of

the block, and SHOULD treat blocks where the option list has no

opt_endofopt option as if the option list had an opt_endofopt option

at the end.

The format of the optional fields is shown in Figure 7.

Figure 7: Options Format

The following codes can always be present in any optional field:

Name Code Length
Multiple

allowed?

opt_endofopt 0 0 no

opt_comment 1 variable yes

opt_custom 2988/2989/19372/19373
variable,

minimum 4
yes

¶

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Option Code | Option Length |

+-+

/ Option Value /

/ variable length, padded to 32 bits /

+-+

/ /

/ . . . other options . . . /

/ /

+-+

| Option Code == opt_endofopt | Option Length == 0 |

+-+

¶

opt_endofopt:

opt_comment:

opt_custom:

2988:

Table 1: Common Options

The opt_endofopt option delimits the end of the optional fields.

This option MUST NOT be repeated within a given list of options.

The opt_comment option is a UTF-8 string containing human-

readable comment text that is associated to the current block.

Line separators SHOULD be a carriage-return + linefeed ('\r\n')

or just linefeed ('\n'); either form may appear and be considered

a line separator. The string is not zero-terminated.

Examples: "This packet is the beginning of all of our problems",

"Packets 17-23 showing a bogus TCP retransmission!\r\n This is

reported in bugzilla entry 1486.\nIt will be fixed in the future.".

This option is described in detail in Section 3.5.1.

3.5.1. Custom Options

Customs Options are used for portable, vendor-specific data related

to the block they're in. A Custom Option can be in any block type

that can have options, can be repeated any number of times in a

block, and may come before or after other option types - except the

opt_endofopt option, which is always the last option. Different

Custom Options, of different type codes and/or different Private

Enterprise Numbers, may be used in the same pcapng file. See Section

5 for additional details.

Figure 8: Custom Options Format

The Custom Option has the following fields:

Custom Option Code: The code number for the Custom Option, which

can be one of the following decimal numbers:

¶

¶

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Custom Option Code | Option Length |

+-+

| Private Enterprise Number (PEN) |

+-+

/ Custom Data /

/ variable length, padded to 32 bits /

+-+

¶

*

¶

2989:

19372:

19373:

This option code identifies a Custom Option containing a UTF-8

string in the Custom Data portion. The string is not zero-

terminated. This Custom Option can be safely copied to a new

file if the pcapng file is manipulated by an application;

otherwise 19372 should be used instead. See Section 5.2 for

details.

This option code identifies a Custom Option containing binary

octets in the Custom Data portion. This Custom Option can be

safely copied to a new file if the pcapng file is manipulated

by an application; otherwise 19372 should be used instead. See

Section 5.2 for details.

This option code identifies a Custom Option containing a UTF-8

string in the Custom Data portion. The string is not zero-

terminated. This Custom Option should not be copied to a new

file if the pcapng file is manipulated by an application. See

Section 5.2 for details.

This option code identifies a Custom Option containing binary

octets in the Custom Data portion. This Custom Option should

not be copied to a new file if the pcapng file is manipulated

by an application. See Section 5.2 for details.

Option Length: as described in Section 3.1, this contains the

length of the option's value, which includes the 4-octet Private

Enterprise Number and variable-length Custom Data fields, without

the padding octets.

Private Enterprise Number: An IANA-assigned Private Enterprise

Number identifying the organization which defined the Custom

Option. See Section 5.1 for details. The PEN MUST be encoded

using the same endianness as the Section Header Block it is

within the scope of.

Custom Data: the custom data, padded to a 32 bit boundary.

3.6. Data format

3.6.1. Endianness

Data contained in each section will always be saved according to the

characteristics (little endian / big endian) of the capturing

machine. This refers to all the fields that are saved as numbers and

that span over two or more octets.

¶

¶

¶

¶

*

¶

*

¶

* ¶

¶

The approach of having each section saved in the native format of

the generating host is more efficient because it avoids translation

of data when reading / writing on the host itself, which is the most

common case when generating/processing capture captures.

Please note: The endianness is indicated by the Section Header Block

(Section 4.1). Since this block can appear several times in a pcapng

file, a single file can contain both endianness variants.

3.6.2. Alignment

All fields of this specification use proper alignment for 16- and

32-bit values. This makes it easier and faster to read/write file

contents if using techniques like memory mapped files.

The alignment octets (marked in this document e.g. with "padded to

32 bits") MUST be filled with zeroes.

Please note: 64-bit values are not aligned to 64-bit boundaries.

This is because the file is naturally aligned to 32-bit boundaries

only. Special care MUST be taken when reading and writing such

values. (Note also that some 64-bit values are represented as a 64-

bit integer in the endianness of the machine that wrote the file,

and others are represented as 2 32-bit values, one containing the

upper 32 bits of the value and one containing the lower 32 bits of

the value, each written as 32-bit integers in the endianness of the

machine that wrote the file. Neither of these formats guarantee 64-

bit alignment.)

4. Block Definition

This section details the format of the blocks currently defined.

4.1. Section Header Block

The Section Header Block (SHB) is mandatory. It identifies the

beginning of a section of the capture file. The Section Header Block

does not contain data but it rather identifies a list of blocks

(interfaces, packets) that are logically correlated. Its format is

shown in Figure 9.

¶

¶

¶

¶

¶

¶

¶

Figure 9: Section Header Block Format

The meaning of the fields is:

Block Type: The block type of the Section Header Block is the

integer corresponding to the 4-char string "\n\r\r\n"

(0x0A0D0D0A). This particular value is used for 2 reasons:

This number is used to detect if a file has been transferred

via FTP or HTTP from a machine to another with an

inappropriate ASCII conversion. In this case, the value of

this field will differ from the standard one ("\n\r\r\n")

and the reader can detect a possibly corrupted file.

This value is palindromic, so that the reader is able to

recognize the Section Header Block regardless of the

endianness of the section. The endianness is recognized by

reading the Byte Order Magic, which is located 8 octets

after the Block Type.

Block Total Length: total size of this block, as described in

Section 3.1.

Byte-Order Magic (32 bits): an unsigned magic number, whose value

is the hexadecimal number 0x1A2B3C4D. This number can be used to

distinguish sections that have been saved on little-endian

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type = 0x0A0D0D0A |

 +-+

 4 | Block Total Length |

 +-+

 8 | Byte-Order Magic |

 +-+

12 | Major Version | Minor Version |

 +-+

16 | |

 | Section Length |

 | |

 +-+

24 / /

 / Options (variable) /

 / /

 +-+

 | Block Total Length |

 +-+

¶

*

¶

1.

¶

2.

¶

*

¶

*

machines from the ones saved on big-endian machines, and to

heuristically identify pcapng files.

Major Version (16 bits): an unsigned value, giving the number of

the current major version of the format. The value for the

current version of the format is 1.

Minor Version (16 bits): an unsigned value, giving the number of

the current minor version of the format. The value for the

current version of the format is 0.

Section Length (64 bits): a signed value specifying the length in

octets of the following section, excluding the Section Header

Block itself. This field can be used to skip the section, for

faster navigation inside large files. If the Section Length is -1

(0xFFFFFFFFFFFFFFFF), this means that the size of the section is

not specified, and the only way to skip the section is to parse

the blocks that it contains. Please note that if this field is

valid (i.e. not negative), its value is always a multiple of 4,

as all the blocks are aligned to and padded to 32-bit (4 octet)

boundaries. Also, special care should be taken in accessing this

field: since the alignment of all the blocks in the file is 32-

bits, this field is not guaranteed to be aligned to a 64-bit

boundary. This could be a problem on 64-bit processors.

Options: optionally, a list of options (formatted according to

the rules defined in Section 3.5) can be present.

Writers of pcapng files MUST NOT write SHBs with a Major Version

other than 1 or a Minor Version other than 0. If they do so, they

will write a file that many readers of pcapng files, such as

programs using libpcap to read pcapng files (including, but not

limited to, tcpdump), Wireshark, and possibly other programs not to

be able to read their files.

Some pcapng file writers have used a minor version of 2, but the

file format did not change incompatibly (new block types were

added); Readers of pcapng files MUST treat a Minor Version of 2 as

equivalent to a Minor Version of 0 (and, if they also write a pcapng

file based on the results of reading one or more pcapng files, they

MUST NOT, as per the previous sentence, write an SHB with a Minor

Version of 2, even if they read an SHB with a Minor Version of 2).

