
Workgroup: Network Working Group

Request for Comments: 8829

Obsoletes: 8829 (if approved)

Published: 10 July 2021

Intended Status: Standards Track

Expires: 11 January 2022

Authors: J. Uberti

Clubhouse

C. Jennings

Cisco

E. Rescorla, Ed.

Mozilla

JavaScript Session Establishment Protocol (JSEP)

Abstract

This document describes the mechanisms for allowing a JavaScript

application to control the signaling plane of a multimedia session

via the interface specified in the W3C RTCPeerConnection API and

discusses how this relates to existing signaling protocols.

This specification obsoletes RFC 8829.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8829
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. General Design of JSEP

1.2. Other Approaches Considered

1.3. Changes from RFC 8829

2. Terminology

3. Semantics and Syntax

3.1. Signaling Model

3.2. Session Descriptions and State Machine

3.3. Session Description Format

3.4. Session Description Control

3.4.1. RtpTransceivers

3.4.2. RtpSenders

3.4.3. RtpReceivers

3.5. ICE

3.5.1. ICE Gathering Overview

3.5.2. ICE Candidate Trickling

3.5.2.1. ICE Candidate Format

3.5.3. ICE Candidate Policy

3.5.4. ICE Candidate Pool

3.5.5. ICE Versions

3.6. Video Size Negotiation

3.6.1. Creating an imageattr Attribute

3.6.2. Interpreting imageattr Attributes

3.7. Simulcast

3.8. Interactions with Forking

3.8.1. Sequential Forking

3.8.2. Parallel Forking

4. Interface

4.1. PeerConnection

4.1.1. Constructor

4.1.2. addTrack

4.1.3. removeTrack

4.1.4. addTransceiver

4.1.5. onaddtrack Event

4.1.6. createDataChannel

4.1.7. ondatachannel Event

4.1.8. createOffer

4.1.9. createAnswer

4.1.10. SessionDescriptionType

4.1.10.1. Use of Provisional Answers

4.1.10.2. Rollback

4.1.11. setLocalDescription

4.1.12. setRemoteDescription

4.1.13. currentLocalDescription

¶

4.1.14. pendingLocalDescription

4.1.15. currentRemoteDescription

4.1.16. pendingRemoteDescription

4.1.17. canTrickleIceCandidates

4.1.18. setConfiguration

4.1.19. addIceCandidate

4.1.20. onicecandidate Event

4.2. RtpTransceiver

4.2.1. stop

4.2.2. stopped

4.2.3. setDirection

4.2.4. direction

4.2.5. currentDirection

4.2.6. setCodecPreferences

5. SDP Interaction Procedures

5.1. Requirements Overview

5.1.1. Usage Requirements

5.1.2. Profile Names and Interoperability

5.2. Constructing an Offer

5.2.1. Initial Offers

5.2.2. Subsequent Offers

5.2.3. Options Handling

5.2.3.1. IceRestart

5.2.3.2. VoiceActivityDetection

5.3. Generating an Answer

5.3.1. Initial Answers

5.3.2. Subsequent Answers

5.3.3. Options Handling

5.3.3.1. VoiceActivityDetection

5.4. Modifying an Offer or Answer

5.5. Processing a Local Description

5.6. Processing a Remote Description

5.7. Processing a Rollback

5.8. Parsing a Session Description

5.8.1. Session-Level Parsing

5.8.2. Media Section Parsing

5.8.3. Semantics Verification

5.9. Applying a Local Description

5.10. Applying a Remote Description

5.11. Applying an Answer

6. Processing RTP/RTCP

7. Examples

7.1. Simple Example

7.2. Detailed Example

7.3. Early Transport Warmup Example

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. SDP ABNF Syntax

Acknowledgements

Authors' Addresses

1. Introduction

This document describes how the W3C Web Real-Time Communication

(WebRTC) RTCPeerConnection interface [W3C.webrtc] is used to control

the setup, management, and teardown of a multimedia session.

1.1. General Design of JSEP

WebRTC call setup has been designed to focus on controlling the

media plane, leaving signaling-plane behavior up to the application

as much as possible. The rationale is that different applications

may prefer to use different protocols, such as the existing SIP call

signaling protocol, or something custom to the particular

application, perhaps for a novel use case. In this approach, the key

information that needs to be exchanged is the multimedia session

description, which specifies the transport and media configuration

information necessary to establish the media plane.

With these considerations in mind, this document describes the

JavaScript Session Establishment Protocol (JSEP), which allows for

full control of the signaling state machine from JavaScript. As

described above, JSEP assumes a model in which a JavaScript

application executes inside a runtime containing WebRTC APIs (the

"JSEP implementation"). The JSEP implementation is almost entirely

divorced from the core signaling flow, which is instead handled by

the JavaScript making use of two interfaces: (1) passing in local

and remote session descriptions and (2) interacting with the

Interactive Connectivity Establishment (ICE) state machine

[RFC8445]. The combination of the JSEP implementation and the

JavaScript application is referred to throughout this document as a

"JSEP endpoint".

In this document, the use of JSEP is described as if it always

occurs between two JSEP endpoints. Note, though, that in many cases

it will actually be between a JSEP endpoint and some kind of server,

such as a gateway or Multipoint Control Unit (MCU). This distinction

is invisible to the JSEP endpoint; it just follows the instructions

it is given via the API.

JSEP's handling of session descriptions is simple and

straightforward. Whenever an offer/answer exchange is needed, the

initiating side creates an offer by calling a createOffer API. The

application then uses that offer to set up its local configuration

via the setLocalDescription API. The offer is finally sent off to

¶

¶

¶

¶

the remote side over its preferred signaling mechanism (e.g.,

WebSockets); upon receipt of that offer, the remote party installs

it using the setRemoteDescription API.

To complete the offer/answer exchange, the remote party uses the

createAnswer API to generate an appropriate answer, applies it using

the setLocalDescription API, and sends the answer back to the

initiator over the signaling channel. When the initiator gets that

answer, it installs it using the setRemoteDescription API, and

initial setup is complete. This process can be repeated for

additional offer/answer exchanges.

Regarding ICE [RFC8445], JSEP decouples the ICE state machine from

the overall signaling state machine. The ICE state machine must

remain in the JSEP implementation because only the implementation

has the necessary knowledge of candidates and other transport

information. Performing this separation provides additional

flexibility in protocols that decouple session descriptions from

transport. For instance, in traditional SIP, each offer or answer is

self-contained, including both the session descriptions and the

transport information. However, [RFC8840] allows SIP to be used with

Trickle ICE [RFC8838], in which the session description can be sent

immediately and the transport information can be sent when

available. Sending transport information separately can allow for

faster ICE and DTLS startup, since ICE checks can start as soon as

any transport information is available rather than waiting for all

of it. JSEP's decoupling of the ICE and signaling state machines

allows it to accommodate either model.

Although it abstracts signaling, the JSEP approach requires that the

application be aware of the signaling process. While the application

does not need to understand the contents of session descriptions to

set up a call, the application must call the right APIs at the right

times, convert the session descriptions and ICE information into the

defined messages of its chosen signaling protocol, and perform the

reverse conversion on the messages it receives from the other side.

One way to make life easier for the application is to provide a

JavaScript library that hides this complexity from the developer;

said library would implement a given signaling protocol along with

its state machine and serialization code, presenting a higher-level

call-oriented interface to the application developer. For example,

libraries exist to provide implementations of the SIP [RFC3261] and

Extensible Messaging and Presence Protocol (XMPP) [RFC6120]

signaling protocols atop the JSEP API. Thus, JSEP provides greater

control for the experienced developer without forcing any additional

complexity on the novice developer.

¶

¶

¶

¶

¶

1.2. Other Approaches Considered

One approach that was considered instead of JSEP was to include a

lightweight signaling protocol. Instead of providing session

descriptions to the API, the API would produce and consume messages

from this protocol. While providing a more high-level API, this put

more control of signaling within the JSEP implementation, forcing it

to have to understand and handle concepts like signaling glare (see

[RFC3264], Section 4).

A second approach that was considered but not chosen was to decouple

the management of the media control objects from session

descriptions, instead offering APIs that would control each

component directly. This was rejected based on the argument that

requiring exposure of this level of complexity to the application

programmer would not be beneficial; it would (1) result in an API

where even a simple example would require a significant amount of

code to orchestrate all the needed interactions and (2) create a

large API surface that would need to be agreed upon and documented.

In addition, these API points could be called in any order,

resulting in a more complex set of interactions with the media

subsystem than the JSEP approach, which specifies how session

descriptions are to be evaluated and applied.

One variation on JSEP that was considered was to keep the basic

session-description-oriented API but to move the mechanism for

generating offers and answers out of the JSEP implementation.

Instead of providing createOffer/createAnswer methods within the

implementation, this approach would instead expose a getCapabilities

API, which would provide the application with the information it

needed in order to generate its own session descriptions. This

increases the amount of work that the application needs to do; it

needs to know how to generate session descriptions from

capabilities, and especially how to generate the correct answer from

an arbitrary offer and the supported capabilities. While this could

certainly be addressed by using a library like the one mentioned

above, it basically forces the use of said library even for a simple

example. Providing createOffer/createAnswer avoids this problem.

1.3. Changes from RFC 8829

When [RFC8829] was published, an inconsistency regarding BUNDLE

[RFC8843] operation was identified concerning both the specification

text as well as implementation behavior. The former concern was

addressed via an update to [RFC8843]. For the latter concern, it was

observed that some implementations implemented the "max-bundle"

bundle policy by assuming that bundling had already been negotiated,

rather than marking "m=" sections as bundle-only as indicated by

[RFC8829]. In order to prevent unexpected changes to applications

¶

¶

¶

https://rfc-editor.org/rfc/rfc3264#section-4

relying on the pre-standard behavior, the decision was made to

deprecate the use of "max-bundle" and instead introduce a new "must-

bundle" policy that, when selected, provides the correct behavior.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Semantics and Syntax

3.1. Signaling Model

JSEP does not specify a particular signaling model or state machine,

other than the generic need to exchange session descriptions in the

fashion described by [RFC3264] (offer/answer) in order for both

sides of the session to know how to conduct the session. JSEP

provides mechanisms to create offers and answers, as well as to

apply them to a session. However, the JSEP implementation is totally

decoupled from the actual mechanism by which these offers and

answers are communicated to the remote side, including addressing,

retransmission, forking, and glare handling. These issues are left

entirely up to the application; the application has complete control

over which offers and answers get handed to the implementation, and

when.

Figure 1: JSEP Signaling Model

3.2. Session Descriptions and State Machine

In order to establish the media plane, the JSEP implementation needs

specific parameters to indicate what to transmit to the remote side,

as well as how to handle the media that is received. These

parameters are determined by the exchange of session descriptions in

¶

¶

¶

 +-----------+ +-----------+

 | Web App |<--- App-Specific Signaling -->| Web App |

 +-----------+ +-----------+

 ^ ^

 | SDP | SDP

 V V

 +-----------+ +-----------+

 | JSEP |<----------- Media ------------>| JSEP |

 | Impl. | | Impl. |

 +-----------+ +-----------+

offers and answers, and there are certain details to this process

that must be handled in the JSEP APIs.

Whether a session description applies to the local side or the

remote side affects the meaning of that description. For example,

the list of codecs sent to a remote party indicates what the local

side is willing to receive, which, when intersected with the set of

codecs the remote side supports, specifies what the remote side

should send. However, not all parameters follow this rule; some

parameters are declarative, and the remote side must either accept

them or reject them altogether. An example of such a parameter is

the TLS fingerprints [RFC8122] as used in the context of DTLS

[RFC6347]; these fingerprints are calculated based on the local

certificate(s) offered and are not subject to negotiation.

In addition, various RFCs put different conditions on the format of

offers versus answers. For example, an offer may propose an

arbitrary number of "m=" sections (i.e., media descriptions as

described in [RFC4566], Section 5.14), but an answer must contain

the exact same number as the offer.

Lastly, while the exact media parameters are known only after an

offer and an answer have been exchanged, the offerer may receive ICE

checks, and possibly media (e.g., in the case of a re-offer after a

connection has been established) before it receives an answer. To

properly process incoming media in this case, the offerer's media

handler must be aware of the details of the offer before the answer

arrives.

Therefore, in order to handle session descriptions properly, the

JSEP implementation needs:

To know if a session description pertains to the local or

remote side.

To know if a session description is an offer or an answer.

To allow the offer to be specified independently of the answer.

JSEP addresses this by adding both setLocalDescription and

setRemoteDescription methods and having session description objects

contain a type field indicating the type of session description

being supplied. This satisfies the requirements listed above for

both the offerer, who first calls setLocalDescription(sdp [offer])

and then later setRemoteDescription(sdp [answer]), and the answerer,

who first calls setRemoteDescription(sdp [offer]) and then later

setLocalDescription(sdp [answer]).

During the offer/answer exchange, the outstanding offer is

considered to be "pending" at the offerer and the answerer, as it

¶

¶

¶

¶

¶

1.

¶

2. ¶

3. ¶

¶

https://rfc-editor.org/rfc/rfc4566#section-5.14

may be either accepted or rejected. If this is a re-offer, each side

will also have "current" local and remote descriptions, which

reflect the result of the last offer/answer exchange. Sections

4.1.14, 4.1.16, 4.1.13, and 4.1.15 provide more detail on pending

and current descriptions.

JSEP also allows for an answer to be treated as provisional by the

application. Provisional answers provide a way for an answerer to

communicate initial session parameters back to the offerer, in order

to allow the session to begin, while allowing a final answer to be

specified later. This concept of a final answer is important to the

offer/answer model; when such an answer is received, any extra

resources allocated by the caller can be released, now that the

exact session configuration is known. These "resources" can include

things like extra ICE components, Traversal Using Relays around NAT

(TURN) candidates, or video decoders. Provisional answers, on the

other hand, do no such deallocation; as a result, multiple

dissimilar provisional answers, with their own codec choices,

transport parameters, etc., can be received and applied during call

setup. Note that the final answer itself may be different than any

received provisional answers.

In [RFC3264], the constraint at the signaling level is that only one

offer can be outstanding for a given session, but at the JSEP level,

a new offer can be generated at any point. For example, when using

SIP for signaling, if one offer is sent and is then canceled using a

SIP CANCEL, another offer can be generated even though no answer was

received for the first offer. To support this, the JSEP media layer

can provide an offer via the createOffer method whenever the

JavaScript application needs one for the signaling. The answerer can

send back zero or more provisional answers and then finally end the

offer/answer exchange by sending a final answer. The state machine

for this is as follows:

¶

¶

¶

Figure 2: JSEP State Machine

Aside from these state transitions, there is no other difference

between the handling of provisional ("pranswer") and final

("answer") answers.

3.3. Session Description Format

JSEP's session descriptions use Session Description Protocol (SDP)

syntax for their internal representation. While this format is not

optimal for manipulation from JavaScript, it is widely accepted and

 setRemote(OFFER) setLocal(PRANSWER)

 /-----\ /-----\

 | | | |

 v | v |

 +---------------+ | +---------------+ |

 | |----/ | |----/

 | have- | setLocal(PRANSWER) | have- |

 | remote-offer |------------------- >| local-pranswer|

 | | | |

 | | | |

 +---------------+ +---------------+

 ^ | |

 | | setLocal(ANSWER) |

setRemote(OFFER) | |

 | V setLocal(ANSWER) |

 +---------------+ |

 | | |

 | |<---------------------------+

 | stable |

 | |<---------------------------+

 | | |

 +---------------+ setRemote(ANSWER) |

 ^ | |

 | | setLocal(OFFER) |

setRemote(ANSWER) | |

 | V |

 +---------------+ +---------------+

 | | | |

 | have- | setRemote(PRANSWER) |have- |

 | local-offer |------------------- >|remote-pranswer|

 | | | |

 | |----\ | |----\

 +---------------+ | +---------------+ |

 ^ | ^ |

 | | | |

 \-----/ \-----/

 setLocal(OFFER) setRemote(PRANSWER)

¶

is frequently updated with new features; any alternate encoding of

session descriptions would have to keep pace with the changes to

SDP, at least until the time that this new encoding eclipsed SDP in

popularity.

However, to provide for future flexibility, the SDP syntax is

encapsulated within a SessionDescription object, which can be

constructed from SDP and be serialized out to SDP. If future

specifications agree on a JSON format for session descriptions, we

could easily enable this object to generate and consume that JSON.

As detailed below, most applications should be able to treat the

SessionDescriptions produced and consumed by these various API calls

as opaque blobs; that is, the application will not need to read or

change them.

