
Network Working Group J. Uberti
Internet-Draft Google
Intended status: Standards Track October 27, 2014
Expires: April 30, 2015

WebRTC Forward Error Correction Requirements
draft-uberti-rtcweb-fec-00

Abstract

 This document makes recommendations for how Forward Error Correction
 (FEC) should be used by WebRTC applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Uberti Expires April 30, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WebRTC FEC October 2014

Table of Contents

1. Introduction . 2
2. Terminology . 2
3. Types of FEC . 2
3.1. Separate FEC Stream 3
3.2. Redundant Encoding 3
3.3. Codec-Specific In-band FEC 3

4. FEC for Audio Content . 3
4.1. Recommended Mechanism 3
4.2. Negotiating Support 4

5. FEC for Video Content . 4
5.1. Recommended Mechanism 4
5.2. Negotiating Support 5

6. Implementation Requirements 5
7. Adaptive Use of FEC . 5
8. Security Considerations 5
9. IANA Considerations . 5
10. Acknowledgements . 5
11. References . 6
11.1. Normative References 6
11.2. Informative References 6

Appendix A. Change log . 6
 Author's Address . 6

1. Introduction

 In situations where packet loss is high, or media quality must be
 perfect, Forward Error Correction (FEC) can be used to proactively
 recover from packet losses. This document describes what FEC
 mechanisms should be used by WebRTC client implementations.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Types of FEC

 By its name, FEC describes the sending of redundant information in an
 outgoing packet stream so that information can still be recovered
 even in the face of packet loss. There are multiple ways in which
 this can be accomplished; this section enumerates the various
 mechanisms and describes their tradeoffs.

https://datatracker.ietf.org/doc/html/rfc2119

Uberti Expires April 30, 2015 [Page 2]

Internet-Draft WebRTC FEC October 2014

3.1. Separate FEC Stream

 This approach, as described in [RFC5956], Section 4.3, sends FEC
 packets as an independent SSRC-multiplexed stream, with its own SSRC
 and payload type. While by far the most flexible, each FEC packet
 will have its own IP+UDP+RTP+FEC header, leading to additional
 overhead of the FEC stream.

3.2. Redundant Encoding

 This approach, as descibed in [RFC2198], allows for redundant data to
 be piggybacked on an existing primary encoding in a single packet.
 This redundant data may be an exact copy of a previous packet, or for
 codecs that support variable-bitrate encodings, possibly a smaller,
 lower-quality representation. Since there is only a single set of
 packet headers, this allows for a very efficient representation of
 primary + redundant data. However, this savings is only realized
 when the two encodings both fit into a single packet (i.e. less than
 a MTU). This approach is also only applicable to audio content.

3.3. Codec-Specific In-band FEC

 Some audio codecs, notably Opus [RFC6716], support their own in-band
 FEC mechanism, where FEC data is included in the codec payload. In
 the case of Opus specifically, packets deemed as important are re-
 encoded at a lower bitrate and added to the subsequent packet,
 allowing partial recovery of a lost packet. See [RFC6716],
 Section 2.1.7 for details.

4. FEC for Audio Content

 The following section provides guidance on how to best use FEC for
 transmitting audio data. As indicated in Section 7 below, FEC should
 only be activated if network conditions warrant it, or upon explicit
 application request.

4.1. Recommended Mechanism

 When using the Opus codec in its default (hybrid) mode, use of the
 built-in Opus FEC mechanism is RECOMMENDED. This provides reasonable
 protection of the audio stream against typical losses, with moderate
 overhead. [TODO: add stats] Note though that this mechanism only
 protects the SILK layer of the Opus codec; the CELT portion is not
 protected. This is not an issue when Opus is running in hybrid mode,
 as the lower frequencies will still be able to be recovered, with
 minimal quality impact.

https://datatracker.ietf.org/doc/html/rfc5956#section-4.3
https://datatracker.ietf.org/doc/html/rfc2198
https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716#section-2.1.7
https://datatracker.ietf.org/doc/html/rfc6716#section-2.1.7

Uberti Expires April 30, 2015 [Page 3]

Internet-Draft WebRTC FEC October 2014

 When using Opus in CELT mode, or other variable-bitrate codecs, use
 of [RFC2198] redundant encoding with a lower-fidelity version of the
 previous packet is RECOMMENDED. When using Opus specifically, the
 lower-fidelity version can simply be a truncated version of the
 previous Opus packet. [TODO: decide exact truncated size] This
 provides reasonable protection of the payload with minimal overhead.

 When using constant-bitrate codecs, e.g. PCMU, use of [RFC2198]
 redundant encoding is NOT RECOMMENDED, as this will result in a
 potentially significant bitrate increase. Furthermore, suddenly
 increasing the bitrate to deal with packet losses may actually make
 things worse.

 Because of the lower packet rate of audio encodings, usually a single
 packet per frame, use of a separate FEC stream comes with a higher
 overhead than other mechanisms, and therefore is NOT RECOMMENDED.

4.2. Negotiating Support

 Support for redundant encoding can be indicated by offering "red" as
 a supported payload type in the offer. Answerers can reject the use
 of redundant encoding by not including "red" as a supported payload
 type in the answer.