As indicated above, using a minor version number other than 0 when

writing a section of a pcapng file will produce a section that most

existing software will not be able to read; future versions of some

of that software will be able to read sections with a version of

1.2, but older copies of that software that are not updated to the

latest version will still not be able to read them.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

The Major Version would be changed only if a new version of this

specification, for a later major version of the file format, were

created. Such a version would only be created if the format were to

change in such a way that code that reads the new format could not

read the old format (i.e., code to read both formats would have to

check the version number and use different code paths for the two

formats) and code that reads the old format could not read the new

format. An incompatible change to the format of an existing block or

an existing option would be such a change; the addition of a new

block or a new option would not be such a change. An example of such

an incompatible change would be the addition of an additional field

to the Section Header Block, following the Minor Version field and

before the Snaplen field; software expecting the new SHB format

would not correctly read the old SHB format, and software expecting

the old SHB format would not correctly read the new SHB format.

(Note that a change to the SHB must leave the Block Type, Block

Total Length, Byte-Order Magic, Major Version, and Minor Version

fields at the same offsets from the beginning of the SHB and with

the same lengths, must keep the value of the Block Type the same,

must keep the two possible values of the Byte-Order Magic the same,

depending on the block's byte order, so that the rest of the SHB can

be correctly interpreted.)

The Minor Version would be changed only if a new version of this

specification, for a later minor version of the file format, were

created. Such a version would only be created if the format were to

change in such a way that code that reads the new format could read

the old format without checking the version number but code that

reads the old format could not read all files in the new format. A

backward-compatible change to the format of an existing block or an

existing option would be such a change; the addition of a new block

or a new option would not be such a change. An example of such a

backward-compatible but not forward-compatible change would be a

change to the Interface Description block (see below) to use the

current Reserved field to indicate the presence of additional fields

before the Options, with a zero value indicate no such fields are

present.

I.e., adding new block types or options would not require that

either the Major Version or the Minor Version be changed, as code

that does not know about the block type or option should just skip

it; only if skipping a block or option does not work should the

minor version number be changed.

Aside from the options defined in Section 3.5, the following options

are valid within this block:

¶

¶

¶

¶

shb_hardware:

shb_os:

shb_userappl:

Name Code Length Multiple allowed?

shb_hardware 2 variable no

shb_os 3 variable no

shb_userappl 4 variable no

Table 2: Section Header Block Options

The shb_hardware option is a UTF-8 string containing the

description of the hardware used to create this section. The

string is not zero-terminated.

Examples: "x86 Personal Computer", "Sun Sparc Workstation".

The shb_os option is a UTF-8 string containing the name of the

operating system used to create this section. The string is not

zero-terminated.

Examples: "Windows XP SP2", "openSUSE 10.2".

The shb_userappl option is a UTF-8 string containing the name of

the application used to create this section. The string is not

zero-terminated.

Examples: "dumpcap V0.99.7".

[Open issue: does a program which re-writes a capture file change

the original hardware/os/application info?]

4.2. Interface Description Block

An Interface Description Block (IDB) is the container for

information describing an interface on which packet data is

captured.

Tools that write / read the capture file associate an incrementing

unsigned 32-bit number (starting from '0') to each Interface

Definition Block, called the Interface ID for the interface in

question. This number is unique within each Section and identifies

the interface to which the IDB refers; it is only unique inside the

current section, so, two Sections can have different interfaces

identified by the same Interface ID values. This unique identifier

is referenced by other blocks, such as Enhanced Packet Blocks and

Interface Statistic Blocks, to indicate the interface to which the

block refers (such the interface that was used to capture the packet

that an Enhanced Packet Block contains or to which the statistics in

an Interface Statistic Block refer).

¶

¶

¶

¶

¶

¶

¶

¶

¶

Within a section, there must be an Interface Description Block for

each interface to which another block within that section refers.

Blocks such as an Enhanced Packet Block or an Interface Statistics

Block contain an Interface ID value referring to a particular

interface, and a Simple Packet Block implicitly refers to an

interface with an Interface ID of 0. If the file does not contain

any blocks that use an Interface ID, then the file does not need to

have any IDBs.

There is no requirement that all Interface Description Blocks occur

within a section before all blocks of other types, as long as the

Interface Description Block for an interface occurs before any block

that refers to that interface.

An Interface Description Block is valid only inside the section to

which it belongs. The structure of an Interface Description Block is

shown in Figure 10.

Figure 10: Interface Description Block Format

The meaning of the fields is:

Block Type: The block type of the Interface Description Block is

1.

Block Total Length: total size of this block, as described in

Section 3.1.

LinkType (16 bits): an unsigned value that defines the link layer

type of this interface. The list of Standardized Link Layer Type

codes is available in [I-D.richardson-opsawg-pcaplinktype].

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type = 0x00000001 |

 +-+

 4 | Block Total Length |

 +-+

 8 | LinkType | Reserved |

 +-+

12 | SnapLen |

 +-+

16 / /

 / Options (variable) /

 / /

 +-+

 | Block Total Length |

 +-+

¶

*

¶

*

¶

*

¶

if_name:

if_description:

if_IPv4addr:

Reserved (16 bits): not used - MUST be filled with 0 by pcapng

file writers, and MUST be ignored by pcapng file readers.

SnapLen (32 bits): an unsigned value indicating the maximum

number of octets captured from each packet. The portion of each

packet that exceeds this value will not be stored in the file. A

value of zero indicates no limit.

Options: optionally, a list of options (formatted according to

the rules defined in Section 3.5) can be present.

In addition to the options defined in Section 3.5, the following

options are valid within this block:

Name Code Length Multiple allowed?

if_name 2 variable no

if_description 3 variable no

if_IPv4addr 4 8 yes

if_IPv6addr 5 17 yes

if_MACaddr 6 6 no

if_EUIaddr 7 8 no

if_speed 8 8 no

if_tsresol 9 1 no

if_tzone 10 4 no

if_filter 11 variable, minimum 1 no

if_os 12 variable no

if_fcslen 13 1 no

if_tsoffset 14 8 no

if_hardware 15 variable no

if_txspeed 16 8 no

if_rxspeed 17 8 no

Table 3: Interface Description Block Options

The if_name option is a UTF-8 string containing the name of the

device used to capture data. The string is not zero-terminated.

Examples: "eth0", "\Device\NPF_{AD1CE675-96D0-47C5-

ADD0-2504B9126B68}".

The if_description option is a UTF-8 string containing the

description of the device used to capture data. The string is not

zero-terminated.

Examples: "Wi-Fi", "Local Area Connection", "Wireless Network

Connection", "First Ethernet Interface".

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

if_IPv6addr:

if_MACaddr:

if_EUIaddr:

if_speed:

if_tsresol:

The if_IPv4addr option is an IPv4 network address and

corresponding netmask for the interface. The first four octets

are the IP address, and the next four octets are the netmask.

This option can be repeated multiple times within the same

Interface Description Block when multiple IPv4 addresses are

assigned to the interface. Note that the IP address and netmask

are both treated as four octets, one for each octet of the

address or mask; they are not 32-bit numbers, and thus the

endianness of the SHB does not affect this field's value.

Examples: '192 168 1 1 255 255 255 0'.

The if_IPv6addr option is an IPv6 network address and

corresponding prefix length for the interface. The first 16

octets are the IP address and the next octet is the prefix

length. This option can be repeated multiple times within the

same Interface Description Block when multiple IPv6 addresses are

assigned to the interface.

Example: 2001:0db8:85a3:08d3:1319:8a2e:0370:7344/64 is written (in

hex) as '20 01 0d b8 85 a3 08 d3 13 19 8a 2e 03 70 73 44 40'.

The if_MACaddr option is the Interface Hardware MAC address (48

bits), if available.

Example: '00 01 02 03 04 05'.

The if_EUIaddr option is the Interface Hardware EUI address (64

bits), if available.

Example: '02 34 56 FF FE 78 9A BC'.

The if_speed option is a 64-bit unsigned value indicating the

interface speed, in bits per second.

Example: the 64-bit decimal number 100000000 for 100Mbps.