3.4. Session Description Control

In order to give the application control over various common session

parameters, JSEP provides control surfaces that tell the JSEP

implementation how to generate session descriptions. This avoids the

need for JavaScript to modify session descriptions in most cases.

Changes to these objects result in changes to the session

descriptions generated by subsequent createOffer/createAnswer calls.

3.4.1. RtpTransceivers

RtpTransceivers allow the application to control the RTP media

associated with one "m=" section. Each RtpTransceiver has an

RtpSender and an RtpReceiver, which an application can use to

control the sending and receiving of RTP media. The application may

also modify the RtpTransceiver directly, for instance, by stopping

it.

RtpTransceivers generally have a 1:1 mapping with "m=" sections,

although there may be more RtpTransceivers than "m=" sections when

RtpTransceivers are created but not yet associated with an "m="

section, or if RtpTransceivers have been stopped and disassociated

from "m=" sections. An RtpTransceiver is said to be associated with

an "m=" section if its media identification (mid) property is non-

null; otherwise, it is said to be disassociated. The associated "m="

section is determined using a mapping between transceivers and "m="

section indices, formed when creating an offer or applying a remote

offer.

An RtpTransceiver is never associated with more than one "m="

section, and once a session description is applied, an "m=" section

is always associated with exactly one RtpTransceiver. However, in

certain cases where an "m=" section has been rejected, as discussed

¶

¶

¶

¶

¶

¶

¶

in Section 5.2.2 below, that "m=" section will be "recycled" and

associated with a new RtpTransceiver with a new MID value.

RtpTransceivers can be created explicitly by the application or

implicitly by calling setRemoteDescription with an offer that adds

new "m=" sections.

3.4.2. RtpSenders

RtpSenders allow the application to control how RTP media is sent.

An RtpSender is conceptually responsible for the outgoing RTP

stream(s) described by an "m=" section. This includes encoding the

attached MediaStreamTrack, sending RTP media packets, and

generating/processing the RTP Control Protocol (RTCP) for the

outgoing RTP streams(s).

3.4.3. RtpReceivers

RtpReceivers allow the application to inspect how RTP media is

received. An RtpReceiver is conceptually responsible for the

incoming RTP stream(s) described by an "m=" section. This includes

processing received RTP media packets, decoding the incoming

stream(s) to produce a remote MediaStreamTrack, and generating/

processing RTCP for the incoming RTP stream(s).

3.5. ICE

3.5.1. ICE Gathering Overview

JSEP gathers ICE candidates as needed by the application. Collection

of ICE candidates is referred to as a gathering phase, and this is

triggered either by the addition of a new or recycled "m=" section

to the local session description or by new ICE credentials in the

description, indicating an ICE restart. Use of new ICE credentials

can be triggered explicitly by the application or implicitly by the

JSEP implementation in response to changes in the ICE configuration.

When the ICE configuration changes in a way that requires a new

gathering phase, a 'needs-ice-restart' bit is set. When this bit is

set, calls to the createOffer API will generate new ICE credentials.

This bit is cleared by a call to the setLocalDescription API with

new ICE credentials from either an offer or an answer, i.e., from

either a locally or remotely initiated ICE restart.

When a new gathering phase starts, the ICE agent will notify the

application that gathering is occurring through a state change

event. Then, when each new ICE candidate becomes available, the ICE

agent will supply it to the application via an onicecandidate event;

these candidates will also automatically be added to the current

and/or pending local session description. Finally, when all

¶

¶

¶

¶

¶

¶

candidates have been gathered, a final onicecandidate event will be

dispatched to signal that the gathering process is complete.

Note that gathering phases only gather the candidates needed by new/

recycled/restarting "m=" sections; other "m=" sections continue to

use their existing candidates. Also, if an "m=" section is bundled

(either by a successful bundle negotiation or by being marked as

bundle-only), then candidates will be gathered and exchanged for

that "m=" section if and only if its MID item is a BUNDLE-tag, as

described in [RFC8843].

3.5.2. ICE Candidate Trickling

Candidate trickling is a technique through which a caller may

incrementally provide candidates to the callee after the initial

offer has been dispatched; the semantics of "Trickle ICE" are

defined in [RFC8838]. This process allows the callee to begin acting

upon the call and setting up the ICE (and perhaps DTLS) connections

immediately, without having to wait for the caller to gather all

possible candidates. This results in faster media setup in cases

where gathering is not performed prior to initiating the call.

JSEP supports optional candidate trickling by providing APIs, as

described above, that provide control and feedback on the ICE

candidate gathering process. Applications that support candidate

trickling can send the initial offer immediately and send individual

candidates when they get notified of a new candidate; applications

that do not support this feature can simply wait for the indication

that gathering is complete, and then create and send their offer,

with all the candidates, at that time.

Upon receipt of trickled candidates, the receiving application will

supply them to its ICE agent. This triggers the ICE agent to start

using the new remote candidates for connectivity checks.

3.5.2.1. ICE Candidate Format

In JSEP, ICE candidates are abstracted by an IceCandidate object,

and as with session descriptions, SDP syntax is used for the

internal representation.

The candidate details are specified in an IceCandidate field, using

the same SDP syntax as the "candidate-attribute" field defined in

[RFC8839], Section 5.1. Note that this field does not contain an

"a=" prefix, as indicated in the following example:

candidate:1 1 UDP 1694498815 192.0.2.33 10000 typ host

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8839#section-5.1

The IceCandidate object contains a field to indicate which ICE

username fragment (ufrag) it is associated with, as defined in

[RFC8839], Section 5.4. This value is used to determine which

session description (and thereby which gathering phase) this

IceCandidate belongs to, which helps resolve ambiguities during ICE

restarts. If this field is absent in a received IceCandidate

(perhaps when communicating with a non-JSEP endpoint), the most

recently received session description is assumed.

The IceCandidate object also contains fields to indicate which "m="

section it is associated with, which can be identified in one of two

ways: either by an "m=" section index or by a MID. The "m=" section

index is a zero-based index, with index N referring to the N+1th

"m=" section in the session description referenced by this

IceCandidate. The MID is a "media stream identification" value, as

defined in [RFC5888], Section 4, which provides a more robust way to

identify the "m=" section in the session description, using the MID

of the associated RtpTransceiver object (which may have been locally

generated by the answerer when interacting with a non-JSEP endpoint

that does not support the MID attribute, as discussed in Section

5.10 below). If the MID field is present in a received IceCandidate,

it MUST be used for identification; otherwise, the "m=" section

index is used instead.

Implementations MUST be prepared to receive objects with some fields

missing, as mentioned above.

3.5.3. ICE Candidate Policy

Typically, when gathering ICE candidates, the JSEP implementation

will gather all possible forms of initial candidates -- host,

server-reflexive, and relay. However, in certain cases, applications

may want to have more specific control over the gathering process,

due to privacy or related concerns. For example, one may want to

only use relay candidates, to leak as little location information as

possible (keeping in mind that this choice comes with corresponding

operational costs). To accomplish this, JSEP allows the application

to restrict which ICE candidates are used in a session. Note that

this filtering is applied on top of any restrictions the

implementation chooses to enforce regarding which IP addresses are

permitted for the application, as discussed in [RFC8828].

There may also be cases where the application wants to change which

types of candidates are used while the session is active. A prime

example is where a callee may initially want to use only relay

candidates, to avoid leaking location information to an arbitrary

caller, but then change to use all candidates (for lower operational

cost) once the user has indicated that they want to take the call.

For this scenario, the JSEP implementation MUST allow the candidate

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc5888#section-4

policy to be changed in mid-session, subject to the aforementioned

interactions with local policy.

To administer the ICE candidate policy, the JSEP implementation will

determine the current setting at the start of each gathering phase.

Then, during the gathering phase, the implementation MUST NOT expose

candidates disallowed by the current policy to the application, use

them as the source of connectivity checks, or indirectly expose them

via other fields, such as the raddr/rport attributes for other ICE

candidates. Later, if a different policy is specified by the

application, the application can apply it by kicking off a new

gathering phase via an ICE restart.

3.5.4. ICE Candidate Pool

JSEP applications typically inform the JSEP implementation to begin

ICE gathering via the information supplied to setLocalDescription,

as the local description indicates the number of ICE components that

will be needed and for which candidates must be gathered. However,

to accelerate cases where the application knows the number of ICE

components to use ahead of time, it may ask the implementation to

gather a pool of potential ICE candidates to help ensure rapid media

setup.

When setLocalDescription is eventually called and the JSEP

implementation prepares to gather the needed ICE candidates, it

SHOULD start by checking if any candidates are available in the

pool. If there are candidates in the pool, they SHOULD be handed to

the application immediately via the ICE candidate event. If the pool

becomes depleted, either because a larger-than-expected number of

ICE components are used or because the pool has not had enough time

to gather candidates, the remaining candidates are gathered as

usual. This only occurs for the first offer/answer exchange, after

which the candidate pool is emptied and no longer used.

One example of where this concept is useful is an application that

expects an incoming call at some point in the future, and wants to

minimize the time it takes to establish connectivity, to avoid

clipping of initial media. By pre-gathering candidates into the

pool, it can exchange and start sending connectivity checks from

these candidates almost immediately upon receipt of a call. Note,

though, that by holding on to these pre-gathered candidates, which

will be kept alive as long as they may be needed, the application

will consume resources on the STUN/TURN servers it is using. ("STUN"

stands for "Session Traversal Utilities for NAT".)

¶

¶

¶

¶

¶

3.5.5. ICE Versions

While this specification formally relies on [RFC8445], at the time

of its publication, the majority of WebRTC implementations support

the version of ICE described in [RFC5245]. The "ice2" attribute

defined in [RFC8445] can be used to detect the version in use by a

remote endpoint and to provide a smooth transition from the older

specification to the newer one. Implementations MUST be able to

accept remote descriptions that do not have the "ice2" attribute.

3.6. Video Size Negotiation

Video size negotiation is the process through which a receiver can

use the "a=imageattr" SDP attribute [RFC6236] to indicate what video

frame sizes it is capable of receiving. A receiver may have hard

limits on what its video decoder can process, or it may have some

maximum set by policy. By specifying these limits in an

"a=imageattr" attribute, JSEP endpoints can attempt to ensure that

the remote sender transmits video at an acceptable resolution.

However, when communicating with a non-JSEP endpoint that does not

understand this attribute, any signaled limits may be exceeded, and

the JSEP implementation MUST handle this gracefully, e.g., by

discarding the video.

Note that certain codecs support transmission of samples with aspect

ratios other than 1.0 (i.e., non-square pixels). JSEP

implementations will not transmit non-square pixels but SHOULD

receive and render such video with the correct aspect ratio.

However, sample aspect ratio has no impact on the size negotiation

described below; all dimensions are measured in pixels, whether

square or not.

3.6.1. Creating an imageattr Attribute

The receiver will first combine any known local limits (e.g.,

hardware decoder capabilities or local policy) to determine the

absolute minimum and maximum sizes it can receive. If there are no

known local limits, the "a=imageattr" attribute SHOULD be omitted.

If these local limits preclude receiving any video, i.e., the

degenerate case of no permitted resolutions, the "a=imageattr"

attribute MUST be omitted, and the "m=" section MUST be marked as

sendonly/inactive, as appropriate.

Otherwise, an "a=imageattr" attribute is created with a "recv"

direction, and the resulting resolution space formed from the

aforementioned intersection is used to specify its minimum and

maximum "x=" and "y=" values.

¶

¶

¶

¶

¶

The rules here express a single set of preferences, and therefore,

the "a=imageattr" "q=" value is not important. It SHOULD be set to

"1.0".

The "a=imageattr" field is payload type specific. When all video

codecs supported have the same capabilities, use of a single

attribute, with the wildcard payload type (*), is RECOMMENDED.

However, when the supported video codecs have different limitations,

specific "a=imageattr" attributes MUST be inserted for each payload

type.

As an example, consider a system with a multiformat video decoder,

which is capable of decoding any resolution from 48x48 to 720p. In

this case, the implementation would generate this attribute:

a=imageattr:* recv [x=[48:1280],y=[48:720],q=1.0]

This declaration indicates that the receiver is capable of decoding

any image resolution from 48x48 up to 1280x720 pixels.

3.6.2. Interpreting imageattr Attributes

[RFC6236] defines "a=imageattr" to be an advisory field. This means

that it does not absolutely constrain the video formats that the

sender can use but gives an indication of the preferred values.

This specification prescribes behavior that is more specific. When a

MediaStreamTrack, which is producing video of a certain resolution

(the "track resolution"), is attached to an RtpSender, which is

encoding the track video at the same or lower resolution(s) (the

"encoder resolutions"), and a remote description is applied that

references the sender and contains valid "a=imageattr recv"

attributes, it MUST follow the rules below to ensure that the sender

does not transmit a resolution that would exceed the size criteria

specified in the attributes. These rules MUST be followed as long as

the attributes remain present in the remote description, including

cases in which the track changes its resolution or is replaced with

a different track.

Depending on how the RtpSender is configured, it may be producing a

single encoding at a certain resolution or, if simulcast (Section

3.7) has been negotiated, multiple encodings, each at their own

specific resolution. In addition, depending on the configuration,

each encoding may have the flexibility to reduce resolution when

needed or may be locked to a specific output resolution.

For each encoding being produced by the RtpSender, the set of

"a=imageattr recv" attributes in the corresponding "m=" section of

the remote description is processed to determine what should be

transmitted. Only attributes that reference the media format

¶

¶

¶

¶

¶

¶

¶

¶

selected for the encoding are considered; each such attribute is

evaluated individually, starting with the attribute with the highest

"q=" value. If multiple attributes have the same "q=" value, they

are evaluated in the order they appear in their containing "m="

section. Note that while JSEP endpoints will include at most one

"a=imageattr recv" attribute per media format, JSEP endpoints may

receive session descriptions from non-JSEP endpoints with "m="

sections that contain multiple such attributes.

For each "a=imageattr recv" attribute, the following rules are

applied. If this processing is successful, the encoding is

transmitted accordingly, and no further attributes are considered

for that encoding. Otherwise, the next attribute is evaluated, in

the aforementioned order. If none of the supplied attributes can be

processed successfully, the encoding MUST NOT be transmitted, and an

error SHOULD be raised to the application.

The limits from the attribute are compared to the encoder

resolution. Only the specific limits mentioned below are

considered; any other values, such as picture aspect ratio, MUST

be ignored. When considering a MediaStreamTrack that is producing

rotated video, the unrotated resolution MUST be used for the

checks. This is required regardless of whether the receiver

supports performing receive-side rotation (e.g., through

Coordination of Video Orientation (CVO) [TS26.114]), as it

significantly simplifies the matching logic.

If the attribute includes a "sar=" (sample aspect ratio) value

set to something other than "1.0", indicating that the receiver

wants to receive non-square pixels, this cannot be satisfied and

the attribute MUST NOT be used.

If the encoder resolution exceeds the maximum size permitted by

the attribute and the encoder is allowed to adjust its

resolution, the encoder SHOULD apply downscaling in order to

satisfy the limits. Downscaling MUST NOT change the picture

aspect ratio of the encoding, ignoring any trivial differences

due to rounding. For example, if the encoder resolution is

1280x720 and the attribute specified a maximum of 640x480, the

expected output resolution would be 640x360. If downscaling

cannot be applied, the attribute MUST NOT be used.

If the encoder resolution is less than the minimum size permitted

by the attribute, the attribute MUST NOT be used; the encoder

MUST NOT apply upscaling. JSEP implementations SHOULD avoid this

situation by allowing receipt of arbitrarily small resolutions,

perhaps via fallback to a software decoder.

¶

¶

*

¶

*

¶

*

¶

*

¶

If the encoder resolution is within the maximum and minimum

sizes, no action is needed.

3.7. Simulcast

JSEP supports simulcast transmission of a MediaStreamTrack, where

multiple encodings of the source media can be transmitted within the

context of a single "m=" section. The current JSEP API is designed

to allow applications to send simulcasted media but only to receive

a single encoding. This allows for multi-user scenarios where each

sending client sends multiple encodings to a server, which then, for

each receiving client, chooses the appropriate encoding to forward.

Applications request support for simulcast by configuring multiple

encodings on an RtpSender. Upon generation of an offer or answer,

these encodings are indicated via SDP markings on the corresponding

"m=" section, as described below. Receivers that understand

simulcast and are willing to receive it will also include SDP

markings to indicate their support, and JSEP endpoints will use

these markings to determine whether simulcast is permitted for a

given RtpSender. If simulcast support is not negotiated, the

RtpSender will only use the first configured encoding.