 Support for codec-specific FEC mechanisms are typically indicated via
 "a=fmtp" parameters. For Opus specifically, this is controlled by
 the "useinbandfec=1" parameter, as specified in
 [I-D.ietf-payload-rtp-opus]. These parameters are declarative and
 can be negotiated separately for either media direction.

5. FEC for Video Content

 The following section provides guidance on how to best use FEC for
 transmitting video data. As indicated in Section 7 below, FEC should
 only be activated if network conditions warrant it, or upon explicit
 application request.

5.1. Recommended Mechanism

 For video content, use of a separate FEC stream with the RTP payload
 format described in [I-D.singh-payload-rtp-1d2d-parity-scheme] is
 RECOMMENDED. The receiver can demultiplex the incoming FEC stream by
 SSRC and correlate it with the primary stream via the ssrc-group
 mechanism.

 Note that this only allows the FEC stream to protect a single primary
 stream. Support for protecting multiple primary streams with a

https://datatracker.ietf.org/doc/html/rfc2198
https://datatracker.ietf.org/doc/html/rfc2198

Uberti Expires April 30, 2015 [Page 4]

Internet-Draft WebRTC FEC October 2014

 single FEC stream is complicated by WebRTC's 1-m-line-per-stream
 policy and requires further study.

5.2. Negotiating Support

 To offer support for a separate FEC stream, the offerer MUST offer
 one of the formats described in
 [I-D.singh-payload-rtp-1d2d-parity-scheme], Section 5.1, as well as a
 ssrc-group with "FEC-FR" semantics as described in [RFC5956],
 Section 4.3.

 Answerers can reject the use of FEC by not including FEC payloads in
 the answer.

6. Implementation Requirements

 To support the functionality recommended above, implementations MUST
 support the redundant encoding mechanism described in [RFC2198] and
 the FEC mechanism described in [RFC5956] and
 [I-D.singh-payload-rtp-1d2d-parity-scheme].

 Implementations MAY support additional FEC mechanisms if desired,
 e.g. [RFC5109].

7. Adaptive Use of FEC

 Since use of FEC causes redundant data to be transmitted, this will
 lead to less bandwidth available for the primary encoding, when in a
 bandwidth-constrained environment. Given this, WebRTC
 implementations SHOULD only transmit FEC data when network conditions
 indicate that this is advisable (e.g. by monitoring transmit packet
 loss data from RTCP Receiver Reports), or the application indicates
 it is willing to pay a quality penalty to proactively avoid losses.

8. Security Considerations

 TODO

9. IANA Considerations

 This document requires no actions from IANA.

10. Acknowledgements

 Several people provided significant input into this document,
 including Jonathan Lennox, Giri Mandyam, Varun Singh, Tim Terriberry,
 and Mo Zanaty.

https://datatracker.ietf.org/doc/html/rfc5956#section-4.3
https://datatracker.ietf.org/doc/html/rfc5956#section-4.3
https://datatracker.ietf.org/doc/html/rfc2198
https://datatracker.ietf.org/doc/html/rfc5956
https://datatracker.ietf.org/doc/html/rfc5109

Uberti Expires April 30, 2015 [Page 5]

Internet-Draft WebRTC FEC October 2014

11. References

11.1. Normative References

 [I-D.singh-payload-rtp-1d2d-parity-scheme]
 Singh, V., Begen, A., and M. Zanaty, "RTP Payload Format
 for Non-Interleaved and Interleaved Parity Forward Error
 Correction (FEC)", draft-singh-payload-rtp-1d2d-parity-

scheme-00 (work in progress), October 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2198] Perkins, C., Kouvelas, I., Hodson, O., Hardman, V.,
 Handley, M., Bolot, J., Vega-Garcia, A., and S. Fosse-
 Parisis, "RTP Payload for Redundant Audio Data", RFC 2198,
 September 1997.

 [RFC5956] Begen, A., "Forward Error Correction Grouping Semantics in
 the Session Description Protocol", RFC 5956, September
 2010.

11.2. Informative References

 [I-D.ietf-payload-rtp-opus]
 Spittka, J., Vos, K., and J. Valin, "RTP Payload Format
 for Opus Speech and Audio Codec", draft-ietf-payload-rtp-

opus-03 (work in progress), July 2014.

 [RFC5109] Li, A., "RTP Payload Format for Generic Forward Error
 Correction", RFC 5109, December 2007.

 [RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
 Opus Audio Codec", RFC 6716, September 2012.

Appendix A. Change log

 Changes in draft -00:

 o Initial version, from sidebar conversation at IETF 90.

Author's Address

https://datatracker.ietf.org/doc/html/draft-singh-payload-rtp-1d2d-parity-scheme-00
https://datatracker.ietf.org/doc/html/draft-singh-payload-rtp-1d2d-parity-scheme-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2198
https://datatracker.ietf.org/doc/html/rfc5956
https://datatracker.ietf.org/doc/html/draft-ietf-payload-rtp-opus-03
https://datatracker.ietf.org/doc/html/draft-ietf-payload-rtp-opus-03
https://datatracker.ietf.org/doc/html/rfc5109
https://datatracker.ietf.org/doc/html/rfc6716

Uberti Expires April 30, 2015 [Page 6]

Internet-Draft WebRTC FEC October 2014

 Justin Uberti
 Google
 747 6th Ave S
 Kirkland, WA 98033
 USA

 Email: justin@uberti.name

Uberti Expires April 30, 2015 [Page 7]