The if_tsresol option identifies the resolution of timestamps. If

the Most Significant Bit is equal to zero, the remaining bits

indicates the resolution of the timestamp as a negative power of

10 (e.g. 6 means microsecond resolution, timestamps are the

number of microseconds since 1970-01-01 00:00:00 UTC). If the

Most Significant Bit is equal to one, the remaining bits

indicates the resolution as negative power of 2 (e.g. 10 means

1/1024 of second). If this option is not present, a resolution of

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

if_tzone:

if_filter:

if_os:

if_fcslen:

if_tsoffset:

10^-6 is assumed (i.e. timestamps have the same resolution of the

standard 'libpcap' timestamps).

Example: '6'.

The if_tzone option identifies the time zone for GMT support

(TODO: specify better).

Example: TODO: give a good example.

The if_filter option identifies the filter (e.g. "capture only

TCP traffic") used to capture traffic. The first octet of the

Option Data keeps a code of the filter used (e.g. if this is a

libpcap string, or BPF bytecode, and more). More details about

this format will be presented in Appendix XXX (TODO). (TODO:

better use different options for different fields? e.g.

if_filter_pcap, if_filter_bpf, ...)

Example: '00'"tcp port 23 and host 192.0.2.5".

The if_os option is a UTF-8 string containing the name of the

operating system of the machine in which this interface is

installed. This can be different from the same information that

can be contained by the Section Header Block (Section 4.1)

because the capture can have been done on a remote machine. The

string is not zero-terminated.

Examples: "Windows XP SP2", "openSUSE 10.2".

The if_fcslen option is an 8-bit unsigned integer value that

specifies the length of the Frame Check Sequence (in bits) for

this interface. For link layers whose FCS length can change

during time, the Enhanced Packet Block epb_flags Option can be

used in each Enhanced Packet Block (see Section 4.3.1).

Example: '4'.

The if_tsoffset option is a 64-bit signed integer value that

specifies an offset (in seconds) that must be added to the

timestamp of each packet to obtain the absolute timestamp of a

packet. If the option is missing, the timestamps stored in the

packet MUST be considered absolute timestamps. The time zone of

the offset can be specified with the option if_tzone. TODO: won't

a if_tsoffset_low for fractional second offsets be useful for

highly synchronized capture systems?

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

if_hardware:

if_txspeed:

if_rxspeed:

Example: '1234'.

The if_hardware option is a UTF-8 string containing the

description of the interface hardware. The string is not zero-

terminated.

Examples: "Broadcom NetXtreme", "Intel(R) PRO/1000 MT Network

Connection", "NETGEAR WNA1000Mv2 N150 Wireless USB Micro Adapter".

The if_txrxspeeds option is a 64-bit unsigned value indicating

the interface transmit speed in bits per second.

Example: the 64-bit decimal number 1024000 for 1024Kbps.

The if_rxspeed option is a 64-bit unsigned value indicating the

interface receive speed, in bits per second.

Example: the 64-bit decimal number 8192000 for 8192Kbps.

If the interface transmit speed and receive speed are the same, the

if_speed option MUST be used and the if_txspeed and if_rxspeed

options MUST NOT be used. If the transmit speed is unknown, the

if_speed and if_txspeed options MUST NOT be used; if the receive

speed is unknown, the if_speed and if_rxspeed options MUST NOT be

used.

4.3. Enhanced Packet Block

An Enhanced Packet Block (EPB) is the standard container for storing

the packets coming from the network. The Enhanced Packet Block is

optional because packets can be stored either by means of this block

or the Simple Packet Block, which can be used to speed up capture

file generation; or a file may have no packets in it. The format of

an Enhanced Packet Block is shown in Figure 11.

The Enhanced Packet Block is an improvement over the original, now

obsolete, Packet Block (Appendix A):

it stores the Interface Identifier as a 32-bit integer value.

This is a requirement when a capture stores packets coming from a

large number of interfaces;

unlike the Packet Block (Appendix A), the number of packets

dropped by the capture system between this packet and the

previous one is not stored in the header, but rather in an option

of the block itself.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Figure 11: Enhanced Packet Block Format

The Enhanced Packet Block has the following fields:

Block Type: The block type of the Enhanced Packet Block is 6.

Block Total Length: total size of this block, as described in

Section 3.1.

Interface ID (32 bits): an unsigned value that specifies the

interface on which this packet was received or transmitted; the

correct interface will be the one whose Interface Description

Block (within the current Section of the file) is identified by

the same number (see Section 4.2) of this field. The interface ID

MUST be valid, which means that an matching interface description

block MUST exist.

Timestamp (High) and Timestamp (Low): upper 32 bits and lower 32

bits of a 64-bit timestamp. The timestamp is a single 64-bit

unsigned integer that represents the number of units of time that

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type = 0x00000006 |

 +-+

 4 | Block Total Length |

 +-+

 8 | Interface ID |

 +-+

12 | Timestamp (High) |

 +-+

16 | Timestamp (Low) |

 +-+

20 | Captured Packet Length |

 +-+

24 | Original Packet Length |

 +-+

28 / /

 / Packet Data /

 / variable length, padded to 32 bits /

 / /

 +-+

 / /

 / Options (variable) /

 / /

 +-+

 | Block Total Length |

 +-+

¶

* ¶

*

¶

*

¶

*

have elapsed since 1970-01-01 00:00:00 UTC. The length of a unit

of time is specified by the 'if_tsresol' option (see Figure 10)

of the Interface Description Block referenced by this packet.

Note that, unlike timestamps in the libpcap file format,

timestamps in Enhanced Packet Blocks are not saved as two 32-bit

values that represent the seconds and microseconds that have

elapsed since 1970-01-01 00:00:00 UTC. Timestamps in Enhanced

Packet Blocks are saved as two 32-bit words that represent the

upper and lower 32 bits of a single 64-bit quantity.

Captured Packet Length (32 bits): an unsigned value that

indicates the number of octets captured from the packet (i.e. the

length of the Packet Data field). It will be the minimum value

among the Original Packet Length and the snapshot length for the

interface (SnapLen, defined in Figure 10). The value of this

field does not include the padding octets added at the end of the

Packet Data field to align the Packet Data field to a 32-bit

boundary.

Original Packet Length (32 bits): an unsigned value that

indicates the actual length of the packet when it was transmitted

on the network. It can be different from the Captured Packet

Length if the packet has been truncated by the capture process.

Packet Data: the data coming from the network, including link-

layer headers. The actual length of this field is Captured Packet

Length plus the padding to a 32-bit boundary. The format of the

link-layer headers depends on the LinkType field specified in the

Interface Description Block (see Section 4.2) and it is specified

in the entry for that format in [I-D.richardson-opsawg-

pcaplinktype].

Options: optionally, a list of options (formatted according to

the rules defined in Section 3.5) can be present.

In addition to the options defined in Section 3.5, the following

options are valid within this block:

Name Code Length
Multiple

allowed?

epb_flags 2 4 no

epb_hash 3
variable, minimum hash type-

dependent
yes

epb_dropcount 4 8 no

epb_packetid 5 8 no

epb_queue 6 4 no

epb_verdict 7
variable, minimum verdict type-

dependent
yes

¶

*

¶

*

¶

*

¶

*

¶

¶

epb_flags:

epb_hash:

epb_dropcount:

epb_packetid:

Table 4: Enhanced Packet Block Options

The epb_flags option is a 32-bit flags word containing link-layer

information. A complete specification of the allowed flags can be

found in Section 4.3.1.

Example: '0'.

The epb_hash option contains a hash of the packet. The first

octet specifies the hashing algorithm, while the following octets

contain the actual hash, whose size depends on the hashing

algorithm, and hence from the value in the first octet. The

hashing algorithm can be: 2s complement (algorithm octet = 0,

size = XXX), XOR (algorithm octet = 1, size=XXX), CRC32

(algorithm octet = 2, size = 4), MD-5 (algorithm octet = 3, size

= 16), SHA-1 (algorithm octet = 4, size = 20), Toeplitz

(algorithm octet = 5, size = 4). The hash covers only the packet,

not the header added by the capture driver: this gives the

possibility to calculate it inside the network card. The hash

allows easier comparison/merging of different capture files, and

reliable data transfer between the data acquisition system and

the capture library.