Note that the exact simulcast parameters are up to the sending

application. While the aforementioned SDP markings are provided to

ensure that the remote side can receive and demux multiple simulcast

encodings, the specific resolutions and bitrates to be used for each

encoding are purely a send-side decision in JSEP.

JSEP currently does not provide a mechanism to configure receipt of

simulcast. This means that if simulcast is offered by the remote

endpoint, the answer generated by a JSEP endpoint will not indicate

support for receipt of simulcast, and as such the remote endpoint

will only send a single encoding per "m=" section.

In addition, JSEP does not provide a mechanism to handle an incoming

offer requesting simulcast from the JSEP endpoint. This means that

setting up simulcast in the case where the JSEP endpoint receives

the initial offer requires out-of-band signaling or SDP inspection.

However, in the case where the JSEP endpoint sets up simulcast in

its initial offer, any established simulcast streams will continue

to work upon receipt of an incoming re-offer. Future versions of

this specification may add additional APIs to handle the incoming

initial offer scenario.

When using JSEP to transmit multiple encodings from an RtpSender,

the techniques from [RFC8853] and [RFC8851] are used. Specifically,

when multiple encodings have been configured for an RtpSender, the

"m=" section for the RtpSender will include an "a=simulcast"

*

¶

¶

¶

¶

¶

¶

attribute, as defined in [RFC8853], Section 5.1, with a "send"

simulcast stream description that lists each desired encoding, and

no "recv" simulcast stream description. The "m=" section will also

include an "a=rid" attribute for each encoding, as specified in

[RFC8851], Section 4; the use of Restriction Identifiers (RIDs, also

called rid-ids or RtpStreamIds) allows the individual encodings to

be disambiguated even though they are all part of the same "m="

section.

3.8. Interactions with Forking

Some call signaling systems allow various types of forking where an

SDP Offer may be provided to more than one device. For example, SIP

[RFC3261] defines both a "parallel search" and "sequential search".

Although these are primarily signaling-level issues that are outside

the scope of JSEP, they do have some impact on the configuration of

the media plane that is relevant. When forking happens at the

signaling layer, the JavaScript application responsible for the

signaling needs to make the decisions about what media should be

sent or received at any point in time, as well as which remote

endpoint it should communicate with; JSEP is used to make sure the

media engine can make the RTP and media perform as required by the

application. The basic operations that the applications can have the

media engine do are as follows:

Start exchanging media with a given remote peer, but keep all the

resources reserved in the offer.

Start exchanging media with a given remote peer, and free any

resources in the offer that are not being used.

3.8.1. Sequential Forking

Sequential forking involves a call being dispatched to multiple

remote callees, where each callee can accept the call, but only one

active session ever exists at a time; no mixing of received media is

performed.

JSEP handles sequential forking well, allowing the application to

easily control the policy for selecting the desired remote endpoint.

When an answer arrives from one of the callees, the application can

choose to apply it as either (1) a provisional answer, leaving open

the possibility of using a different answer in the future or (2) a

final answer, ending the setup flow.

In a "first-one-wins" situation, the first answer will be applied as

a final answer, and the application will reject any subsequent

answers. In SIP parlance, this would be ACK + BYE.

¶

¶

*

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8853#section-5.1
https://rfc-editor.org/rfc/rfc8851#section-4

In a "last-one-wins" situation, all answers would be applied as

provisional answers, and any previous call leg will be terminated.

At some point, the application will end the setup process, perhaps

with a timer; at this point, the application could reapply the

pending remote description as a final answer.

3.8.2. Parallel Forking

Parallel forking involves a call being dispatched to multiple remote

callees, where each callee can accept the call and multiple

simultaneous active signaling sessions can be established as a

result. If multiple callees send media at the same time, the

possibilities for handling this are described in [RFC3960],

Section 3.1. Most SIP devices today only support exchanging media

with a single device at a time and do not try to mix multiple early

media audio sources, as that could result in a confusing situation.

For example, consider having a European ringback tone mixed together

with the North American ringback tone -- the resulting sound would

not be like either tone and would confuse the user. If the signaling

application wishes to only exchange media with one of the remote

endpoints at a time, then from a media engine point of view, this is

exactly like the sequential forking case.

In the parallel forking case where the JavaScript application wishes

to simultaneously exchange media with multiple peers, the flow is

slightly more complex, but the JavaScript application can follow the

strategy that [RFC3960] describes, using UPDATE. The UPDATE approach

allows the signaling to set up a separate media flow for each peer

that it wishes to exchange media with. In JSEP, this offer used in

the UPDATE would be formed by simply creating a new PeerConnection

(see Section 4.1) and making sure that the same local media streams

have been added into this new PeerConnection. Then the new

PeerConnection object would produce an SDP offer that could be used

by the signaling to perform the UPDATE strategy discussed in

[RFC3960].

As a result of sharing the media streams, the application will end

up with N parallel PeerConnection sessions, each with a local and

remote description and their own local and remote addresses. The

media flow from these sessions can be managed using setDirection

(see Section 4.2.3), or the application can choose to play out the

media from all sessions mixed together. Of course, if the

application wants to only keep a single session, it can simply

terminate the sessions that it no longer needs.

4. Interface

This section details the basic operations that must be present to

implement JSEP functionality. The actual API exposed in the W3C API

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3960#section-3.1

all:

relay:

may have somewhat different syntax but should map easily to these

concepts.

4.1. PeerConnection

4.1.1. Constructor

The PeerConnection constructor allows the application to specify

global parameters for the media session, such as the STUN/TURN

servers and credentials to use when gathering candidates, as well as

the initial ICE candidate policy and pool size, and also the bundle

policy to use.

If an ICE candidate policy is specified, it functions as described

in Section 3.5.3, causing the JSEP implementation to only surface

the permitted candidates (including any implementation-internal

filtering) to the application and only use those candidates for

connectivity checks. The set of available policies is as follows:

All candidates permitted by implementation policy will be

gathered and used.

All candidates except relay candidates will be filtered out.

This obfuscates the location information that might be

ascertained by the remote peer from the received candidates.

Depending on how the application deploys and chooses relay

servers, this could obfuscate location to a metro or possibly

even global level.

The default ICE candidate policy MUST be set to "all", as this is

generally the desired policy and also typically reduces the use of

application TURN server resources significantly.

If a size is specified for the ICE candidate pool, this indicates

the number of ICE components to pre-gather candidates for. Because

pre‑gathering results in utilizing STUN/TURN server resources for

potentially long periods of time, this MUST only occur upon

application request, and therefore the default candidate pool size

MUST be zero.

The application can specify its preferred policy regarding the use

of BUNDLE, the multiplexing mechanism defined in [RFC8843].

Regardless of policy, the application will always try to negotiate

bundle onto a single transport and will offer a single bundle group

across all "m=" sections; use of this single transport is contingent

upon the answerer accepting bundle. However, by specifying a policy

from the list below, the application can control exactly how

aggressively it will try to bundle media streams together, which

affects how it will interoperate with a non-bundle-aware endpoint.

¶

¶

¶

¶

¶

¶

¶

balanced:

max-compat:

must-bundle:

negotiate:

When negotiating with a non-bundle-aware endpoint, only the streams

not marked as bundle-only streams will be established.

The set of available policies is as follows:

The first "m=" section of each type (audio, video, or

application) will contain transport parameters, which will allow

an answerer to unbundle that section. The second and any

subsequent "m=" sections of each type will be marked as bundle-

only. The result is that if there are N distinct media types,

then candidates will be gathered for N media streams. This policy

balances the desire to multiplex with the need to ensure that

basic audio and video can still be negotiated in legacy cases.

When acting as answerer, if there is no bundle group in the

offer, the implementation will reject all but the first "m="

section of each type.

All "m=" sections will contain transport parameters;

none will be marked as bundle-only. This policy makes no

assumptions about the remote endpoint and as such will allow all

streams to be received by non-bundle-aware endpoints, but as a

result requires separate candidates to be gathered for each media

stream.

Only the first "m=" section will contain transport

parameters; all streams other than the first will be marked as

bundle-only. This policy presumes the remote endpoint supports

multiplexing and accordingly aims to minimize candidate

gathering, at the cost of less compatibility with legacy

endpoints. When acting as answerer, the implementation will

reject any "m=" sections other than the first "m=" section,

unless they are in the same bundle group as that "m=" section.

As it provides the best trade-off between performance and

compatibility with legacy endpoints, the default bundle policy MUST

be set to "balanced".

[RFC8829] defined a policy known as "max-bundle", which, while

defined identically to the "must-bundle" policy described above, was

implemented by some implementations according to an earlier, pre-

standard definition (in which, for example, no "m=" sections were

marked as bundle-only). As a result, "max-bundle" is considered

deprecated, and new applications should use the "must-bundle" policy

instead.

The application can specify its preferred policy regarding use of

RTP/RTCP multiplexing [RFC5761] using one of the following policies:

The JSEP implementation will gather both RTP and RTCP

candidates but also will offer "a=rtcp-mux", thus allowing for

¶

¶

¶

¶

¶

¶

¶

¶

require:

compatibility with either multiplexing or non-multiplexing

endpoints.

The JSEP implementation will only gather RTP candidates

and will insert an "a=rtcp-mux-only" indication into any new "m="

sections in offers it generates. This halves the number of

candidates that the offerer needs to gather. Applying a

description with an "m=" section that does not contain an

"a=rtcp-mux" attribute will cause an error to be returned.

The default multiplexing policy MUST be set to "require".

Implementations MAY choose to reject attempts by the application to

set the multiplexing policy to "negotiate".

4.1.2. addTrack

The addTrack method adds a MediaStreamTrack to the PeerConnection,

using the MediaStream argument to associate the track with other

tracks in the same MediaStream, so that they can be added to the

same "LS" (Lip Synchronization) group when creating an offer or

answer. Adding tracks to the same "LS" group indicates that the

playback of these tracks should be synchronized for proper lip sync,

as described in [RFC5888], Section 7. addTrack attempts to minimize

the number of transceivers as follows: if the PeerConnection is in

the "have‑remote-offer" state, the track will be attached to the

first compatible transceiver that was created by the most recent

call to setRemoteDescription and does not have a local track.

Otherwise, a new transceiver will be created, as described in

Section 4.1.4.

4.1.3. removeTrack

The removeTrack method removes a MediaStreamTrack from the

PeerConnection, using the RtpSender argument to indicate which

sender should have its track removed. The sender's track is cleared,

and the sender stops sending. Future calls to createOffer will mark

the "m=" section associated with the sender as recvonly (if

transceiver.direction is sendrecv) or as inactive (if

transceiver.direction is sendonly).

4.1.4. addTransceiver

The addTransceiver method adds a new RtpTransceiver to the

PeerConnection. If a MediaStreamTrack argument is provided, then the

transceiver will be configured with that media type and the track

will be attached to the transceiver. Otherwise, the application MUST

explicitly specify the type; this mode is useful for creating

recvonly transceivers as well as for creating transceivers to which

a track can be attached at some later point.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5888#section-7

At the time of creation, the application can also specify a

transceiver direction attribute, a set of MediaStreams that the

transceiver is associated with (allowing "LS" group assignments),

and a set of encodings for the media (used for simulcast as

described in Section 3.7).

4.1.5. onaddtrack Event

The onaddtrack event is dispatched to the application when a new

remote track has been signaled as a result of a setRemoteDescription

call. The new track is supplied as a MediaStreamTrack object in the

event, along with the MediaStream(s) the track is part of.

4.1.6. createDataChannel

The createDataChannel method creates a new data channel and attaches

it to the PeerConnection. If no data channel currently exists for

this PeerConnection, then a new offer/answer exchange is required.

All data channels on a given PeerConnection share the same SCTP/DTLS

association ("SCTP" stands for "Stream Control Transmission

Protocol") and therefore the same "m=" section, so subsequent

creation of data channels does not have any impact on the JSEP

state.

The createDataChannel method also includes a number of arguments

that are used by the PeerConnection (e.g., maxPacketLifetime) but

are not reflected in the SDP and do not affect the JSEP state.

4.1.7. ondatachannel Event

The ondatachannel event is dispatched to the application when a new

data channel has been negotiated by the remote side, which can occur

at any time after the underlying SCTP/DTLS association has been

established. The new data channel object is supplied in the event.

4.1.8. createOffer

The createOffer method generates a blob of SDP that contains an

offer per [RFC3264] with the supported configurations for the

session, including descriptions of the media added to this

PeerConnection, the codec, RTP, and RTCP options supported by this

implementation, and any candidates that have been gathered by the

ICE agent. An options parameter may be supplied to provide

additional control over the generated offer. This options parameter

allows an application to trigger an ICE restart, for the purpose of

reestablishing connectivity.

In the initial offer, the generated SDP will contain all desired

functionality for the session (functionality that is supported but

not desired by default may be omitted); for each SDP line, the

¶

¶

¶

¶

¶

¶

generation of the SDP will follow the process defined for generating

an initial offer from the specification that defines the given SDP

line. The exact handling of initial offer generation is detailed in

Section 5.2.1 below.

In the event createOffer is called after the session is established,

createOffer will generate an offer to modify the current session

based on any changes that have been made to the session, e.g.,

adding or stopping RtpTransceivers, or requesting an ICE restart.

For each existing stream, the generation of each SDP line MUST

follow the process defined for generating an updated offer from the

RFC that specifies the given SDP line. For each new stream, the

generation of the SDP MUST follow the process of generating an

initial offer, as mentioned above. If no changes have been made, or

for SDP lines that are unaffected by the requested changes, the

offer will only contain the parameters negotiated by the last offer/

answer exchange. The exact handling of subsequent offer generation

is detailed in Section 5.2.2 below.

Session descriptions generated by createOffer MUST be immediately

usable by setLocalDescription; if a system has limited resources

(e.g., a finite number of decoders), createOffer SHOULD return an

offer that reflects the current state of the system, so that

setLocalDescription will succeed when it attempts to acquire those

resources.

Calling this method may do things such as generating new ICE

credentials, but it does not change the PeerConnection state,

trigger candidate gathering, or cause media to start or stop

flowing. Specifically, the offer is not applied, and does not become

the pending local description, until setLocalDescription is called.

4.1.9. createAnswer

The createAnswer method generates a blob of SDP that contains an SDP

answer per [RFC3264] with the supported configuration for the

session that is compatible with the parameters supplied in the most

recent call to setRemoteDescription; setRemoteDescription MUST have

been called prior to calling createAnswer. Like createOffer, the

returned blob contains descriptions of the media added to this

PeerConnection, the codec/RTP/RTCP options negotiated for this

session, and any candidates that have been gathered by the ICE

agent. An options parameter may be supplied to provide additional

control over the generated answer.

As an answer, the generated SDP will contain a specific

configuration that specifies how the media plane should be

established; for each SDP line, the generation of the SDP MUST

follow the process defined for generating an answer from the

¶

¶

¶

¶

¶

specification that defines the given SDP line. The exact handling of

answer generation is detailed in Section 5.3 below.

Session descriptions generated by createAnswer MUST be immediately

usable by setLocalDescription; like createOffer, the returned

description SHOULD reflect the current state of the system.

Calling this method may do things such as generating new ICE

credentials, but it does not change the PeerConnection state,

trigger candidate gathering, or cause a media state change.

Specifically, the answer is not applied, and does not become the

current local description, until setLocalDescription is called.

4.1.10. SessionDescriptionType

Session description objects (RTCSessionDescription) may be of type

"offer", "pranswer", "answer", or "rollback". These types provide

information as to how the description parameter should be parsed and

how the media state should be changed.

"offer" indicates that a description MUST be parsed as an offer;

said description may include many possible media configurations. A

description used as an "offer" may be applied any time the

PeerConnection is in a "stable" state or applied as an update to a

previously supplied but unanswered "offer".

"pranswer" indicates that a description MUST be parsed as an answer,

but not a final answer, and so MUST NOT result in the freeing of

allocated resources. It may result in the start of media

transmission, if the answer does not specify an inactive media

direction. A description used as a "pranswer" may be applied as a

response to an "offer" or as an update to a previously sent

"pranswer".

"answer" indicates that a description MUST be parsed as an answer,

the offer/answer exchange MUST be considered complete, and any

resources (decoders, candidates) that are no longer needed SHOULD be

released. A description used as an "answer" may be applied as a

response to an "offer" or as an update to a previously sent

"pranswer".