Examples: '02 EC 1D 87 97', '03 45 6E C2 17 7C 10 1E 3C 2E 99 6E C2

9A 3D 50 8E'.

The epb_dropcount option is a 64-bit unsigned integer value

specifying the number of packets lost (by the interface and the

operating system) between this packet and the preceding one for

the same interface or, for the first packet for an interface,

between this packet and the start of the capture process.

Example: '0'.

The epb_packetid option is a 64-bit unsigned integer that

uniquely identifies the packet. If the same packet is seen by

multiple interfaces and there is a way for the capture

application to correlate them, the same epb_packetid value must

be used. An example could be a router that captures packets on

all its interfaces in both directions. When a packet hits

interface A on ingress, an EPB entry gets created, TTL gets

decremented, and right before it egresses on interface B another

EPB entry gets created in the trace file. In this case, two

packets are in the capture file, which are not identical but the

epb_packetid can be used to correlate them.

¶

¶

¶

¶

¶

¶

¶

epb_queue:

epb_verdict:

Example: '0'.

The epb_queue option is a 32-bit unsigned integer that identifies

on which queue of the interface the specific packet was received.

Example: '0'.

The epb_verdict option stores a verdict of the packet. The

verdict indicates what would be done with the packet after

processing it. For example, a firewall could drop the packet.

This verdict can be set by various components, i.e. Hardware,

Linux's eBPF TC or XDP framework, etc. etc. The first octet

specifies the verdict type, while the following octets contain

the actual verdict data, whose size depends on the verdict type,

and hence from the value in the first octet. The verdict type can

be: Hardware (type octet = 0, size = variable), Linux_eBPF_TC

(type octet = 1, size = 8 (64-bit unsigned integer), value =

TC_ACT_* as defined in the Linux pck_cls.h include),

Linux_eBPF_XDP (type octet = 2, size = 8 (64-bit unsigned

integer), value = xdp_action as defined in the Linux pbf.h

include).

Example: '02 00 00 00 00 00 00 00 02' for Linux_eBPF_XDP with

verdict XDP_PASS.

4.3.1. Enhanced Packet Block Flags Word

The Enhanced Packet Block Flags Word is a 32-bit value that contains

link-layer information about the packet.

The word is encoded as an unsigned 32-bit integer, using the

endianness of the Section Header Block scope it is in. In the

following table, the bits are numbered with 0 being the least-

significant bit and 31 being the most-significant bit of the 32-bit

unsigned integer. The meaning of the bits is the following:

Bit

Number
Description

0-1
Inbound / Outbound packet (00 = information not available,

01 = inbound, 10 = outbound)

2-4
Reception type (000 = not specified, 001 = unicast, 010 =

multicast, 011 = broadcast, 100 = promiscuous).

5-8

FCS length, in octets (0000 if this information is not

available). This value overrides the if_fcslen option of the

Interface Description Block, and is used with those link

layers (e.g. PPP) where the length of the FCS can change

during time.

¶

¶

¶

¶

¶

¶

¶

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/pkt_cls.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/bpf.h

Bit

Number
Description

9-15 Reserved (MUST be set to zero).

16-31

link-layer-dependent errors (Bit 31 = symbol error, Bit 30 =

preamble error, Bit 29 = Start Frame Delimiter error, Bit 28

= unaligned frame error, Bit 27 = wrong Inter Frame Gap

error, Bit 26 = packet too short error, Bit 25 = packet too

long error, Bit 24 = CRC error, other?? are 16 bit enough?).

Table 5

NOTE: in earlier versions of this specification, the bits were

specified as being numbered with 0 being the most-significant bit

and 31 being the least-significant bit of the 32-bit unsigned

integer, rather than with 0 being the least-significant bit and 31

being the most-significant bit. Several implementations number the

bits with 0 being the least-significant bit, and no known

implementations number them with 0 being the most-significant bit,

so the specification was changed to reflect that reality.

4.4. Simple Packet Block

The Simple Packet Block (SPB) is a lightweight container for storing

the packets coming from the network. Its presence is optional.

A Simple Packet Block is similar to an Enhanced Packet Block (see

Section 4.3), but it is smaller, simpler to process and contains

only a minimal set of information. This block is preferred to the

standard Enhanced Packet Block when performance or space occupation

are critical factors, such as in sustained traffic capture

applications. A capture file can contain both Enhanced Packet Blocks

and Simple Packet Blocks: for example, a capture tool could switch

from Enhanced Packet Blocks to Simple Packet Blocks when the

hardware resources become critical.

The Simple Packet Block does not contain the Interface ID field.

Therefore, it MUST be assumed that all the Simple Packet Blocks have

been captured on the interface previously specified in the first

Interface Description Block.

Figure 12 shows the format of the Simple Packet Block.

¶

¶

¶

¶

¶

Figure 12: Simple Packet Block Format

The Simple Packet Block has the following fields:

Block Type: The block type of the Simple Packet Block is 3.

Block Total Length: total size of this block, as described in

Section 3.1.

Original Packet Length (32 bits): an unsigned value indicating

the actual length of the packet when it was transmitted on the

network. It can be different from length of the Packet Data

field's length if the packet has been truncated by the capture

process, in which case the SnapLen value in Section 4.2 will be

less than this Original Packet Length value, and the SnapLen

value MUST be used to determine the size of the Packet Data field

length.

Packet Data: the data coming from the network, including link-

layer headers. The length of this field can be derived from the

field Block Total Length, present in the Block Header, and it is

the minimum value among the SnapLen (present in the Interface

Description Block) and the Original Packet Length (present in

this header). The format of the data within this Packet Data

field depends on the LinkType field specified in the Interface

Description Block (see Section 4.2) and it is specified in the

entry for that format in [I-D.richardson-opsawg-pcaplinktype].

The Simple Packet Block does not contain the timestamp because this

is often one of the most costly operations on PCs. Additionally,

there are applications that do not require it; e.g. an Intrusion

Detection System is interested in packets, not in their timestamp.

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type = 0x00000003 |

 +-+

 4 | Block Total Length |

 +-+

 8 | Original Packet Length |

 +-+

12 / /

 / Packet Data /

 / variable length, padded to 32 bits /

 / /

 +-+

 | Block Total Length |

 +-+

¶

* ¶

*

¶

*

¶

*

¶

¶

A Simple Packet Block cannot be present in a Section that has more

than one interface because of the impossibility to refer to the

correct one (it does not contain any Interface ID field).

The Simple Packet Block is very efficient in term of disk space: a

snapshot whose length is 100 octets requires only 16 octets of

overhead, which corresponds to an efficiency of more than 86%.

4.5. Name Resolution Block

The Name Resolution Block (NRB) is used to support the correlation

of numeric addresses (present in the captured packets) and their

corresponding canonical names and it is optional. Having the literal

names saved in the file prevents the need for performing name

resolution at a later time, when the association between names and

addresses may be different from the one in use at capture time.

Moreover, the NRB avoids the need for issuing a lot of DNS requests

every time the trace capture is opened, and also provides name

resolution when reading the capture with a machine not connected to

the network.

A Name Resolution Block is often placed at the beginning of the

file, but no assumptions can be taken about its position. Multiple

NRBs can exist in a pcapng file, either due to memory constraints or

because additional name resolutions were performed by file

processing tools, like network analyzers.

A Name Resolution Block need not contain any Records, except the

nrb_record_end Record which MUST be the last Record. The addresses

and names in NRB Records MAY be repeated multiple times; i.e., the

same IP address may resolve to multiple names, the same name may

resolve to the multiple IP addresses, and even the same address-to-

name pair may appear multiple times, in the same NRB or across NRBs.

The format of the Name Resolution Block is shown in Figure 13.

¶

¶

¶

¶

¶

¶

nrb_record_end:

Figure 13: Name Resolution Block Format

The Name Resolution Block has the following fields:

Block Type: The block type of the Name Resolution Block is 4.

Block Total Length: total size of this block, as described in

Section 3.1.