The only difference between a provisional and final answer is that

the final answer results in the freeing of any unused resources that

were allocated as a result of the offer. As such, the application

can use some discretion on whether an answer should be applied as

provisional or final and can change the type of the session

description as needed. For example, in a serial forking scenario, an

application may receive multiple "final" answers, one from each

remote endpoint. The application could choose to accept the initial

answers as provisional answers and only apply an answer as final

¶

¶

¶

¶

¶

¶

¶

when it receives one that meets its criteria (e.g., a live user

instead of voicemail).

"rollback" is a special session description type indicating that the

state machine MUST be rolled back to the previous "stable" state, as

described in Section 4.1.10.2. The contents MUST be empty.

4.1.10.1. Use of Provisional Answers

Most applications will not need to create answers using the

"pranswer" type. While it is good practice to send an immediate

response to an offer, in order to warm up the session transport and

prevent media clipping, the preferred handling for a JSEP

application is to create and send a "sendonly" final answer with a

null MediaStreamTrack immediately after receiving the offer, which

will prevent media from being sent by the caller and allow media to

be sent immediately upon answer by the callee. Later, when the

callee actually accepts the call, the application can plug in the

real MediaStreamTrack and create a new "sendrecv" offer to update

the previous offer/answer pair and start bidirectional media flow.

While this could also be done with a "sendonly" pranswer followed by

a "sendrecv" answer, the initial pranswer leaves the offer/answer

exchange open, which means that the caller cannot send an updated

offer during this time.

As an example, consider a typical JSEP application that wants to set

up audio and video as quickly as possible. When the callee receives

an offer with audio and video MediaStreamTracks, it will send an

immediate answer accepting these tracks as sendonly (meaning that

the caller will not send the callee any media yet, and because the

callee has not yet added its own MediaStreamTracks, the callee will

not send any media either). It will then ask the user to accept the

call and acquire the needed local tracks. Upon acceptance by the

user, the application will plug in the tracks it has acquired,

which, because ICE handshaking and DTLS handshaking have likely

completed by this point, can start transmitting immediately. The

application will also send a new offer to the remote side indicating

call acceptance and moving the audio and video to be two-way media.

A detailed example flow along these lines is shown in Section 7.3.

Of course, some applications may not be able to perform this double

offer/answer exchange, particularly ones that are attempting to

gateway to legacy signaling protocols. In these cases, pranswer can

still provide the application with a mechanism to warm up the

transport.

¶

¶

¶

¶

¶

4.1.10.2. Rollback

In certain situations, it may be desirable to "undo" a change made

to setLocalDescription or setRemoteDescription. Consider a case

where a call is ongoing and one side wants to change some of the

session parameters; that side generates an updated offer and then

calls setLocalDescription. However, the remote side, either before

or after setRemoteDescription, decides it does not want to accept

the new parameters and sends a reject message back to the offerer.

Now, the offerer, and possibly the answerer as well, needs to return

to a "stable" state and the previous local/remote description. To

support this, we introduce the concept of "rollback", which discards

any proposed changes to the session, returning the state machine to

the "stable" state. A rollback is performed by supplying a session

description of type "rollback" with empty contents to either

setLocalDescription or setRemoteDescription.

4.1.11. setLocalDescription

The setLocalDescription method instructs the PeerConnection to apply

the supplied session description as its local configuration. The

type field indicates whether the description should be processed as

an offer, provisional answer, final answer, or rollback; offers and

answers are checked differently, using the various rules that exist

for each SDP line.

This API changes the local media state; among other things, it sets

up local resources for receiving and decoding media. In order to

successfully handle scenarios where the application wants to offer

to change from one media format to a different, incompatible format,

the PeerConnection MUST be able to simultaneously support use of

both the current and pending local descriptions (e.g., support the

codecs that exist in either description). This dual processing

begins when the PeerConnection enters the "have-local-offer" state,

and it continues until setRemoteDescription is called with either

(1) a final answer, at which point the PeerConnection can fully

adopt the pending local description or (2) a rollback, which results

in a revert to the current local description.

This API indirectly controls the candidate gathering process. When a

local description is supplied and the number of transports currently

in use does not match the number of transports needed by the local

description, the PeerConnection will create transports as needed and

begin gathering candidates for each transport, using ones from the

candidate pool if available.

If (1) setRemoteDescription was previously called with an offer, (2)

setLocalDescription is called with an answer (provisional or final),

¶

¶

¶

¶

(3) the media directions are compatible, and (4) media is available

to send, this will result in the starting of media transmission.

4.1.12. setRemoteDescription

The setRemoteDescription method instructs the PeerConnection to

apply the supplied session description as the desired remote

configuration. As in setLocalDescription, the type field of the

description indicates how it should be processed.

This API changes the local media state; among other things, it sets

up local resources for sending and encoding media.

If (1) setLocalDescription was previously called with an offer, (2)

setRemoteDescription is called with an answer (provisional or

final), (3) the media directions are compatible, and (4) media is

available to send, this will result in the starting of media

transmission.

4.1.13. currentLocalDescription

The currentLocalDescription method returns the current negotiated

local description -- i.e., the local description from the last

successful offer/answer exchange -- in addition to any local

candidates that have been generated by the ICE agent since the local

description was set.

A null object will be returned if an offer/answer exchange has not

yet been completed.

4.1.14. pendingLocalDescription

The pendingLocalDescription method returns a copy of the local

description currently in negotiation -- i.e., a local offer set

without any corresponding remote answer -- in addition to any local

candidates that have been generated by the ICE agent since the local

description was set.

A null object will be returned if the state of the PeerConnection is

"stable" or "have-remote-offer".

4.1.15. currentRemoteDescription

The currentRemoteDescription method returns a copy of the current

negotiated remote description -- i.e., the remote description from

the last successful offer/answer exchange -- in addition to any

remote candidates that have been supplied via processIceMessage

since the remote description was set.

¶

¶

¶

¶

¶

¶

¶

¶

¶

null:

true:

false:

A null object will be returned if an offer/answer exchange has not

yet been completed.

4.1.16. pendingRemoteDescription

The pendingRemoteDescription method returns a copy of the remote

description currently in negotiation -- i.e., a remote offer set

without any corresponding local answer -- in addition to any remote

candidates that have been supplied via processIceMessage since the

remote description was set.

A null object will be returned if the state of the PeerConnection is

"stable" or "have-local-offer".

4.1.17. canTrickleIceCandidates

The canTrickleIceCandidates property indicates whether the remote

side supports receiving trickled candidates. There are three

potential values:

No SDP has been received from the other side, so it is not

known if it can handle trickle. This is the initial value before

setRemoteDescription is called.

SDP has been received from the other side indicating that it

can support trickle.

SDP has been received from the other side indicating that it

cannot support trickle.

As described in Section 3.5.2, JSEP implementations always provide

candidates to the application individually, consistent with what is

needed for Trickle ICE. However, applications can use the

canTrickleIceCandidates property to determine whether their peer can

actually do Trickle ICE, i.e., whether it is safe to send an initial

offer or answer followed later by candidates as they are gathered.

As "true" is the only value that definitively indicates remote

Trickle ICE support, an application that compares

canTrickleIceCandidates against "true" will by default attempt Half

Trickle on initial offers and Full Trickle on subsequent

interactions with a Trickle ICE-compatible agent.

4.1.18. setConfiguration

The setConfiguration method allows the global configuration of the

PeerConnection, which was initially set by constructor parameters,

to be changed during the session. The effects of calling this method

¶

¶

¶

¶

¶

¶

¶

¶

depend on when it is invoked, and they will differ, depending on

which specific parameters are changed:

Any changes to the STUN/TURN servers to use affect the next

gathering phase. If an ICE gathering phase has already started or

completed, the 'needs-ice-restart' bit mentioned in Section 3.5.1

will be set. This will cause the next call to createOffer to

generate new ICE credentials, for the purpose of forcing an ICE

restart and kicking off a new gathering phase, in which the new

servers will be used. If the ICE candidate pool has a nonzero

size and a local description has not yet been applied, any

existing candidates will be discarded, and new candidates will be

gathered from the new servers.

Any change to the ICE candidate policy affects the next gathering

phase. If an ICE gathering phase has already started or

completed, the 'needs-ice-restart' bit will be set. Either way,

changes to the policy have no effect on the candidate pool,

because pooled candidates are not made available to the

application until a gathering phase occurs, and so any necessary

filtering can still be done on any pooled candidates.

The ICE candidate pool size MUST NOT be changed after applying a

local description. If a local description has not yet been

applied, any changes to the ICE candidate pool size take effect

immediately; if increased, additional candidates are pre-

gathered; if decreased, the now-superfluous candidates are

discarded.

The bundle and RTCP-multiplexing policies MUST NOT be changed

after the construction of the PeerConnection.

Calling this method may result in a change to the state of the ICE

agent.

4.1.19. addIceCandidate

The addIceCandidate method provides an update to the ICE agent via

an IceCandidate object (Section 3.5.2.1). If the IceCandidate's

candidate field is non-null, the IceCandidate is treated as a new

remote ICE candidate, which will be added to the current and/or

pending remote description according to the rules defined for

Trickle ICE. Otherwise, the IceCandidate is treated as an end-of-

candidates indication, as defined in [RFC8838], Section 14.

In either case, the "m=" section index, MID, and ufrag fields from

the supplied IceCandidate are used to determine which "m=" section

and ICE candidate generation the IceCandidate belongs to, as

described in Section 3.5.2.1 above. In the case of an end-of-

candidates indication, null values for the "m=" section index and

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc8838#section-14

MID fields are interpreted to mean that the indication applies to

all "m=" sections in the specified ICE candidate generation.

However, if both fields are null for a new remote candidate, this

MUST be treated as an invalid condition, as specified below.

If any IceCandidate fields contain invalid values or an error occurs

during the processing of the IceCandidate object, the supplied

IceCandidate MUST be ignored and an error MUST be returned.

Otherwise, the new remote candidate or end-of-candidates indication

is supplied to the ICE agent. In the case of a new remote candidate,

connectivity checks will be sent to the new candidate, assuming

setLocalDescription has already been called to initialize the ICE

gathering process.

4.1.20. onicecandidate Event

The onicecandidate event is dispatched to the application in two

situations: (1) when the ICE agent has discovered a new allowed

local ICE candidate during ICE gathering, as outlined in Section

3.5.1 and subject to the restrictions discussed in Section 3.5.3, or

(2) when an ICE gathering phase completes. The event contains a

single IceCandidate object, as defined in Section 3.5.2.1.

In the first case, the newly discovered candidate is reflected in

the IceCandidate object, and all of its fields MUST be non-null.

This candidate will also be added to the current and/or pending

local description according to the rules defined for Trickle ICE.

In the second case, the event's IceCandidate object MUST have its

candidate field set to null to indicate that the current gathering

phase is complete, i.e., there will be no further onicecandidate

events in this phase. However, the IceCandidate's ufrag field MUST

be specified to indicate which ICE candidate generation is ending.

The IceCandidate's "m=" section index and MID fields MAY be

specified to indicate that the event applies to a specific "m="

section, or set to null to indicate it applies to all "m=" sections

in the current ICE candidate generation. This event can be used by

the application to generate an end-of-candidates indication, as

defined in [RFC8838], Section 13.

4.2. RtpTransceiver

4.2.1. stop

The stop method stops an RtpTransceiver. This will cause future

calls to createOffer to generate a zero port for the associated "m="

section. See below for more details.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8838#section-13

4.2.2. stopped

The stopped property indicates whether the transceiver has been

stopped, either by a call to stop or by applying an answer that

rejects the associated "m=" section. In either of these cases, it is

set to "true" and otherwise will be set to "false".

A stopped RtpTransceiver does not send any outgoing RTP or RTCP or

process any incoming RTP or RTCP. It cannot be restarted.

4.2.3. setDirection

The setDirection method sets the direction of a transceiver, which

affects the direction property of the associated "m=" section on

future calls to createOffer and createAnswer. The permitted values

for direction are "recvonly", "sendrecv", "sendonly", and

"inactive", mirroring the identically named direction attributes

defined in [RFC4566], Section 6.

When creating offers, the transceiver direction is directly

reflected in the output, even for re-offers. When creating answers,

the transceiver direction is intersected with the offered direction,

as explained in Section 5.3 below.

Note that while setDirection sets the direction property of the

transceiver immediately (Section 4.2.4), this property does not

immediately affect whether the transceiver's RtpSender will send or

its RtpReceiver will receive. The direction in effect is represented

by the currentDirection property, which is only updated when an

answer is applied.

4.2.4. direction

The direction property indicates the last value passed into

setDirection. If setDirection has never been called, it is set to

the direction the transceiver was initialized with.

4.2.5. currentDirection

The currentDirection property indicates the last negotiated

direction for the transceiver's associated "m=" section. More

specifically, it indicates the direction attribute [RFC3264] of the

associated "m=" section in the last applied answer (including

provisional answers), with "send" and "recv" directions reversed if

it was a remote answer. For example, if the direction attribute for

the associated "m=" section in a remote answer is "recvonly",

currentDirection is set to "sendonly".

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4566#section-6

If an answer that references this transceiver has not yet been

applied or if the transceiver is stopped, currentDirection is set to

"null".

4.2.6. setCodecPreferences

The setCodecPreferences method sets the codec preferences of a

transceiver, which in turn affect the presence and order of codecs

of the associated "m=" section on future calls to createOffer and

createAnswer. Note that setCodecPreferences does not directly affect

which codec the implementation decides to send. It only affects

which codecs the implementation indicates that it prefers to

receive, via the offer or answer. Even when a codec is excluded by

setCodecPreferences, it still may be used to send until the next

offer/answer exchange discards it.

The codec preferences of an RtpTransceiver can cause codecs to be

excluded by subsequent calls to createOffer and createAnswer, in

which case the corresponding media formats in the associated "m="

section will be excluded. The codec preferences cannot add media

formats that would otherwise not be present.

The codec preferences of an RtpTransceiver can also determine the

order of codecs in subsequent calls to createOffer and createAnswer,

in which case the order of the media formats in the associated "m="

section will follow the specified preferences.

5. SDP Interaction Procedures

This section describes the specific procedures to be followed when

creating and parsing SDP objects.

5.1. Requirements Overview

JSEP implementations MUST comply with the specifications listed

below that govern the creation and processing of offers and answers.

5.1.1. Usage Requirements

All session descriptions handled by JSEP implementations, both local

and remote, MUST indicate support for the following specifications.

If any of these are absent, this omission MUST be treated as an

error.

ICE, as specified in [RFC8445], MUST be used. Note that the

remote endpoint may use a lite implementation; implementations

MUST properly handle remote endpoints that use ICE-lite. The

remote endpoint may also use an older version of ICE;

implementations MUST properly handle remote endpoints that use

ICE as specified in [RFC5245].

¶

¶

¶

¶

¶

¶

¶

*

¶

DTLS [RFC6347] or DTLS-SRTP [RFC5763] MUST be used, as

appropriate for the media type, as specified in [RFC8827].

The SDP security descriptions mechanism for SRTP keying [RFC4568]

MUST NOT be used, as discussed in [RFC8827].

5.1.2. Profile Names and Interoperability

For media "m=" sections, JSEP implementations MUST support the "UDP/

TLS/RTP/SAVPF" profile specified in [RFC5764] as well as the "TCP/

DTLS/RTP/SAVPF" profile specified in [RFC7850] and MUST indicate one

of these profiles for each media "m=" line they produce in an offer.

For data "m=" sections, implementations MUST support the "UDP/DTLS/

SCTP" profile as well as the "TCP/DTLS/SCTP" profile and MUST

indicate one of these profiles for each data "m=" line they produce

in an offer. The exact profile to use is determined by the protocol

associated with the current default or selected ICE candidate, as

described in [RFC8839], Section 4.2.1.2.

Unfortunately, in an attempt at compatibility, some endpoints

generate other profile strings even when they mean to support one of

these profiles. For instance, an endpoint might generate "RTP/AVP"

but supply "a=fingerprint" and "a=rtcp-fb" attributes, indicating

its willingness to support "UDP/TLS/RTP/SAVPF" or "TCP/DTLS/RTP/

SAVPF". In order to simplify compatibility with such endpoints, JSEP

implementations MUST follow the following rules when processing the

media "m=" sections in a received offer:

Any profile in the offer matching one of the following MUST be

accepted:

"RTP/AVP" (defined in [RFC4566], Section 8.2.2)

"RTP/AVPF" (defined in [RFC4585], Section 9)

"RTP/SAVP" (defined in [RFC3711], Section 12)

"RTP/SAVPF" (defined in [RFC5124], Section 6)

"TCP/DTLS/RTP/SAVP" (defined in [RFC7850], Section 3.4)

"TCP/DTLS/RTP/SAVPF" (defined in [RFC7850], Section 3.5)

"UDP/TLS/RTP/SAVP" (defined in [RFC5764], Section 9)

"UDP/TLS/RTP/SAVPF" (defined in [RFC5764], Section 9)

The profile in any "m=" line in any generated answer MUST exactly

match the profile provided in the offer.

*

¶

¶

¶

¶

*

¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

*

¶

https://rfc-editor.org/rfc/rfc8839#section-4.2.1.2
https://rfc-editor.org/rfc/rfc4566#section-8.2.2
https://rfc-editor.org/rfc/rfc4585#section-9
https://rfc-editor.org/rfc/rfc3711#section-12
https://rfc-editor.org/rfc/rfc5124#section-6
https://rfc-editor.org/rfc/rfc7850#section-3.4
https://rfc-editor.org/rfc/rfc7850#section-3.5
https://rfc-editor.org/rfc/rfc5764#section-9
https://rfc-editor.org/rfc/rfc5764#section-9

Because DTLS-SRTP is REQUIRED, the choice of SAVP or AVP has no

effect; support for DTLS-SRTP is determined by the presence of

one or more "a=fingerprint" attributes. Note that lack of an

"a=fingerprint" attribute will lead to negotiation failure.

The use of AVPF or AVP simply controls the timing rules used for

RTCP feedback. If AVPF is provided or an "a=rtcp-fb" attribute is

present, assume AVPF timing, i.e., a default value of "trr-

int=0". Otherwise, assume that AVPF is being used in an AVP-

compatible mode and use a value of "trr-int=4000".

For data "m=" sections, implementations MUST support receiving

the "UDP/DTLS/SCTP", "TCP/DTLS/SCTP", or "DTLS/SCTP" (for

backwards compatibility) profiles.

Note that re-offers by JSEP implementations MUST use the correct

profile strings even if the initial offer/answer exchange used an

(incorrect) older profile string. This simplifies JSEP behavior,

with minimal downside, as any remote endpoint that fails to handle

such a re-offer will also fail to handle a JSEP endpoint's initial

offer.

5.2. Constructing an Offer

When createOffer is called, a new SDP description MUST be created

that includes the functionality specified in [RFC8834]. The exact

details of this process are explained below.

5.2.1. Initial Offers

When createOffer is called for the first time, the result is known

as the initial offer.

The first step in generating an initial offer is to generate

session-level attributes, as specified in [RFC4566], Section 5.

Specifically:

The first SDP line MUST be "v=0" as defined in [RFC4566],

Section 5.1.

The second SDP line MUST be an "o=" line as defined in [RFC4566],

Section 5.2. The value of the <username> field SHOULD be "-". The

<sess-id> MUST be representable by a 64-bit signed integer, and

the value MUST be less than 2 -1. It is RECOMMENDED that the

<sess-id> be constructed by generating a 64-bit quantity with the

highest bit set to zero and the remaining 63 bits being

cryptographically random. The value of the <nettype> <addrtype>

<unicast-address> tuple SHOULD be set to a non-meaningful

address, such as IN IP4 0.0.0.0, to prevent leaking a local IP

address in this field; this problem is discussed in [RFC8828]. As

*

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

63

https://rfc-editor.org/rfc/rfc4566#section-5
https://rfc-editor.org/rfc/rfc4566#section-5.1
https://rfc-editor.org/rfc/rfc4566#section-5.2

mentioned in [RFC4566], the entire "o=" line needs to be unique,

but selecting a random number for <sess-id> is sufficient to

accomplish this.

The third SDP line MUST be a "s=" line as defined in [RFC4566],

Section 5.3; to match the "o=" line, a single dash SHOULD be used

as the session name, e.g., "s=-". Note that this differs from the

advice in [RFC4566], which proposes a single space, but as both

"o=" and "s=" are meaningless in JSEP, having the same

meaningless value seems clearer.

Session Information ("i="), URI ("u="), Email Address ("e="),

Phone Number ("p="), Repeat Times ("r="), and Time Zones ("z=")

lines are not useful in this context and SHOULD NOT be included.

Encryption Keys ("k=") lines do not provide sufficient security

and MUST NOT be included.

A "t=" line MUST be added, as specified in

[RFC4566], Section 5.9; both <start-time> and <stop-time> SHOULD

be set to zero, e.g., "t=0 0".

An "a=ice-options" line with the "trickle" and "ice2" options

MUST be added, as specified in [RFC8840], Section 4.1.1 and

[RFC8445], Section 10.

If WebRTC identity is being used, an "a=identity" line MUST be

added, as described in [RFC8827], Section 5.

The next step is to generate "m=" sections, as specified in

[RFC4566], Section 5.14. An "m=" section is generated for each

RtpTransceiver that has been added to the PeerConnection, excluding

any stopped RtpTransceivers; this is done in the order the

RtpTransceivers were added to the PeerConnection. If there are no

such RtpTransceivers, no "m=" sections are generated; more can be

added later, as discussed in [RFC3264], Section 5.

For each "m=" section generated for an RtpTransceiver, establish a

mapping between the transceiver and the index of the generated "m="

section.

Each "m=" section, provided it is not marked as bundle-only, MUST

contain a unique set of ICE credentials and a unique set of ICE

candidates. Bundle-only "m=" sections MUST NOT contain any ICE

credentials and MUST NOT gather any candidates.

For DTLS, all "m=" sections MUST use any and all certificates that

have been specified for the PeerConnection; as a result, they MUST

all have the same fingerprint value or values [RFC8122], or these

values MUST be session-level attributes.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4566#section-5.3
https://rfc-editor.org/rfc/rfc4566#section-5.9
https://rfc-editor.org/rfc/rfc8840#section-4.1.1
https://rfc-editor.org/rfc/rfc8445#section-10
https://rfc-editor.org/rfc/rfc8827#section-5
https://rfc-editor.org/rfc/rfc4566#section-5.14
https://rfc-editor.org/rfc/rfc3264#section-5

Each "m=" section MUST be generated as specified in [RFC4566],

Section 5.14. For the "m=" line itself, the following rules MUST be

followed:

If the "m=" section is marked as bundle-only, then the <port>

value MUST be set to zero. Otherwise, the <port> value is set to

the port of the default ICE candidate for this "m=" section, but

given that no candidates are available yet, the default port

value of 9 (Discard) MUST be used, as indicated in [RFC8840],

Section 4.1.1.

To properly indicate use of DTLS, the <proto> field MUST be set

to "UDP/TLS/RTP/SAVPF", as specified in [RFC5764], Section 8.

If codec preferences have been set for the associated

transceiver, media formats MUST be generated in the corresponding

order and MUST exclude any codecs not present in the codec

preferences.

Unless excluded by the above restrictions, the media formats MUST

include the mandatory audio/video codecs as specified in

[RFC7874], Section 3 and [RFC7742], Section 5.

The "m=" line MUST be followed immediately by a "c=" line, as

specified in [RFC4566], Section 5.7. Again, as no candidates are

available yet, the "c=" line MUST contain the default value "IN IP4

0.0.0.0", as defined in [RFC8840], Section 4.1.1.

[RFC8859] groups SDP attributes into different categories. To avoid

unnecessary duplication when bundling, attributes of category

IDENTICAL or TRANSPORT MUST NOT be repeated in bundled "m="

sections, repeating the guidance from [RFC8843], Section 7.1.3. This

includes "m=" sections for which bundling has been negotiated and is

still desired, as well as "m=" sections marked as bundle-only.

The following attributes, which are of a category other than

IDENTICAL or TRANSPORT, MUST be included in each "m=" section:

An "a=mid" line, as specified in [RFC5888], Section 4. All MID

values MUST be generated in a fashion that does not leak user

information, e.g., randomly or using a per-PeerConnection

counter, and SHOULD be 3 bytes or less, to allow them to

efficiently fit into the RTP header extension defined in

[RFC8843], Section 15.2. Note that this does not set the

RtpTransceiver mid property, as that only occurs when the

description is applied. The generated MID value can be considered

a "proposed" MID at this point.

A direction attribute that is the same as that of the associated

transceiver.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc4566#section-5.14
https://rfc-editor.org/rfc/rfc8840#section-4.1.1
https://rfc-editor.org/rfc/rfc5764#section-8
https://rfc-editor.org/rfc/rfc7874#section-3
https://rfc-editor.org/rfc/rfc7742#section-5
https://rfc-editor.org/rfc/rfc4566#section-5.7
https://rfc-editor.org/rfc/rfc8840#section-4.1.1
https://rfc-editor.org/rfc/rfc8843#section-7.1.3
https://rfc-editor.org/rfc/rfc5888#section-4
https://rfc-editor.org/rfc/rfc8843#section-15.2

For each media format on the "m=" line, "a=rtpmap" and "a=fmtp"

lines, as specified in [RFC4566], Section 6 and [RFC3264],

Section 5.1.

For each primary codec where RTP retransmission should be used, a

corresponding "a=rtpmap" line indicating "rtx" with the clock

rate of the primary codec and an "a=fmtp" line that references

the payload type of the primary codec, as specified in [RFC4588],

Section 8.1.

For each supported Forward Error Correction (FEC) mechanism,

"a=rtpmap" and "a=fmtp" lines, as specified in [RFC4566],

Section 6. The FEC mechanisms that MUST be supported are

specified in [RFC8854], Section 7, and specific usage for each

media type is outlined in Sections 4 and 5.

If this "m=" section is for media with configurable durations of

media per packet, e.g., audio, an "a=maxptime" line, indicating

the maximum amount of media, specified in milliseconds, that can

be encapsulated in each packet, as specified in [RFC4566],

Section 6. This value is set to the smallest of the maximum

duration values across all the codecs included in the "m="

section.

If this "m=" section is for video media and there are known

limitations on the size of images that can be decoded, an

"a=imageattr" line, as specified in Section 3.6.

For each supported RTP header extension, an "a=extmap" line, as

specified in [RFC5285], Section 5. The list of header extensions

that SHOULD/MUST be supported is specified in [RFC8834],

Section 5.2. Any header extensions that require encryption MUST

be specified as indicated in [RFC6904], Section 4.

For each supported RTCP feedback mechanism, an "a=rtcp-fb" line,

as specified in [RFC4585], Section 4.2. The list of RTCP feedback

mechanisms that SHOULD/MUST be supported is specified in

[RFC8834], Section 5.1.

If the RtpTransceiver has a sendrecv or sendonly direction:

For each MediaStream that was associated with the transceiver

when it was created via addTrack or addTransceiver, an

"a=msid" line, as specified in [RFC8830], Section 2, but

omitting the "appdata" field.

If the RtpTransceiver has a sendrecv or sendonly direction, and

the application has specified a rid-id for an encoding, or has

specified more than one encoding in the RtpSenders's parameters,

an "a=rid" line for each encoding specified. The "a=rid" line is

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

-

¶

*

https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc3264#section-5.1
https://rfc-editor.org/rfc/rfc4588#section-8.1
https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc8854#section-7
https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc5285#section-5
https://rfc-editor.org/rfc/rfc8834#section-5.2
https://rfc-editor.org/rfc/rfc6904#section-4
https://rfc-editor.org/rfc/rfc4585#section-4.2
https://rfc-editor.org/rfc/rfc8834#section-5.1
https://rfc-editor.org/rfc/rfc8830#section-2

specified in [RFC8851], and its direction MUST be "send". If the

application has chosen a rid-id, it MUST be used; otherwise, a

rid-id MUST be generated by the implementation. rid-ids MUST be

generated in a fashion that does not leak user information, e.g.,

randomly or using a per-PeerConnection counter (see guidance at

the end of [RFC8852], Section 3.3), and SHOULD be 3 bytes or

less, to allow them to efficiently fit into the RTP header

extensions defined in [RFC8852], Section 3.3. If no encodings

have been specified, or only one encoding is specified but

without a rid-id, then no "a=rid" lines are generated.

If the RtpTransceiver has a sendrecv or sendonly direction and

more than one "a=rid" line has been generated, an "a=simulcast"

line, with direction "send", as defined in

[RFC8853], Section 5.1. The associated set of rid-ids MUST

include all of the rid-ids used in the "a=rid" lines for this

"m=" section.

If (1) the bundle policy for this PeerConnection is set to "must-

bundle" and this is not the first "m=" section or (2) the bundle

policy is set to "balanced" and this is not the first "m="

section for this media type, an "a=bundle-only" line.

The following attributes, which are of category IDENTICAL or

TRANSPORT, MUST appear only in "m=" sections that either have a

unique address or are associated with the BUNDLE-tag. (In initial

offers, this means those "m=" sections that do not contain an

"a=bundle-only" attribute.)

"a=ice-ufrag" and "a=ice-pwd" lines, as specified in [RFC8839],

Section 5.4.

For each desired digest algorithm, one or more "a=fingerprint"

lines for each of the endpoint's certificates, as specified in

[RFC8122], Section 5.

An "a=setup" line, as specified in [RFC4145], Section 4 and

clarified for use in DTLS-SRTP scenarios in [RFC5763], Section 5.

The role value in the offer MUST be "actpass".

An "a=tls-id" line, as specified in [RFC8842], Section 5.2.

An "a=rtcp" line, as specified in [RFC3605], Section 2.1,

containing the default value "9 IN IP4 0.0.0.0", because no

candidates have yet been gathered.

An "a=rtcp-mux" line, as specified in [RFC5761], Section 5.1.3.

If the RTP/RTCP multiplexing policy is "require", an "a=rtcp-mux-

only" line, as specified in [RFC8858], Section 4.

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

https://rfc-editor.org/rfc/rfc8852#section-3.3
https://rfc-editor.org/rfc/rfc8852#section-3.3
https://rfc-editor.org/rfc/rfc8853#section-5.1
https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc8122#section-5
https://rfc-editor.org/rfc/rfc4145#section-4
https://rfc-editor.org/rfc/rfc5763#section-5
https://rfc-editor.org/rfc/rfc8842#section-5.2
https://rfc-editor.org/rfc/rfc3605#section-2.1
https://rfc-editor.org/rfc/rfc5761#section-5.1.3
https://rfc-editor.org/rfc/rfc8858#section-4

An "a=rtcp-rsize" line, as specified in [RFC5506], Section 5.

Lastly, if a data channel has been created, an "m=" section MUST be

generated for data. The <media> field MUST be set to "application",

and the <proto> field MUST be set to "UDP/DTLS/SCTP" [RFC8841]. The

<fmt> value MUST be set to "webrtc-datachannel" as specified in

[RFC8841], Section 4.2.2.

Within the data "m=" section, an "a=mid" line MUST be generated and

included as described above, along with an "a=sctp-port" line

referencing the SCTP port number, as defined in [RFC8841],

Section 5.1; and, if appropriate, an "a=max-message-size" line, as

defined in [RFC8841], Section 6.1.

As discussed above, the following attributes of category IDENTICAL

or TRANSPORT are included only if the data "m=" section either has a

unique address or is associated with the BUNDLE-tag (e.g., if it is

the only "m=" section):

"a=ice-ufrag"

"a=ice-pwd"

"a=fingerprint"

"a=setup"

"a=tls-id"

Once all "m=" sections have been generated, a session-level

"a=group" attribute MUST be added as specified in [RFC5888]. This

attribute MUST have semantics "BUNDLE" and MUST include the mid

identifiers of each "m=" section. The effect of this is that the

JSEP implementation offers all "m=" sections as one bundle group.

However, whether the "m=" sections are bundle-only or not depends on

the bundle policy.

The next step is to generate session-level lip sync groups as

defined in [RFC5888], Section 7. For each MediaStream referenced by

more than one RtpTransceiver (by passing those MediaStreams as

arguments to the addTrack and addTransceiver methods), a group of

type "LS" MUST be added that contains the MID values for each

RtpTransceiver.

Attributes that SDP permits to be at either the session level or the

media level SHOULD generally be at the media level even if they are

identical. This assists development and debugging by making it

easier to understand individual media sections, especially if one of

a set of initially identical attributes is subsequently changed.

However, implementations MAY choose to aggregate attributes at the

* ¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

https://rfc-editor.org/rfc/rfc5506#section-5
https://rfc-editor.org/rfc/rfc8841#section-4.2.2
https://rfc-editor.org/rfc/rfc8841#section-5.1
https://rfc-editor.org/rfc/rfc8841#section-6.1
https://rfc-editor.org/rfc/rfc5888#section-7

session level, and JSEP implementations MUST be prepared to receive

attributes in either location.