This is followed by zero or more Name Resolution Records (in the TLV

format), each of which contains an association between a network

address and a name. An nrb_record_end MUST be added after the last

Record, and MUST exist even if there are no other Records in the

NRB. There are currently three possible types of records:

Name Code Length

nrb_record_end 0x0000 0

nrb_record_ipv4 0x0001 variable

nrb_record_ipv6 0x0002 variable

Table 6: Name Resolution Block

Records

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type = 0x00000004 |

 +-+

 4 | Block Total Length |

 +-+

 8 | Record Type | Record Value Length |

 +-+

12 / Record Value /

 / variable length, padded to 32 bits /

 +-+

 . .

 other records

 . .

 +-+

 | Record Type = nrb_record_end | Record Value Length = 0 |

 +-+

 / /

 / Options (variable) /

 / /

 +-+

 | Block Total Length |

 +-+

¶

* ¶

*

¶

¶

nrb_record_ipv4:

nrb_record_ipv6:

The nrb_record_end record delimits the end of name resolution

records. This record is needed to determine when the list of name

resolution records has ended and some options (if any) begin.

The nrb_record_ipv4 record specifies an IPv4 address (contained

in the first 4 octets), followed by one or more zero-terminated

UTF-8 strings containing the DNS entries for that address. The

minimum valid Record Length for this Record Type is thus 6: 4 for

the IP octets, 1 character, and a zero-value octet terminator.

Note that the IP address is treated as four octets, one for each

octet of the IP address; it is not a 32-bit word, and thus the

endianness of the SHB does not affect this field's value.

Example: '127 0 0 1'"localhost".

[Open issue: is an empty string (i.e., just a zero-value octet)

valid?]

The nrb_record_ipv6 record specifies an IPv6 address (contained

in the first 16 octets), followed by one or more zero-terminated

strings containing the DNS entries for that address. The minimum

valid Record Length for this Record Type is thus 18: 16 for the

IP octets, 1 character, and a zero-value octet terminator.

Example: '20 01 0d b8 00 00 00 00 00 00 00 00 12 34 56

78'"somehost".

[Open issue: is an empty string (i.e., just a zero-value octet)

valid?]

Record Types other than those specified earlier MUST be ignored and

skipped past. More Record Types will likely be defined in the

future, and MUST NOT break backwards compatibility.

Each Record Value is aligned to and padded to a 32-bit boundary. The

corresponding Record Value Length reflects the actual length of the

Record Value; it does not include the lengths of the Record Type

field, the Record Value Length field, any padding for the Record

Value, or anything after the Record Value. For Record Types with

name strings, the Record Length does include the zero-value octet

terminating that string. A Record Length of 0 is valid, unless

indicated otherwise.

After the list of Name Resolution Records, optionally, a list of

options (formatted according to the rules defined in Section 3.5)

can be present.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

ns_dnsname:

ns_dnsIP4addr:

ns_dnsIP6addr:

In addition to the options defined in Section 3.5, the following

options are valid within this block:

Name Code Length Multiple allowed?

ns_dnsname 2 variable no

ns_dnsIP4addr 3 4 no

ns_dnsIP6addr 4 16 no

Table 7: Name Resolution Block Options

The ns_dnsname option is a UTF-8 string containing the name of

the machine (DNS server) used to perform the name resolution. The

string is not zero-terminated.

Example: "our_nameserver".

The ns_dnsIP4addr option specifies the IPv4 address of the DNS

server. Note that the IP address is treated as four octets, one

for each octet of the IP address; it is not a 32-bit word, and

thus the endianness of the SHB does not affect this field's

value.

Example: '192 168 0 1'.

The ns_dnsIP6addr option specifies the IPv6 address of the DNS

server.

Example: '20 01 0d b8 00 00 00 00 00 00 00 00 12 34 56 78'.

4.6. Interface Statistics Block

The Interface Statistics Block (ISB) contains the capture statistics

for a given interface and it is optional. The statistics are

referred to the interface defined in the current Section identified

by the Interface ID field. An Interface Statistics Block is normally

placed at the end of the file, but no assumptions can be taken about

its position - it can even appear multiple times for the same

interface.

The format of the Interface Statistics Block is shown in Figure 14.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 14: Interface Statistics Block Format

The fields have the following meaning:

Block Type: The block type of the Interface Statistics Block is

5.

Block Total Length: total size of this block, as described in

Section 3.1.

Interface ID: specifies the interface these statistics refers to;

the correct interface will be the one whose Interface Description

Block (within the current Section of the file) is identified by

same number (see Section 4.2) of this field.

Timestamp: time this statistics refers to. The format of the

timestamp is the same already defined in the Enhanced Packet

Block (Section 4.3); the length of a unit of time is specified by

the 'if_tsresol' option (see Figure 10) of the Interface

Description Block referenced by this packet.

Options: optionally, a list of options (formatted according to

the rules defined in Section 3.5) can be present.

All the statistic fields are defined as options in order to deal

with systems that do not have a complete set of statistics.

Therefore, In addition to the options defined in Section 3.5, the

following options are valid within this block:

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type = 0x00000005 |

 +-+

 4 | Block Total Length |

 +-+

 8 | Interface ID |

 +-+

12 | Timestamp (High) |

 +-+

16 | Timestamp (Low) |

 +-+

20 / /

 / Options (variable) /

 / /

 +-+

 | Block Total Length |

 +-+

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

isb_starttime:

isb_endtime:

isb_ifrecv:

isb_ifdrop:

isb_filteraccept:

Name Code Length Multiple allowed?

isb_starttime 2 8 no

isb_endtime 3 8 no

isb_ifrecv 4 8 no

isb_ifdrop 5 8 no

isb_filteraccept 6 8 no

isb_osdrop 7 8 no

isb_usrdeliv 8 8 no

Table 8: Interface Statistics Block Options

The isb_starttime option specifies the time the capture started;

time will be stored in two blocks of four octets each. The format

of the timestamp is the same as the one defined in the Enhanced

Packet Block (Section 4.3); the length of a unit of time is

specified by the 'if_tsresol' option (see Figure 10) of the

Interface Description Block referenced by this packet.

Example: '96 c3 04 00 73 89 6a 65', in Little Endian, decodes to

2012-06-29 06:17:00.834163 UTC.

The isb_endtime option specifies the time the capture ended; time

will be stored in two blocks of four octets each. The format of

the timestamp is the same as the one defined in the Enhanced

Packet Block (Section 4.3); the length of a unit of time is

specified by the 'if_tsresol' option (see Figure 10) of the

Interface Description Block referenced by this packet.

Example: '97 c3 04 00 aa 47 ca 64', in Little Endian, decodes to

2012-06-29 07:28:25.298858 UTC.

The isb_ifrecv option specifies the 64-bit unsigned integer

number of packets received from the physical interface starting

from the beginning of the capture.

Example: the decimal number 100.

The isb_ifdrop option specifies the 64-bit unsigned integer

number of packets dropped by the interface due to lack of

resources starting from the beginning of the capture.

Example: '0'.

The isb_filteraccept option specifies the 64-bit unsigned integer

number of packets accepted by filter starting from the beginning

of the capture.

¶

¶

¶

¶

¶

¶

¶

¶

¶

isb_osdrop:

isb_usrdeliv:

Example: the decimal number 100.

The isb_osdrop option specifies the 64-bit unsigned integer

number of packets dropped by the operating system starting from

the beginning of the capture.

Example: '0'.

The isb_usrdeliv option specifies the 64-bit unsigned integer

number of packets delivered to the user starting from the

beginning of the capture. The value contained in this field can

be different from the value 'isb_filteraccept - isb_osdrop'

because some packets could still be in the OS buffers when the

capture ended.

Example: '0'.

All the fields that refer to packet counters are 64-bit values,

represented with the octet order of the current section. Special

care must be taken in accessing these fields: since all the blocks

are aligned to a 32-bit boundary, such fields are not guaranteed to

be aligned on a 64-bit boundary.

4.7. Decryption Secrets Block

A Decryption Secrets Block (DSB) stores (session) secrets that

enable decryption of packets within the capture file. The format of

these secrets is defined by the Secrets Type.

Multiple DSBs can exist in a pcapng file, but they SHOULD be written

before packet blocks that require those secrets. Tools MAY limit

decryption to secrets that appear before packet blocks.

The structure of a Decryption Secrets Block is shown in Figure 15.