Attributes other than the ones specified above MAY be included,

except for the following attributes, which are specifically

incompatible with the requirements of [RFC8834] and MUST NOT be

included:

"a=crypto"

"a=key-mgmt"

"a=ice-lite"

Note that when bundle is used, any additional attributes that are

added MUST follow the advice in [RFC8859] on how those attributes

interact with bundle.

Note that these requirements are in some cases stricter than those

of SDP. Implementations MUST be prepared to accept compliant SDP

even if it would not conform to the requirements for generating SDP

in this specification.

5.2.2. Subsequent Offers

When createOffer is called a second (or later) time or is called

after a local description has already been installed, the processing

is somewhat different than for an initial offer.

If the previous offer was not applied using setLocalDescription,

meaning the PeerConnection is still in the "stable" state, the steps

for generating an initial offer MUST be followed, subject to the

following restriction:

The fields of the "o=" line MUST stay the same except for the

<session-version> field, which MUST increment by one on each call

to createOffer if the offer might differ from the output of the

previous call to createOffer; implementations MAY opt to

increment <session-version> on every call. The value of the

generated <session-version> is independent of the <session-

version> of the current local description; in particular, in the

case where the current version is N, an offer is created and

applied with version N+1, and then that offer is rolled back so

that the current version is again N, the next generated offer

will still have version N+2.

Note that if the application creates an offer by reading

currentLocalDescription instead of calling createOffer, the returned

SDP may be different than when setLocalDescription was originally

called, due to the addition of gathered ICE candidates, but the

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

*

¶

<session-version> will not have changed. There are no known

scenarios in which this causes problems, but if this is a concern,

the solution is simply to use createOffer to ensure a unique

<session-version>.

If the previous offer was applied using setLocalDescription, but a

corresponding answer from the remote side has not yet been applied,

meaning the PeerConnection is still in the "have-local-offer" state,

an offer is generated by following the steps in the "stable" state

above, along with these exceptions:

The "s=" and "t=" lines MUST stay the same.

If any RtpTransceiver has been added and there exists an "m="

section with a zero port in the current local description or the

current remote description, that "m=" section MUST be recycled by

generating an "m=" section for the added RtpTransceiver as if the

"m=" section were being added to the session description

(including a new MID value) and placing it at the same index as

the "m=" section with a zero port.

If an RtpTransceiver is stopped and is not associated with an

"m=" section, an "m=" section MUST NOT be generated for it. This

prevents adding back RtpTransceivers whose "m=" sections were

recycled and used for a new RtpTransceiver in a previous offer/

answer exchange, as described above.

If an RtpTransceiver has been stopped and is associated with an

"m=" section, and the "m=" section is not being recycled as

described above, an "m=" section MUST be generated for it with

the port set to zero and all "a=msid" lines removed.

For RtpTransceivers that are not stopped, the "a=msid" line or

lines MUST stay the same if they are present in the current

description, regardless of changes to the transceiver's direction

or track. If no "a=msid" line is present in the current

description, "a=msid" line(s) MUST be generated according to the

same rules as for an initial offer.

Each "m=" and "c=" line MUST be filled in with the port, relevant

RTP profile, and address of the default candidate for the "m="

section, as described in [RFC8839], Section 4.2.1.2 and clarified

in Section 5.1.2. If no RTP candidates have yet been gathered,

default values MUST still be used, as described above.

Each "a=mid" line MUST stay the same.

Each "a=ice-ufrag" and "a=ice-pwd" line MUST stay the same,

unless the ICE configuration has changed (e.g., changes to either

the supported STUN/TURN servers or the ICE candidate policy) or

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

https://rfc-editor.org/rfc/rfc8839#section-4.2.1.2

the IceRestart option (Section 5.2.3.1) was specified. If the

"m=" section is bundled into another "m=" section, it still MUST

NOT contain any ICE credentials.

If the "m=" section is not bundled into another "m=" section, its

"a=rtcp" attribute line MUST be filled in with the port and

address of the default RTCP candidate, as indicated in [RFC5761],

Section 5.1.3. If no RTCP candidates have yet been gathered,

default values MUST be used, as described in Section 5.2.1 above.

If the "m=" section is not bundled into another "m=" section, for

each candidate that has been gathered during the most recent

gathering phase (see Section 3.5.1), an "a=candidate" line MUST

be added, as defined in [RFC8839], Section 5.1. If candidate

gathering for the section has completed, an "a=end-of-candidates"

attribute MUST be added, as described in [RFC8840], Section 8.2.

If the "m=" section is bundled into another "m=" section, both

"a=candidate" and "a=end-of-candidates" MUST be omitted.

For RtpTransceivers that are still present, the "a=rid" lines

MUST stay the same.

For RtpTransceivers that are still present, any "a=simulcast"

line MUST stay the same.

If the previous offer was applied using setLocalDescription, and a

corresponding answer from the remote side has been applied using

setRemoteDescription, meaning the PeerConnection is in the "have-

remote-pranswer" state or the "stable" state, an offer is generated

based on the negotiated session descriptions by following the steps

mentioned for the "have-local-offer" state above.

In addition, for each existing, non-recycled, non-rejected "m="

section in the new offer, the following adjustments are made based

on the contents of the corresponding "m=" section in the current

local or remote description, as appropriate:

The "m=" line and corresponding "a=rtpmap" and "a=fmtp" lines

MUST only include media formats that have not been excluded by

the codec preferences of the associated transceiver and also MUST

include all currently available formats. Media formats that were

previously offered but are no longer available (e.g., a shared

hardware codec) MAY be excluded.

Unless codec preferences have been set for the associated

transceiver, the media formats on the "m=" line MUST be generated

in the same order as in the most recent answer. Any media formats

that were not present in the most recent answer MUST be added

after all existing formats.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc5761#section-5.1.3
https://rfc-editor.org/rfc/rfc8839#section-5.1
https://rfc-editor.org/rfc/rfc8840#section-8.2

The RTP header extensions MUST only include those that are

present in the most recent answer.

The RTCP feedback mechanisms MUST only include those that are

present in the most recent answer, except for the case of format-

specific mechanisms that are referencing a newly added media

format.

The "a=rtcp" line MUST NOT be added if the most recent answer

included an "a=rtcp-mux" line.

The "a=rtcp-mux" line MUST be the same as that in the most recent

answer.

The "a=rtcp-mux-only" line MUST NOT be added.

The "a=rtcp-rsize" line MUST NOT be added unless present in the

most recent answer.

An "a=bundle-only" line, as defined in [RFC8843], Section 6, MUST

NOT be added. Instead, JSEP implementations MUST simply omit

parameters in the IDENTICAL and TRANSPORT categories for bundled

"m=" sections, as described in [RFC8843], Section 7.1.3.

Note that if media "m=" sections are bundled into a data "m="

section, then certain TRANSPORT and IDENTICAL attributes may

appear in the data "m=" section even if they would otherwise only

be appropriate for a media "m=" section (e.g., "a=rtcp-mux").

This cannot happen in initial offers because in the initial offer

JSEP implementations always list media "m=" sections (if any)

before the data "m=" section (if any), and at least one of those

media "m=" sections will not have the "a=bundle-only" attribute.

Therefore, in initial offers, any "a=bundle-only" "m=" sections

will be bundled into a preceding non-bundle-only media "m="

section.

The "a=group:BUNDLE" attribute MUST include the MID identifiers

specified in the bundle group in the most recent answer, minus any

"m=" sections that have been marked as rejected, plus any newly

added or re-enabled "m=" sections. In other words, the bundle

attribute MUST contain all "m=" sections that were previously

bundled, as long as they are still alive, as well as any new "m="

sections.

"a=group:LS" attributes are generated in the same way as for initial

offers, with the additional stipulation that any lip sync groups

that were present in the most recent answer MUST continue to exist

and MUST contain any previously existing MID identifiers, as long as

the identified "m=" sections still exist and are not rejected, and

the group still contains at least two MID identifiers. This ensures

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc8843#section-6
https://rfc-editor.org/rfc/rfc8843#section-7.1.3

that any synchronized "recvonly" "m=" sections continue to be

synchronized in the new offer.

5.2.3. Options Handling

The createOffer method takes as a parameter an RTCOfferOptions

object. Special processing is performed when generating an SDP

description if the following options are present.

5.2.3.1. IceRestart

If the IceRestart option is specified, with a value of "true", the

offer MUST indicate an ICE restart by generating new ICE ufrag and

pwd attributes, as specified in [RFC8839], Section 4.4.3.1.1. If

this option is specified on an initial offer, it has no effect

(since a new ICE ufrag and pwd are already generated). Similarly, if

the ICE configuration has changed, this option has no effect, since

new ufrag and pwd attributes will be generated automatically. This

option is primarily useful for reestablishing connectivity in cases

where failures are detected by the application.

5.2.3.2. VoiceActivityDetection

Silence suppression, also known as discontinuous transmission

("DTX"), can reduce the bandwidth used for audio by switching to a

special encoding when voice activity is not detected, at the cost of

some fidelity.

If the "VoiceActivityDetection" option is specified, with a value of

"true", the offer MUST indicate support for silence suppression in

the audio it receives by including comfort noise ("CN") codecs for

each offered audio codec, as specified in [RFC3389], Section 5.1,

except for codecs that have their own internal silence suppression

support. For codecs that have their own internal silence suppression

support, the appropriate fmtp parameters for that codec MUST be

specified to indicate that silence suppression for received audio is

desired. For example, when using the Opus codec [RFC6716], the

"usedtx=1" parameter, specified in [RFC7587], would be used in the

offer.

If the "VoiceActivityDetection" option is specified, with a value of

"false", the JSEP implementation MUST NOT emit "CN" codecs. For

codecs that have their own internal silence suppression support, the

appropriate fmtp parameters for that codec MUST be specified to

indicate that silence suppression for received audio is not desired.

For example, when using the Opus codec, the "usedtx=0" parameter

would be specified in the offer. In addition, the implementation

MUST NOT use silence suppression for media it generates, regardless

of whether the "CN" codecs or related fmtp parameters appear in the

peer's description. The impact of these rules is that silence

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8839#section-4.4.3.1.1
https://rfc-editor.org/rfc/rfc3389#section-5.1

suppression in JSEP depends on mutual agreement of both sides, which

ensures consistent handling regardless of which codec is used.

The "VoiceActivityDetection" option does not have any impact on the

setting of the "vad" value in the signaling of the client-to-mixer

audio level header extension described in [RFC6464], Section 4.

5.3. Generating an Answer

When createAnswer is called, a new SDP description MUST be created

that is compatible with the supplied remote description as well as

the requirements specified in [RFC8834]. The exact details of this

process are explained below.

5.3.1. Initial Answers

When createAnswer is called for the first time after a remote

description has been provided, the result is known as the initial

answer. If no remote description has been installed, an answer

cannot be generated, and an error MUST be returned.

Note that the remote description SDP may not have been created by a

JSEP endpoint and may not conform to all the requirements listed in

Section 5.2. For many cases, this is not a problem. However, if any

mandatory SDP attributes are missing or functionality listed as

mandatory-to-use above is not present, this MUST be treated as an

error and MUST cause the affected "m=" sections to be marked as

rejected.

The first step in generating an initial answer is to generate

session-level attributes. The process here is identical to that

indicated in Section 5.2.1 above, except that the "a=ice-options"

line, with the "trickle" option as specified in [RFC8840],

Section 4.1.3 and the "ice2" option as specified in [RFC8445],

Section 10, is only included if such an option was present in the

offer.

The next step is to generate session-level lip sync groups, as

defined in [RFC5888], Section 7. For each group of type "LS" present

in the offer, select the local RtpTransceivers that are referenced

by the MID values in the specified group, and determine which of

them either reference a common local MediaStream (specified in the

calls to addTrack/addTransceiver used to create them) or have no

MediaStream to reference because they were not created by addTrack/

addTransceiver. If at least two such RtpTransceivers exist, a group

of type "LS" with the MID values of these RtpTransceivers MUST be

added. Otherwise, the offered "LS" group MUST be ignored and no

corresponding group generated in the answer.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6464#section-4
https://rfc-editor.org/rfc/rfc8840#section-4.1.3
https://rfc-editor.org/rfc/rfc8445#section-10
https://rfc-editor.org/rfc/rfc5888#section-7

As a simple example, consider the following offer of a single audio

and single video track contained in the same MediaStream. SDP lines

not relevant to this example have been removed for clarity. As

explained in Section 5.2, a group of type "LS" has been added that

references each track's RtpTransceiver.

 a=group:LS a1 v1

 m=audio 10000 UDP/TLS/RTP/SAVPF 0

 a=mid:a1

 a=msid:ms1

 m=video 10001 UDP/TLS/RTP/SAVPF 96

 a=mid:v1

 a=msid:ms1

If the answerer uses a single MediaStream when it adds its tracks,

both of its transceivers will reference this stream, and so the

subsequent answer will contain a "LS" group identical to that in the

offer, as shown below:

 a=group:LS a1 v1

 m=audio 20000 UDP/TLS/RTP/SAVPF 0

 a=mid:a1

 a=msid:ms2

 m=video 20001 UDP/TLS/RTP/SAVPF 96

 a=mid:v1

 a=msid:ms2

However, if the answerer groups its tracks into separate

MediaStreams, its transceivers will reference different streams, and

so the subsequent answer will not contain a "LS" group.

 m=audio 20000 UDP/TLS/RTP/SAVPF 0

 a=mid:a1

 a=msid:ms2a

 m=video 20001 UDP/TLS/RTP/SAVPF 96

 a=mid:v1

 a=msid:ms2b

Finally, if the answerer does not add any tracks, its transceivers

will not reference any MediaStreams, causing the preferences of the

offerer to be maintained, and so the subsequent answer will contain

an identical "LS" group.

¶

¶

¶

¶

¶

¶

¶

 a=group:LS a1 v1

 m=audio 20000 UDP/TLS/RTP/SAVPF 0

 a=mid:a1

 a=recvonly

 m=video 20001 UDP/TLS/RTP/SAVPF 96

 a=mid:v1

 a=recvonly

The example in Section 7.2 shows a more involved case of "LS" group

generation.

The next step is to generate a "m=" section for each "m=" section

that is present in the remote offer, as specified in [RFC3264],

Section 6. For the purposes of this discussion, any session-level

attributes in the offer that are also valid as media-level

attributes are considered to be present in each "m=" section. Each

offered "m=" section will have an associated RtpTransceiver, as

described in Section 5.10. If there are more RtpTransceivers than

there are "m=" sections, the unmatched RtpTransceivers will need to

be associated in a subsequent offer.

For each offered "m=" section, if any of the following conditions

are true, the corresponding "m=" section in the answer MUST be

marked as rejected by setting the <port> in the "m=" line to zero,

as indicated in [RFC3264], Section 6, and further processing for

this "m=" section can be skipped:

The associated RtpTransceiver has been stopped.

There is no offered media format that is both supported and, if

applicable, allowed by codec preferences.

The bundle policy is "must-bundle", and this is not the first

"m=" section or in the same bundle group as the first "m="

section.

The bundle policy is "balanced", and this is not the first "m="

section for this media type or in the same bundle group as the

first "m=" section for this media type.

This "m=" section is in a bundle group, and the group's offerer

tagged "m=" section is being rejected due to one of the above

reasons. This requires all "m=" sections in the bundle group to

be rejected, as specified in [RFC8843], Section 7.3.3.

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc3264#section-6
https://rfc-editor.org/rfc/rfc3264#section-6
https://rfc-editor.org/rfc/rfc8843#section-7.3.3

Otherwise, each "m=" section in the answer MUST then be generated as

specified in [RFC3264], Section 6.1. For the "m=" line itself, the

following rules MUST be followed:

The <port> value would normally be set to the port of the default

ICE candidate for this "m=" section, but given that no candidates

are available yet, the default <port> value of 9 (Discard) MUST

be used, as indicated in [RFC8840], Section 4.1.1.

The <proto> field MUST be set to exactly match the <proto> field

for the corresponding "m=" line in the offer.

If codec preferences have been set for the associated

transceiver, media formats MUST be generated in the corresponding

order, regardless of what was offered, and MUST exclude any

codecs not present in the codec preferences.

Otherwise, the media formats on the "m=" line MUST be generated

in the same order as those offered in the current remote

description, excluding any currently unsupported formats. Any

currently available media formats that are not present in the

current remote description MUST be added after all existing

formats.

In either case, the media formats in the answer MUST include at

least one format that is present in the offer but MAY include

formats that are locally supported but not present in the offer,

as mentioned in [RFC3264], Section 6.1. If no common format

exists, the "m=" section is rejected as described above.