¶

¶

¶

¶

¶

¶

¶

¶

¶

0x544c534b:

Figure 15: Decryption Secrets Block Format

The Decryption Secrets Block has the following fields.

Block Type: The block type of the Decryption Secrets Block is 10.

Block Total Length: total size of this block, as described in

Section 3.1.

Secrets Type (32 bits): an unsigned integer identifier that

describes the format of the following Secrets field. Requests for

new Secrets Type codes should be made by creating a pull request

to update this document as described in Section 10.1.

Secrets Length (32 bits): an unsigned integer that indicates the

size of the following Secrets field, without any padding octets.

Secrets Data: binary data containing secrets, padded to a 32 bit

boundary.

Options: optionally, a list of options (formatted according to

the rules defined in Section 3.5) can be present. No DSB-specific

options are currently defined.

The following is a list of Secrets Types.

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type = 0x0000000A |

 +-+

 4 | Block Total Length |

 +-+

 8 | Secrets Type |

 +-+

12 | Secrets Length |

 +-+

16 / /

 / Secrets Data /

 / (variable length, padded to 32 bits) /

 / /

 +-+

 / /

 / Options (variable) /

 / /

 +-+

 / Block Total Length /

 +-+

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

0x57474b4c:

0x5a4e574b:

0x5a415053:

TLS Key Log. This format is described at NSS Key Log Format.

Every line MUST be properly terminated with either carriage

return and linefeed ('\r\n') or linefeed ('\n'). Tools MUST be

able to handle both line endings.

WireGuard Key Log. Every line consists of the key type, equals

sign ('='), and the base64-encoded 32-byte key with optional

spaces before and in between. The key type is one of

LOCAL_STATIC_PRIVATE_KEY, REMOTE_STATIC_PUBLIC_KEY,

LOCAL_EPHEMERAL_PRIVATE_KEY, or PRESHARED|_KEY. This matches the

output of extract-handshakes.sh, which is part of the WireGuard

project. A PRESHARED_KEY line is linked to a session matched by a

previous LOCAL_EPHEMERAL_PRIVATE_KEY line. Every line MUST be

properly terminated with either carriage return and linefeed

('\r\n') or linefeed ('\n'). Tools MUST be able to handle both

line endings.

Warning: LOCAL_STATIC_PRIVATE_KEY and potentially PRESHARED_KEY are

long-term secrets, users SHOULD only store non-production keys, or

ensure proper protection of the pcapng file.

ZigBee NWK Key and ZigBee PANID for that network. Network Key as

described in the ZigBee Specification 05-3473-21 (R21) section

4.2.2. The NWK Key is a 16 octet binary AES-128 key used to

secure NWK Level frames within a single PAN. The NWK key is

immediately followed by the 2 octet (16 bit) network PANID in

little endian format. If and when the NWK Key changes a new DSB

will contain the new NWK Key.

ZigBee APS Key. Application Support Link Key as described in the

ZigBee Specification 05-3473-21 (R21) section 4.4. Each 16 octet

binary AES-128 key secures frames exchanged between a pair of

network nodes. The APS Key is immediately followed by the 2 octet

(16 bit) network PANID in little endian format. The PANID is

followed by the 2 octet (16 bit) short addresses, in little

endian format, of the nodes to which the APS Key applies. The

numerically lower short address shall come first. There is an APS

Key DSB for each node pair for which the Link Key is known. As

new links are formed, new DSBs contain the new Keys. If the APS

Key changes for an existing link, it is contained in a new DSB

with the new APS Key.

¶

¶

¶

¶

¶

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://git.zx2c4.com/WireGuard/tree/contrib/examples/extract-handshakes/README
https://www.wireguard.com/
https://zigbeealliance.org/
https://zigbeealliance.org/

Figure 16: ZigBee NWK Key Data Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +---+

 0 | Block Type = 0x0000000A |

 +---+

 4 | Block Total Length |

 +-+

 8 | Secrets Type = 0x5a4e574b |

 +-+

12 | Secrets Length |

 +-+

16 | AES-128 |

 | NKW Key |

 | (16 octets) |

 | (128 bits) |

 +-+

32 | PAN ID | padding (0) |

 +-+

36 / /

 / Options (variable) /

 / /

 +-+

 / Block Total Length /

 +---+

Figure 17: ZigBee APS Key Data Format

4.8. Custom Block

A Custom Block (CB) is the container for storing custom data that is

not part of another block; for storing custom data as part of

another block, see Section 3.5.1. The Custom Block is optional, can

be repeated any number of times, and can appear before or after any

other block except the first Section Header Block which must come

first in the file. Different Custom Blocks, of different type codes

and/or different Private Enterprise Numbers, may be used in the same

pcapng file. The format of a Custom Block is shown in Figure 18.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +---+

 0 | Block Type = 0x0000000A |

 +---+

 4 | Block Total Length |

 +-+

 8 | Secrets Type = 0x5a415053 |

 +-+

12 | Secrets Length |

 +-+

16 | AES-128 |

 | APS Key |

 | (16 octets) |

 | (128 bits) |

 +-+

32 | PAN ID | Low Node Short Address |

 +-+

36 | High Node Short Address | padding (0) |

 +-+

40 / /

 / Options (variable) /

 / /

 +-+

 / Block Total Length /

 +---+

¶

Figure 18: Custom Block Format

The Custom Block uses the type code 0x00000BAD (2989 in decimal) for

a custom block that pcapng re-writers can copy into new files, and

the type code 0x40000BAD (1073744813 in decimal) for one that should

not be copied. See Section 5.2 for details.

The Custom Block has the following fields:

Block Type: The block type of the Custom Block is 0x00000BAD or

0x40000BAD, as described previously.

Block Total Length: total size of this block, as described in

Section 3.1.

Private Enterprise Number (32 bits): An IANA-assigned Private

Enterprise Number identifying the organization which defined the

Custom Block. See Section 5.1 for details. The PEN MUST be

encoded using the same endianness as the Section Header Block it

is within the scope of.

Custom Data: the custom data, padded to a 32 bit boundary.

Options: optionally, a list of options (formatted according to

the rules defined in Section 3.5) can be present. Note that

custom options for the Custom Block still use the custom option

format and type code, as described in Section 3.5.1.

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type = 0x00000BAD or 0x40000BAD |

 +-+

 4 | Block Total Length |

 +-+

 8 | Private Enterprise Number (PEN) |

 +-+

12 / /

 / Custom Data /

 / variable length, padded to 32 bits /

 / /

 +-+

 / /

 / Options (variable) /

 / /

 +-+

 | Block Total Length |

 +-+

¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

5. Vendor-Specific Custom Extensions

This section uses the term "vendor" to describe an organization

which extends the pcapng file with custom, proprietary blocks or

options. It should be noted, however, that the "vendor" is just an

abstract entity that agrees on a custom extension format: for

example it may be a manufacturer, industry association, an

individual user, or collective group of users.

5.1. Supported Use-Cases

There are two different supported use-cases for vendor-specific

custom extensions: local and portable. Local use means the custom

data is only expected to be usable on the same machine, and the same

application, which encoded it into the file. This limitation is due

to the lack of a common registry for the local use number codes (the

block or option type code numbers with the Most Significant Bit

set). Since two different vendors may choose the same number, one

vendor's application reading the other vendor's file would result in

decoding failure. Therefore, vendors SHOULD instead use the portable

method, as described next.

The portable use-case supports vendor-specific custom extensions in

pcapng files which can be shared across systems, organizations, etc.

To avoid number space collisions, an IANA-registered Private

Enterprise Number (PEN) is encoded into the Custom Block or Custom

Option, using the PEN that belongs to the vendor defining the

extension. Anyone can register a new PEN with IANA, for free, by

filling out the online request form at http://pen.iana.org/pen/

PenApplication.page.

5.2. Controlling Copy Behavior

Both Custom Blocks and Custom Options support two different codes to

distinguish their "copy" behavior: a code for when the block or

option can be safely copied into a new pcapng file by a pcapng

manipulating application, and a code for when it should not be

copied. A common reason for not copying a Custom Block or Custom

Option is because it depends on other blocks or options in some way

that would invalidate the custom data if the other blocks/options

were removed or re-ordered. For example, if a Custom Block's data

includes an Interface ID number in its Custom Data portion, then it

cannot be safely copied by a pcapng application that merges pcapng

files, because the merging application might re-order or remove one

or more of the Interface Description Blocks, and thereby change the

Interface IDs that the Custom Block depends upon. The same issue

arises if a Custom Block or Custom Option depends on the presence

of, or specific ordering of, other standard-based or custom-defined

blocks or options.