The "m=" line MUST be followed immediately by a "c=" line, as

specified in [RFC4566], Section 5.7. Again, as no candidates are

available yet, the "c=" line MUST contain the default value "IN IP4

0.0.0.0", as defined in [RFC8840], Section 4.1.3.

If the offer supports bundle, all "m=" sections to be bundled MUST

use the same ICE credentials and candidates; all "m=" sections not

being bundled MUST use unique ICE credentials and candidates. Each

"m=" section MUST contain the following attributes (which are of

attribute types other than IDENTICAL or TRANSPORT):

If and only if present in the offer, an "a=mid" line, as

specified in [RFC5888], Section 9.1. The MID value MUST match

that specified in the offer.

A direction attribute, determined by applying the rules regarding

the offered direction specified in [RFC3264], Section 6.1, and

then intersecting with the direction of the associated

RtpTransceiver. For example, in the case where an "m=" section is

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

https://rfc-editor.org/rfc/rfc3264#section-6.1
https://rfc-editor.org/rfc/rfc8840#section-4.1.1
https://rfc-editor.org/rfc/rfc3264#section-6.1
https://rfc-editor.org/rfc/rfc4566#section-5.7
https://rfc-editor.org/rfc/rfc8840#section-4.1.3
https://rfc-editor.org/rfc/rfc5888#section-9.1
https://rfc-editor.org/rfc/rfc3264#section-6.1

offered as "sendonly" and the local transceiver is set to

"sendrecv", the result in the answer is a "recvonly" direction.

For each media format on the "m=" line, "a=rtpmap" and "a=fmtp"

lines, as specified in [RFC4566], Section 6 and [RFC3264],

Section 6.1.

If "rtx" is present in the offer, for each primary codec where

RTP retransmission should be used, a corresponding "a=rtpmap"

line indicating "rtx" with the clock rate of the primary codec

and an "a=fmtp" line that references the payload type of the

primary codec, as specified in [RFC4588], Section 8.1.

For each supported FEC mechanism, "a=rtpmap" and "a=fmtp" lines,

as specified in [RFC4566], Section 6. The FEC mechanisms that

MUST be supported are specified in [RFC8854], Section 7, and

specific usage for each media type is outlined in Sections 4 and

5.

If this "m=" section is for media with configurable durations of

media per packet, e.g., audio, an "a=maxptime" line, as described

in Section 5.2.

If this "m=" section is for video media and there are known

limitations on the size of images that can be decoded, an

"a=imageattr" line, as specified in Section 3.6.

For each supported RTP header extension that is present in the

offer, an "a=extmap" line, as specified in [RFC5285], Section 5.

The list of header extensions that SHOULD/MUST be supported is

specified in [RFC8834], Section 5.2. Any header extensions that

require encryption MUST be specified as indicated in [RFC6904],

Section 4.

For each supported RTCP feedback mechanism that is present in the

offer, an "a=rtcp-fb" line, as specified in [RFC4585],

Section 4.2. The list of RTCP feedback mechanisms that SHOULD/

MUST be supported is specified in [RFC8834], Section 5.1.

If the RtpTransceiver has a sendrecv or sendonly direction:

For each MediaStream that was associated with the transceiver

when it was created via addTrack or addTransceiver, an

"a=msid" line, as specified in [RFC8830], Section 2, but

omitting the "appdata" field.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

-

¶

https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc3264#section-6.1
https://rfc-editor.org/rfc/rfc4588#section-8.1
https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc8854#section-7
https://rfc-editor.org/rfc/rfc5285#section-5
https://rfc-editor.org/rfc/rfc8834#section-5.2
https://rfc-editor.org/rfc/rfc6904#section-4
https://rfc-editor.org/rfc/rfc4585#section-4.2
https://rfc-editor.org/rfc/rfc8834#section-5.1
https://rfc-editor.org/rfc/rfc8830#section-2

Each "m=" section that is not bundled into another "m=" section MUST

contain the following attributes (which are of category IDENTICAL or

TRANSPORT):

"a=ice-ufrag" and "a=ice-pwd" lines, as specified in [RFC8839],

Section 5.4.

For each desired digest algorithm, one or more "a=fingerprint"

lines for each of the endpoint's certificates, as specified in

[RFC8122], Section 5.

An "a=setup" line, as specified in [RFC4145], Section 4 and

clarified for use in DTLS-SRTP scenarios in [RFC5763], Section 5.

The role value in the answer MUST be "active" or "passive". When

the offer contains the "actpass" value, as will always be the

case with JSEP endpoints, the answerer SHOULD use the "active"

role. Offers from non-JSEP endpoints MAY send other values for

"a=setup", in which case the answer MUST use a value consistent

with the value in the offer.

An "a=tls-id" line, as specified in [RFC8842], Section 5.3.

If present in the offer, an "a=rtcp-mux" line, as specified in

[RFC5761], Section 5.1.3. Otherwise, an "a=rtcp" line, as

specified in [RFC3605], Section 2.1, containing the default value

"9 IN IP4 0.0.0.0" (because no candidates have yet been

gathered).

If present in the offer, an "a=rtcp-rsize" line, as specified in

[RFC5506], Section 5.

If a data channel "m=" section has been offered, an "m=" section

MUST also be generated for data. The <media> field MUST be set to

"application", and the <proto> and <fmt> fields MUST be set to

exactly match the fields in the offer.

Within the data "m=" section, an "a=mid" line MUST be generated and

included as described above, along with an "a=sctp-port" line

referencing the SCTP port number, as defined in [RFC8841],

Section 5.1; and, if appropriate, an "a=max-message-size" line, as

defined in [RFC8841], Section 6.1.

As discussed above, the following attributes of category IDENTICAL

or TRANSPORT are included only if the data "m=" section is not

bundled into another "m=" section:

"a=ice-ufrag"

"a=ice-pwd"

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

¶

¶

¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc8122#section-5
https://rfc-editor.org/rfc/rfc4145#section-4
https://rfc-editor.org/rfc/rfc5763#section-5
https://rfc-editor.org/rfc/rfc8842#section-5.3
https://rfc-editor.org/rfc/rfc5761#section-5.1.3
https://rfc-editor.org/rfc/rfc3605#section-2.1
https://rfc-editor.org/rfc/rfc5506#section-5
https://rfc-editor.org/rfc/rfc8841#section-5.1
https://rfc-editor.org/rfc/rfc8841#section-6.1

"a=fingerprint"

"a=setup"

"a=tls-id"

Note that if media "m=" sections are bundled into a data "m="

section, then certain TRANSPORT and IDENTICAL attributes may also

appear in the data "m=" section even if they would otherwise only be

appropriate for a media "m=" section (e.g., "a=rtcp-mux").

If "a=group" attributes with semantics of "BUNDLE" are offered,

corresponding session-level "a=group" attributes MUST be added as

specified in [RFC5888]. These attributes MUST have semantics

"BUNDLE" and MUST include all mid identifiers from the offered

bundle groups that have not been rejected. Note that regardless of

the presence of "a=bundle-only" in the offer, all "m=" sections in

the answer MUST NOT have an "a=bundle-only" line.

Attributes that are common between all "m=" sections MAY be moved to

the session level if explicitly defined to be valid at the session

level.

The attributes prohibited in the creation of offers are also

prohibited in the creation of answers.

5.3.2. Subsequent Answers

When createAnswer is called a second (or later) time or is called

after a local description has already been installed, the processing

is somewhat different than for an initial answer.

If the previous answer was not applied using setLocalDescription,

meaning the PeerConnection is still in the "have-remote-offer"

state, the steps for generating an initial answer MUST be followed,

subject to the following restriction:

The fields of the "o=" line MUST stay the same except for the

<session-version> field, which MUST increment if the session

description changes in any way from the previously generated

answer.

If any session description was previously supplied to

setLocalDescription, an answer is generated by following the steps

in the "have-remote-offer" state above, along with these exceptions:

The "s=" and "t=" lines MUST stay the same.

Each "m=" and "c=" line MUST be filled in with the port and

address of the default candidate for the "m=" section, as

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

*

¶

¶

* ¶

*

described in [RFC8839], Section 4.2.1.2. Note that in certain

cases, the "m=" line protocol may not match that of the default

candidate, because the "m=" line protocol value MUST match what

was supplied in the offer, as described above.

Each "a=ice-ufrag" and "a=ice-pwd" line MUST stay the same,

unless the "m=" section is restarting, in which case new ICE

credentials MUST be created as specified in [RFC8839],

Section 4.4.1.1.1. If the "m=" section is bundled into another

"m=" section, it still MUST NOT contain any ICE credentials.

Each "a=tls-id" line MUST stay the same, unless the offerer's

"a=tls-id" line changed, in which case a new tls-id value MUST be

created, as described in [RFC8842], Section 5.2.

Each "a=setup" line MUST use an "active" or "passive" role value

consistent with the existing DTLS association, if the association

is being continued by the offerer.

RTCP multiplexing MUST be used, and an "a=rtcp-mux" line inserted

if and only if the "m=" section previously used RTCP

multiplexing.

If the "m=" section is not bundled into another "m=" section and

RTCP multiplexing is not active, an "a=rtcp" attribute line MUST

be filled in with the port and address of the default RTCP

candidate. If no RTCP candidates have yet been gathered, default

values MUST be used, as described in Section 5.3.1 above.

If the "m=" section is not bundled into another "m=" section, for

each candidate that has been gathered during the most recent

gathering phase (see Section 3.5.1), an "a=candidate" line MUST

be added, as defined in [RFC8839], Section 5.1. If candidate

gathering for the section has completed, an "a=end-of-candidates"

attribute MUST be added, as described in [RFC8840], Section 8.2.

If the "m=" section is bundled into another "m=" section, both

"a=candidate" and "a=end-of-candidates" MUST be omitted.

For RtpTransceivers that are not stopped, the "a=msid" line(s)

MUST stay the same, regardless of changes to the transceiver's

direction or track. If no "a=msid" line is present in the current

description, "a=msid" line(s) MUST be generated according to the

same rules as for an initial answer.

5.3.3. Options Handling

The createAnswer method takes as a parameter an RTCAnswerOptions

object. The set of parameters for RTCAnswerOptions is different than

those supported in RTCOfferOptions; the IceRestart option is

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc8839#section-4.2.1.2
https://rfc-editor.org/rfc/rfc8839#section-4.4.1.1.1
https://rfc-editor.org/rfc/rfc8842#section-5.2
https://rfc-editor.org/rfc/rfc8839#section-5.1
https://rfc-editor.org/rfc/rfc8840#section-8.2

unnecessary, as ICE credentials will automatically be changed for

all "m=" sections where the offerer chose to perform ICE restart.

The following options are supported in RTCAnswerOptions.

5.3.3.1. VoiceActivityDetection

Silence suppression in the answer is handled as described in Section

5.2.3.2, with one exception: if support for silence suppression was

not indicated in the offer, the VoiceActivityDetection parameter has

no effect, and the answer MUST be generated as if

VoiceActivityDetection was set to "false". This is done on a per-

codec basis (e.g., if the offerer somehow offered support for CN but

set "usedtx=0" for Opus, setting VoiceActivityDetection to "true"

would result in an answer with CN codecs and "usedtx=0"). The impact

of this rule is that an answerer will not try to use silence

suppression with any endpoint that does not offer it, making silence

suppression support bilateral even with non-JSEP endpoints.

5.4. Modifying an Offer or Answer

The SDP returned from createOffer or createAnswer MUST NOT be

changed before passing it to setLocalDescription. If precise control

over the SDP is needed, the aforementioned createOffer/createAnswer

options or RtpTransceiver APIs MUST be used.

After calling setLocalDescription with an offer or answer, the

application MAY modify the SDP to reduce its capabilities before

sending it to the far side, as long as it follows the rules above

that define a valid JSEP offer or answer. Likewise, an application

that has received an offer or answer from a peer MAY modify the

received SDP, subject to the same constraints, before calling

setRemoteDescription.

As always, the application is solely responsible for what it sends

to the other party, and all incoming SDP will be processed by the

JSEP implementation to the extent of its capabilities. It is an

error to assume that all SDP is well formed; however, one should be

able to assume that any implementation of this specification will be

able to process, as a remote offer or answer, unmodified SDP coming

from any other implementation of this specification.

5.5. Processing a Local Description

When a SessionDescription is supplied to setLocalDescription, the

following steps MUST be performed:

If the description is of type "rollback", follow the processing

defined in Section 5.7 and skip the processing described in the

rest of this section.

¶

¶

¶

¶

¶

¶

¶

*

¶

Otherwise, the type of the SessionDescription is checked against

the current state of the PeerConnection:

If the type is "offer", the PeerConnection state MUST be

either "stable" or "have-local-offer".

If the type is "pranswer" or "answer", the PeerConnection

state MUST be either "have-remote-offer" or "have-local-

pranswer".

If the type is not correct for the current state, processing MUST

stop and an error MUST be returned.

The SessionDescription is then checked to ensure that its

contents are identical to those generated in the last call to

createOffer/createAnswer, and thus have not been altered, as

discussed in Section 5.4; otherwise, processing MUST stop and an

error MUST be returned.

Next, the SessionDescription is parsed into a data structure, as

described in Section 5.8 below.

Finally, the parsed SessionDescription is applied as described in

Section 5.9 below.

5.6. Processing a Remote Description

When a SessionDescription is supplied to setRemoteDescription, the

following steps MUST be performed:

If the description is of type "rollback", follow the processing

defined in Section 5.7 and skip the processing described in the

rest of this section.

Otherwise, the type of the SessionDescription is checked against

the current state of the PeerConnection:

If the type is "offer", the PeerConnection state MUST be

either "stable" or "have-remote-offer".

If the type is "pranswer" or "answer", the PeerConnection

state MUST be either "have-local-offer" or "have-remote-

pranswer".

If the type is not correct for the current state, processing MUST

stop and an error MUST be returned.

Next, the SessionDescription is parsed into a data structure, as

described in Section 5.8 below. If parsing fails for any reason,

processing MUST stop and an error MUST be returned.

*

¶

-

¶

-

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

-

¶

-

¶

*

¶

*

¶

Finally, the parsed SessionDescription is applied as described in

Section 5.10 below.

5.7. Processing a Rollback

A rollback may be performed if the PeerConnection is in any state

except for "stable". This means that both offers and provisional

answers can be rolled back. Rollback can only be used to cancel

proposed changes; there is no support for rolling back from a

"stable" state to a previous "stable" state. If a rollback is

attempted in the "stable" state, processing MUST stop and an error

MUST be returned. Note that this implies that once the answerer has

performed setLocalDescription with its answer, this cannot be rolled

back.

The effect of rollback MUST be the same regardless of whether

setLocalDescription or setRemoteDescription is called.

In order to process rollback, a JSEP implementation abandons the

current offer/answer transaction, sets the signaling state to

"stable", and sets the pending local and/or remote description (see

Sections 4.1.14 and 4.1.16) to "null". Any resources or candidates

that were allocated by the abandoned local description are

discarded; any media that is received is processed according to the

previous local and remote descriptions.

A rollback disassociates any RtpTransceivers that were associated

with "m=" sections by the application of the rolled-back session

description (see Sections 5.10 and 5.9). This means that some

RtpTransceivers that were previously associated will no longer be

associated with any "m=" section; in such cases, the value of the

RtpTransceiver's mid property MUST be set to "null", and the mapping

between the transceiver and its "m=" section index MUST be

discarded. RtpTransceivers that were created by applying a remote

offer that was subsequently rolled back MUST be stopped and removed

from the PeerConnection. However, an RtpTransceiver MUST NOT be

removed if a track was attached to the RtpTransceiver via the

addTrack method. This is so that an application may call addTrack,

then call setRemoteDescription with an offer, then roll back that

offer, then call createOffer and have an "m=" section for the added

track appear in the generated offer.

5.8. Parsing a Session Description

The SDP contained in the session description object consists of a

sequence of text lines, each containing a key-value expression, as

described in [RFC4566], Section 5. The SDP is read, line by line,

and converted to a data structure that contains the deserialized

information. However, SDP allows many types of lines, not all of

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4566#section-5

which are relevant to JSEP applications. For each line, the

implementation will first ensure that it is syntactically correct

according to its defining ABNF, check that it conforms to the

semantics used in [RFC4566] and [RFC3264], and then either parse and

store or discard the provided value, as described below.

If any line is not well formed or cannot be parsed as described, the

parser MUST stop with an error and reject the session description,

even if the value is to be discarded. This ensures that

implementations do not accidentally misinterpret ambiguous SDP.