¶

¶

¶

¶

http://pen.iana.org/pen/PenApplication.page
http://pen.iana.org/pen/PenApplication.page

Note that the copy semantics is not related to privacy - there is no

guarantee that a pcapng anonymizer will remove a Custom Block or

Custom Option, even if the appropriate code is used requesting it

not be copied; and the original pcapng file can be shared anyway. If

the Custom Data portion of the Custom Block or Custom Option

contains sensitive information, then it should be encrypted in some

fashion.

5.3. Strings vs. Octets

For the Custom Options, there are two Custom Data formats supported:

a UTF-8 string and a binary data payload. The rationale for this

separation is that a pcapng display application which does not

understand the specific PEN's Custom Option can still display the

data as a string if it's a string type code, rather than as hex-

ascii of the octets.

5.4. Endianness Issues

Implementers writing Custom Blocks or binary data Custom Options

should be aware that a pcapng file can be re-written by machines

using a different endianness than the original file, which means all

known fields of the pcapng file will change endianness in the new

file. Since the Custom Data payload of the Custom Block or the

binary data Custom Option might be an arbitrary sequence of unknown

octets to such machines, they cannot convert multi-octet values

inside the Custom Data, or in the Options section of a Custom

Block,into the appropriate endianness.

For example, a little-endian machine can create a new pcapng file

and add some binary data Custom Options to some non-Custom Block(s)

in the file. This file can then be sent to a big-endian host, which

will convert the Option Code, Option Length, and PEN fields of the

options to big-endian format if it re-writes the file. However, if

the software reading the file does not understand the contents of

all of the Custom Options, it will leave the Custom Data payload of

the options alone (as little-endian format). If this file then gets

sent to a little-endian machine, then, when that little-endian

machine reads the file, it will, if the software reading the file

understands the contents of all the Custom Options, it will detect

that the file format is big-endian, and swap the endianness while it

parses the file - but that will cause the Custom Data payload to be

incorrect since it was already in little-endian format.

In addition, a little-endian machine can create a pcapng file and

write some binary data Custom Blocks, containing options, to the

file. The file can then be sent to a big-endian host, which, if the

software reading the file does not understand the contents of the

Custom Blocks, will leave the Custom Data and Options alone (as

¶

¶

¶

¶

little-endian format). If this file then gets sent to a little-

endian machine, then, when that little-endian machine reads the

file, it will, if the software reading the file understands the

contents of all the Custom Blocks, it will detect that the file

format is big-endian, and swap the endianness while it parses the

file - but that will cause the Custom Data payload, the Option Code

and Option Length values in the Options, and the PEN in any Custom

Options to be incorrect since they were already in little-endian

format.

Therefore, the vendor should either encode the Custom Data of their

Custom Blocks and Custom Options, the Option Code and Option Length

fields of options in Custom Blocks, and the PEN field of Custom

Options in Custom Blocks in a consistent manner, such as always in

big-endian or always in little-endian format, regardless of the host

platform's endianness, or should encode some flag in the Custom Data

payload to indicate in which endianness the rest of the payload is

written.

The PEN field of a Custom Block, or of a Custom Option not contained

in a Custom Block, MUST be converted by code that reads pcapng

files, so this is not an issue for that field, except for Custom

Options in Custom Blocks. This is also not an issue for the Custom

Data payload of UTF-8 string Custom Options.

6. Recommended File Name Extension: .pcapng

The recommended file name extension for the "PCAP Next Generation

Capture File Format" specified in this document is ".pcapng".

On Windows and macOS, files are distinguished by an extension to

their filename. Such an extension is technically not actually

required, as applications should be able to automatically detect the

pcapng file format through the "magic bytes" at the beginning of the

file, as some other UN*X desktop environments do. However, using

name extensions makes it easier to work with files (e.g. visually

distinguish file formats) so it is recommended - though not required

- to use .pcapng as the name extension for files following this

specification.

Please note: To avoid confusion (such as the current usage of .cap

for a plethora of different capture file formats) file name

extensions other than .pcapng should be avoided.

7. Conclusions

The file format proposed in this document should be very versatile

and satisfy a wide range of applications. In the simplest case, it

can contain a raw capture of the network data, made of a series of

Simple Packet Blocks. In the most complex case, it can be used as a

¶

¶

¶

¶

¶

¶

repository for heterogeneous information. In every case, the file

remains easy to parse and an application can always skip the data it

is not interested in; at the same time, different applications can

share the file, and each of them can benefit of the information

produced by the others. Two or more files can be concatenated

obtaining another valid file.

8. Implementations

Some known implementations that read or write the pcapng file format

are listed on the pcapng GitHub wiki.

9. Security Considerations

TBD.

10. IANA Considerations

TBD.

[Open issue: decide whether the block types, option types, NRB

Record types, etc. should be IANA registries. And if so, what the

IANA policy for each should be (see RFC 5226)]

10.1. Standardized Block Type Codes

Every Block is uniquely identified by a 32-bit integer value, stored

in the Block Header.

As pointed out in Section 3.1, Block Type codes whose Most

Significant Bit (bit 31) is set to 1 are reserved for local use by

the application.

All the remaining Block Type codes (0x00000000 to 0x7FFFFFFF) are

standardized by this document. Requests for new Block Type codes,

Option Type codes, and Secrets Type codes should be made by creating

a pull request to update this document at github.com/pcapng/pcapng.

The pull request should add a description of the new block, option,

or secret type to Section 4. The pull request description should

contain a clear request for a new type code assignment.

The following is a list of the Standardized Block Type Codes:

Block Type Code Description

0x00000000 Reserved ???

0x00000001 Interface Description Block (Section 4.2)

0x00000002 Packet Block (Appendix A)

0x00000003 Simple Packet Block (Section 4.4)

0x00000004 Name Resolution Block (Section 4.5)

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/pcapng/pcapng/wiki/Implementations
https://github.com/pcapng/pcapng

Block Type Code Description

0x00000005 Interface Statistics Block (Section 4.6)

0x00000006 Enhanced Packet Block (Section 4.3)

0x00000007

IRIG Timestamp Block (requested by Gianluca

Varenni <gianluca.varenni@cacetech.com>, CACE

Technologies LLC); code also used for Socket

Aggregation Event Block

0x00000008

ARINC 429 in AFDX Encapsulation Information

Block (requested by Gianluca Varenni

<gianluca.varenni@cacetech.com>, CACE

Technologies LLC)

0x00000009
[systemd Journal Export Block][I-D.richardson-

opsawg-pcapng-extras]

0x0000000A Decryption Secrets Block (Section 4.7)

0x00000101
Hone Project Machine Info Block (see also

Google version)

0x00000102
Hone Project Connection Event Block (see also

Google version)

0x00000201 Sysdig Machine Info Block

0x00000202 Sysdig Process Info Block, version 1

0x00000203 Sysdig FD List Block

0x00000204 Sysdig Event Block

0x00000205 Sysdig Interface List Block

0x00000206 Sysdig User List Block

0x00000207 Sysdig Process Info Block, version 2

0x00000208 Sysdig Event Block with flags

0x00000209 Sysdig Process Info Block, version 3

0x00000210 Sysdig Process Info Block, version 4

0x00000211 Sysdig Process Info Block, version 5

0x00000212 Sysdig Process Info Block, version 6

0x00000213 Sysdig Process Info Block, version 7

0x00000BAD
Custom Block that rewriters can copy into new

files (Section 4.8)

0x40000BAD
Custom Block that rewriters should not copy

into new files (Section 4.8)

0x0A0D0D0A Section Header Block (Section 4.1)

0x0A0D0A00-0x0A0D0AFF

Reserved. Used to detect trace files corrupted

because of file transfers using the HTTP

protocol in text mode.

0x000A0D0A-0xFF0A0D0A

Reserved. Used to detect trace files corrupted

because of file transfers using the HTTP

protocol in text mode.

0x000A0D0D-0xFF0A0D0D

Reserved. Used to detect trace files corrupted

because of file transfers using the HTTP

protocol in text mode.

0x0D0D0A00-0x0D0D0AFF

https://github.com/google/linux-sensor/blob/master/hone-pcapng.txt
https://github.com/google/linux-sensor/blob/master/hone-pcapng.txt
https://en.wikipedia.org/wiki/ARINC_429
https://github.com/HoneProject
https://github.com/HoneProject/Linux-Sensor/wiki/Augmented-PCAP-Next-Generation-Dump-File-Format
https://github.com/google/linux-sensor/blob/master/hone-pcapng.txt
https://github.com/HoneProject
https://github.com/HoneProject/Linux-Sensor/wiki/Augmented-PCAP-Next-Generation-Dump-File-Format
https://github.com/google/linux-sensor/blob/master/hone-pcapng.txt
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/draios/sysdig

[I-D.richardson-opsawg-pcaplinktype]

[RFC2119]

[RFC8174]

[I-D.richardson-opsawg-pcapng-extras]

Block Type Code Description

Reserved. Used to detect trace files corrupted

because of file transfers using the FTP

protocol in text mode.

0x80000000-0xFFFFFFFF Reserved for local use.

Table 9: Standardized Block Type Codes

[Open issue: reserve 0x40000000-0x7FFFFFFF for do-not-copy-bit range

of base types?]

11. Contributors

Loris Degioanni and Gianluca Varenni were coauthoring this document

before it was submitted to the IETF.

12. Acknowledgments

The authors wish to thank Anders Broman, Ulf Lamping, Richard Sharpe

and many others for their invaluable comments.

13. References

13.1. Normative References

Harris, G. and M. C.

Richardson, "PCAP Capture File Format", Work in Progress,

Internet-Draft, draft-richardson-opsawg-pcaplinktype-00,

29 July 2022, <https://datatracker.ietf.org/doc/html/

draft-richardson-opsawg-pcaplinktype-00>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

13.2. Informative References

Tuexen, M., Risso, F., Bongertz, J., Combs, G., Harris,

G., Chaudron, E., and M. C. Richardson, "Additional block

types for PCAP Next Generation (pcapng) Capture File

Format", Work in Progress, Internet-Draft, draft-

richardson-opsawg-pcapng-extras-00, 4 October 2021,

<https://datatracker.ietf.org/doc/html/draft-richardson-

opsawg-pcapng-extras-00>.

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-richardson-opsawg-pcaplinktype-00
https://datatracker.ietf.org/doc/html/draft-richardson-opsawg-pcaplinktype-00
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/draft-richardson-opsawg-pcapng-extras-00
https://datatracker.ietf.org/doc/html/draft-richardson-opsawg-pcapng-extras-00

Appendix A. Packet Block (obsolete!)

The Packet Block is obsolete, and MUST NOT be used in new files. Use

the Enhanced Packet Block or Simple Packet Block instead. This

section is for historical reference only.

A Packet Block was a container for storing packets coming from the

network.

Figure 19: Packet Block Format

The Packet Block has the following fields:

Block Type: The block type of the Packet Block is 2.

Block Total Length: total size of this block, as described in

Section 3.1.

Interface ID: specifies the interface this packet comes from; the

correct interface will be the one whose Interface Description

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 0 | Block Type = 0x00000002 |

 +-+

 4 | Block Total Length |

 +-+

 8 | Interface ID | Drops Count |

 +-+

12 | Timestamp (High) |

 +-+

16 | Timestamp (Low) |

 +-+

20 | Captured Packet Length |

 +-+

24 | Original Packet Length |

 +-+

28 / /

 / Packet Data /

 / variable length, padded to 32 bits /

 / /

 +-+

 / /

 / Options (variable) /

 / /

 +-+

 | Block Total Length |

 +-+

¶

* ¶

*

¶

*

pack_flags:

Block (within the current Section of the file) is identified by

the same number (see Section 4.2) of this field. The interface ID

MUST be valid, which means that an matching interface description

block MUST exist.

Drops Count: a local drop counter. It specifies the number of

packets lost (by the interface and the operating system) between

this packet and the preceding one. The value xFFFF (in

hexadecimal) is reserved for those systems in which this

information is not available.

Timestamp (High) and Timestamp (Low): timestamp of the packet.

The format of the timestamp is the same as was already defined

for the Enhanced Packet Block (Section 4.3).

Captured Packet Length: number of octets captured from the packet

(i.e. the length of the Packet Data field). It will be the

minimum value among the Original Packet Length and the snapshot

length for the interface (SnapLen, defined in Figure 10). The

value of this field does not include the padding octets added at

the end of the Packet Data field to align the Packet Data field

to a 32-bit boundary.

Original Packet Length: actual length of the packet when it was

transmitted on the network. It can be different from Captured

Packet Length if the packet has been truncated by the capture

process.

Packet Data: the data coming from the network, including link-

layer headers. The actual length of this field is Captured Packet

Length plus the padding to a 32-bit boundary. The format of the

link-layer headers depends on the LinkType field specified in the

Interface Description Block (see Section 4.2) and it is specified

in the entry for that format in [I-D.richardson-opsawg-

pcaplinktype].

Options: optionally, a list of options (formatted according to

the rules defined in Section 3.5) can be present.

In addition to the options defined in Section 3.5, the following

options were valid within this block:

Name Code Length Multiple allowed?

pack_flags 2 4 no

pack_hash 3 variable yes

Table 10: Packet Block Options

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

pack_hash:

The pack_flags option is the same as the epb_flags of the

enhanced packet block.

Example: '0'.

The pack_hash option is the same as the epb_hash of the enhanced

packet block.

Examples: '02 EC 1D 87 97', '03 45 6E C2 17 7C 10 1E 3C 2E 99 6E C2

9A 3D 50 8E'.

Authors' Addresses

Michael Tuexen (editor)

Muenster University of Applied Sciences

Stegerwaldstrasse 39

48565 Steinfurt

Germany

Email: tuexen@fh-muenster.de

Fulvio Risso

Politecnico di Torino

Corso Duca degli Abruzzi, 24

10129 Torino

Italy

Email: fulvio.risso@polito.it

Jasper Bongertz

Airbus Defence and Space CyberSecurity

Kanzlei 63c

40667 Meerbusch

Germany

Email: jasper@packet-foo.com

Gerald Combs

Wireshark Foundation

339 Madson Pl

Davis, CA 95618

United States of America

Email: gerald@wireshark.org

Guy Harris

Email: gharris@sonic.net

¶

¶

¶

¶

mailto:tuexen@fh-muenster.de
mailto:fulvio.risso@polito.it
mailto:jasper@packet-foo.com
mailto:gerald@wireshark.org
mailto:gharris@sonic.net

Eelco Chaudron

Red Hat

De Entree 238

1101 EE Amsterdam

Netherlands

Email: eelco@redhat.com

Michael C. Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

URI: http://www.sandelman.ca/

mailto:eelco@redhat.com
mailto:mcr+ietf@sandelman.ca
http://www.sandelman.ca/

	PCAP Next Generation (pcapng) Capture File Format
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Acronyms

	3. General File Structure
	3.1. General Block Structure
	3.2. Block Types
	3.3. Logical Block Hierarchy
	3.4. Physical File Layout
	3.5. Options
	3.5.1. Custom Options

	3.6. Data format
	3.6.1. Endianness
	3.6.2. Alignment

	4. Block Definition
	4.1. Section Header Block
	4.2. Interface Description Block
	4.3. Enhanced Packet Block
	4.3.1. Enhanced Packet Block Flags Word

	4.4. Simple Packet Block
	4.5. Name Resolution Block
	4.6. Interface Statistics Block
	4.7. Decryption Secrets Block
	4.8. Custom Block

	5. Vendor-Specific Custom Extensions
	5.1. Supported Use-Cases
	5.2. Controlling Copy Behavior
	5.3. Strings vs. Octets
	5.4. Endianness Issues

	6. Recommended File Name Extension: .pcapng
	7. Conclusions
	8. Implementations
	9. Security Considerations
	10. IANA Considerations
	10.1. Standardized Block Type Codes

	11. Contributors
	12. Acknowledgments
	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Packet Block (obsolete!)
	Authors' Addresses