5.8.1. Session-Level Parsing

First, the session-level lines are checked and parsed. These lines

MUST occur in a specific order, and with a specific syntax, as

defined in [RFC4566], Section 5. Note that while the specific line

types (e.g., "v=", "c=") MUST occur in the defined order, lines of

the same type (typically "a=") can occur in any order.

The following non-attribute lines are not meaningful in the JSEP

context and MAY be discarded once they have been checked.

The "c=" line MUST be checked for syntax, but its value is only

used for ICE mismatch detection, as defined in [RFC8445],

Section 5.4. Note that JSEP implementations should never

encounter this condition because ICE is required for WebRTC.

The "i=", "u=", "e=", "p=", "t=", "r=", "z=", and "k=" lines MUST

be checked for syntax, but their values are not otherwise used.

The remaining non-attribute lines are processed as follows:

The "v=" line MUST have a version of 0, as specified in

[RFC4566], Section 5.1.

The "o=" line MUST be parsed as specified in [RFC4566],

Section 5.2.

The "b=" line, if present, MUST be parsed as specified in

[RFC4566], Section 5.8, and the bwtype and bandwidth values

stored.

Finally, the attribute lines are processed. Specific processing MUST

be applied for the following session-level attribute ("a=") lines:

Any "a=group" lines are parsed as specified in [RFC5888],

Section 5, and the group's semantics and mids are stored.

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc4566#section-5
https://rfc-editor.org/rfc/rfc8445#section-5.4
https://rfc-editor.org/rfc/rfc4566#section-5.1
https://rfc-editor.org/rfc/rfc4566#section-5.2
https://rfc-editor.org/rfc/rfc4566#section-5.8
https://rfc-editor.org/rfc/rfc5888#section-5

If present, a single "a=ice-lite" line is parsed as specified in

[RFC8839], Section 5.3, and a value indicating the presence of

ice-lite is stored.

If present, a single "a=ice-ufrag" line is parsed as specified in

[RFC8839], Section 5.4, and the ufrag value is stored.

If present, a single "a=ice-pwd" line is parsed as specified in

[RFC8839], Section 5.4, and the password value is stored.

If present, a single "a=ice-options" line is parsed as specified

in [RFC8839], Section 5.6, and the set of specified options is

stored.

Any "a=fingerprint" lines are parsed as specified in [RFC8122],

Section 5, and the set of fingerprint and algorithm values is

stored.

If present, a single "a=setup" line is parsed as specified in

[RFC4145], Section 4, and the setup value is stored.

If present, a single "a=tls-id" line is parsed as specified in

[RFC8842], Section 5, and the attribute value is stored.

Any "a=identity" lines are parsed and the identity values stored

for subsequent verification, as specified in

[RFC8827], Section 5.

Any "a=extmap" lines are parsed as specified in [RFC5285],

Section 5, and their values are stored.

Other attributes that are not relevant to JSEP may also be present,

and implementations SHOULD process any that they recognize. As

required by [RFC4566], Section 5.13, unknown attribute lines MUST be

ignored.

Once all the session-level lines have been parsed, processing

continues with the lines in "m=" sections.

5.8.2. Media Section Parsing

Like the session-level lines, the media section lines MUST occur in

the specific order and with the specific syntax defined in

[RFC4566], Section 5.

The "m=" line itself MUST be parsed as described in [RFC4566],

Section 5.14, and the <media>, <port>, <proto>, and <fmt> values

stored.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8839#section-5.3
https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc8839#section-5.6
https://rfc-editor.org/rfc/rfc8122#section-5
https://rfc-editor.org/rfc/rfc4145#section-4
https://rfc-editor.org/rfc/rfc8842#section-5
https://rfc-editor.org/rfc/rfc8827#section-5
https://rfc-editor.org/rfc/rfc5285#section-5
https://rfc-editor.org/rfc/rfc4566#section-5.13
https://rfc-editor.org/rfc/rfc4566#section-5
https://rfc-editor.org/rfc/rfc4566#section-5.14

Following the "m=" line, specific processing MUST be applied for the

following non-attribute lines:

As with the "c=" line at the session level, the "c=" line MUST be

parsed according to [RFC4566], Section 5.7, but its value is not

used.

The "b=" line, if present, MUST be parsed as specified in

[RFC4566], Section 5.8, and the bwtype and bandwidth values

stored.

Specific processing MUST also be applied for the following attribute

lines:

If present, a single "a=ice-ufrag" line is parsed as specified in

[RFC8839], Section 5.4, and the ufrag value is stored.

If present, a single "a=ice-pwd" line is parsed as specified in

[RFC8839], Section 5.4, and the password value is stored.

If present, a single "a=ice-options" line is parsed as specified

in [RFC8839], Section 5.6, and the set of specified options is

stored.

Any "a=candidate" attributes MUST be parsed as specified in

[RFC8839], Section 5.1, and their values stored.

Any "a=remote-candidates" attributes MUST be parsed as specified

in [RFC8839], Section 5.2, but their values are ignored.

If present, a single "a=end-of-candidates" attribute MUST be

parsed as specified in [RFC8840], Section 8.1, and its presence

or absence flagged and stored.

Any "a=fingerprint" lines are parsed as specified in [RFC8122],

Section 5, and the set of fingerprint and algorithm values is

stored.

If the "m=" <proto> value indicates use of RTP, as described in

Section 5.1.2 above, the following attribute lines MUST be

processed:

The "m=" <fmt> value MUST be parsed as specified in [RFC4566],

Section 5.14, and the individual values stored.

Any "a=rtpmap" or "a=fmtp" lines MUST be parsed as specified in

[RFC4566], Section 6, and their values stored.

If present, a single "a=ptime" line MUST be parsed as described

in [RFC4566], Section 6, and its value stored.

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc4566#section-5.7
https://rfc-editor.org/rfc/rfc4566#section-5.8
https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc8839#section-5.6
https://rfc-editor.org/rfc/rfc8839#section-5.1
https://rfc-editor.org/rfc/rfc8839#section-5.2
https://rfc-editor.org/rfc/rfc8840#section-8.1
https://rfc-editor.org/rfc/rfc8122#section-5
https://rfc-editor.org/rfc/rfc4566#section-5.14
https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc4566#section-6

If present, a single "a=maxptime" line MUST be parsed as

described in [RFC4566], Section 6, and its value stored.

If present, a single direction attribute line (e.g.,

"a=sendrecv") MUST be parsed as described in

[RFC4566], Section 6, and its value stored.

Any "a=ssrc" attributes MUST be parsed as specified in [RFC5576],

Section 4.1, and their values stored.

Any "a=extmap" attributes MUST be parsed as specified in

[RFC5285], Section 5, and their values stored.

Any "a=rtcp-fb" attributes MUST be parsed as specified in

[RFC4585], Section 4.2, and their values stored.

If present, a single "a=rtcp-mux" attribute MUST be parsed as

specified in [RFC5761], Section 5.1.3, and its presence or

absence flagged and stored.

If present, a single "a=rtcp-mux-only" attribute MUST be parsed

as specified in [RFC8858], Section 3, and its presence or absence

flagged and stored.

If present, a single "a=rtcp-rsize" attribute MUST be parsed as

specified in [RFC5506], Section 5, and its presence or absence

flagged and stored.

If present, a single "a=rtcp" attribute MUST be parsed as

specified in [RFC3605], Section 2.1, but its value is ignored, as

this information is superfluous when using ICE.

If present, "a=msid" attributes MUST be parsed as specified in

[RFC8830], Section 3.2, and their values stored, ignoring any

"appdata" field. If no "a=msid" attributes are present, a random

msid-id value is generated for a "default" MediaStream for the

session, if not already present, and this value is stored.

Any "a=imageattr" attributes MUST be parsed as specified in

[RFC6236], Section 3, and their values stored.

Any "a=rid" lines MUST be parsed as specified in [RFC8851],

Section 10, and their values stored.

If present, a single "a=simulcast" line MUST be parsed as

specified in [RFC8853], and its values stored.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc5576#section-4.1
https://rfc-editor.org/rfc/rfc5285#section-5
https://rfc-editor.org/rfc/rfc4585#section-4.2
https://rfc-editor.org/rfc/rfc5761#section-5.1.3
https://rfc-editor.org/rfc/rfc8858#section-3
https://rfc-editor.org/rfc/rfc5506#section-5
https://rfc-editor.org/rfc/rfc3605#section-2.1
https://rfc-editor.org/rfc/rfc8830#section-3.2
https://rfc-editor.org/rfc/rfc6236#section-3
https://rfc-editor.org/rfc/rfc8851#section-10

Otherwise, if the "m=" <proto> value indicates use of SCTP, the

following attribute lines MUST be processed:

The "m=" <fmt> value MUST be parsed as specified in [RFC8841],

Section 4.3, and the application protocol value stored.

An "a=sctp-port" attribute MUST be present, and it MUST be parsed

as specified in [RFC8841], Section 5.2, and the value stored.

If present, a single "a=max-message-size" attribute MUST be

parsed as specified in [RFC8841], Section 6, and the value

stored. Otherwise, use the specified default.

Other attributes that are not relevant to JSEP may also be present,

and implementations SHOULD process any that they recognize. As

required by [RFC4566], Section 5.13, unknown attribute lines MUST be

ignored.

5.8.3. Semantics Verification

Assuming that parsing completes successfully, the parsed description

is then evaluated to ensure internal consistency as well as proper

support for mandatory features. Specifically, the following checks

are performed:

For each "m=" section, valid values for each of the mandatory-to-

use features enumerated in Section 5.1.1 MUST be present. These

values MAY be either present at the media level or inherited from

the session level.

ICE ufrag and password values, which MUST comply with the size

limits specified in [RFC8839], Section 5.4.

A tls-id value, which MUST be set according to [RFC8842],

Section 5. If this is a re-offer or a response to a re-offer

and the tls-id value is different from that presently in use,

the DTLS connection is not being continued and the remote

description MUST be part of an ICE restart, together with new

ufrag and password values.

A DTLS setup value, which MUST be set according to the rules

specified in [RFC5763], Section 5 and MUST be consistent with

the selected role of the current DTLS connection, if one

exists and is being continued.

DTLS fingerprint values, where at least one fingerprint MUST

be present.

All rid-ids referenced in an "a=simulcast" line MUST exist as

"a=rid" lines.

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

-

¶

-

¶

-

¶

-

¶

*

¶

https://rfc-editor.org/rfc/rfc8841#section-4.3
https://rfc-editor.org/rfc/rfc8841#section-5.2
https://rfc-editor.org/rfc/rfc8841#section-6
https://rfc-editor.org/rfc/rfc4566#section-5.13
https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc8842#section-5
https://rfc-editor.org/rfc/rfc5763#section-5

Each "m=" section is also checked to ensure that prohibited

features are not used.

If the RTP/RTCP multiplexing policy is "require", each "m="

section MUST contain an "a=rtcp-mux" attribute. If an "m="

section contains an "a=rtcp-mux-only" attribute, that section

MUST also contain an "a=rtcp-mux" attribute.

If an "m=" section was present in the previous answer, the state

of RTP/RTCP multiplexing MUST match what was previously

negotiated.

If this session description is of type "pranswer" or "answer", the

following additional checks are applied:

The session description MUST follow the rules defined in

[RFC3264], Section 6, including the requirement that the number

of "m=" sections MUST exactly match the number of "m=" sections

in the associated offer.

For each "m=" section, the media type and protocol values MUST

exactly match the media type and protocol values in the

corresponding "m=" section in the associated offer.

If any of the preceding checks failed, processing MUST stop and an

error MUST be returned.

5.9. Applying a Local Description

The following steps are performed at the media engine level to apply

a local description. If an error is returned, the session MUST be

restored to the state it was in before performing these steps.

First, "m=" sections are processed. For each "m=" section, the

following steps MUST be performed; if any parameters are out of

bounds or cannot be applied, processing MUST stop and an error MUST

be returned.

If this "m=" section is new, begin gathering candidates for it,

as defined in [RFC8445], Section 5.1.1, unless it is definitively

being bundled (either (1) this is an offer and the "m=" section

is marked as bundle-only or (2) it is an answer and the "m="

section is bundled into another "m=" section).

Or, if the ICE ufrag and password values have changed, trigger

the ICE agent to start an ICE restart as described in [RFC8445],

Section 9, and begin gathering new candidates for the "m="

section. If this description is an answer, also start checks on

that media section.

*

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc3264#section-6
https://rfc-editor.org/rfc/rfc8445#section-5.1.1
https://rfc-editor.org/rfc/rfc8445#section-9

If the "m=" section <proto> value indicates use of RTP:

If there is no RtpTransceiver associated with this "m="

section, find one and associate it with this "m=" section

according to the following steps. Note that this situation

will only occur when applying an offer.

Find the RtpTransceiver that corresponds to this "m="

section, using the mapping between transceivers and "m="

section indices established when creating the offer.

Set the value of this RtpTransceiver's mid property to the

MID of the "m=" section.

If RTCP mux is indicated, prepare to demux RTP and RTCP from

the RTP ICE component, as specified in [RFC5761],

Section 5.1.3.

For each specified RTP header extension, establish a mapping

between the extension ID and URI, as described in [RFC5285],

Section 6.

If the MID header extension is supported, prepare to demux RTP

streams intended for this "m=" section based on the MID header

extension, as described in [RFC8843], Section 15.

For each specified media format, establish a mapping between

the payload type and the actual media format, as described in

[RFC3264], Section 6.1. In addition, prepare to demux RTP

streams intended for this "m=" section based on the media

formats supported by this "m=" section, as described in

[RFC8843], Section 9.2.

For each specified "rtx" media format, establish a mapping

between the RTX payload type and its associated primary

payload type, as described in Sections 8.6 and 8.7 of

[RFC4588].

If the direction attribute is of type "sendrecv" or

"recvonly", enable receipt and decoding of media.

Finally, if this description is of type "pranswer" or "answer",

follow the processing defined in Section 5.11 below.

5.10. Applying a Remote Description

The following steps are performed to apply a remote description. If

an error is returned, the session MUST be restored to the state it

was in before performing these steps.

* ¶

-

¶

o

¶

o

¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

¶

¶

¶

https://rfc-editor.org/rfc/rfc5761#section-5.1.3
https://rfc-editor.org/rfc/rfc5285#section-6
https://rfc-editor.org/rfc/rfc8843#section-15
https://rfc-editor.org/rfc/rfc3264#section-6.1
https://rfc-editor.org/rfc/rfc8843#section-9.2
https://rfc-editor.org/rfc/rfc4588#section-8.6
https://rfc-editor.org/rfc/rfc4588#section-8.7

If the answer contains any "a=ice-options" attributes where

"trickle" is listed as an attribute, update the PeerConnection

canTrickleIceCandidates property to be "true". Otherwise, set this

property to "false".

The following steps MUST be performed for attributes at the session

level; if any parameters are out of bounds or cannot be applied,

processing MUST stop and an error MUST be returned.

For any specified "CT" bandwidth value, set this value as the

limit for the maximum total bitrate for all "m=" sections, as

specified in [RFC4566], Section 5.8. Within this overall limit,

the implementation can dynamically decide how to best allocate

the available bandwidth between "m=" sections, respecting any

specific limits that have been specified for individual "m="

sections.

For any specified "RR" or "RS" bandwidth values, handle as

specified in [RFC3556], Section 2.

Any "AS" bandwidth value ([RFC4566], Section 5.8) MUST be

ignored, as the meaning of this construct at the session level is

not well defined.

For each "m=" section, the following steps MUST be performed; if any

parameters are out of bounds or cannot be applied, processing MUST

stop and an error MUST be returned.

If the ICE ufrag or password changed from the previous remote

description:

If the description is of type "offer", the implementation MUST

note that an ICE restart is needed, as described in [RFC8839],

Section 4.4.1.1.1.

If the description is of type "answer" or "pranswer", then

check to see if the current local description is an ICE

restart, and if not, generate an error. If the PeerConnection

state is "have-remote-pranswer" and the ICE ufrag or password

changed from the previous provisional answer, then signal the

ICE agent to discard any previous ICE checklist state for the

"m=" section. Finally, signal the ICE agent to begin checks.

If the current local description indicates an ICE restart but

neither the ICE ufrag nor the password has changed from the

previous remote description (as prescribed by [RFC8445],

Section 9), generate an error.

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

-

¶

-

¶

*

¶

https://rfc-editor.org/rfc/rfc4566#section-5.8
https://rfc-editor.org/rfc/rfc3556#section-2
https://rfc-editor.org/rfc/rfc4566#section-5.8
https://rfc-editor.org/rfc/rfc8839#section-4.4.1.1.1
https://rfc-editor.org/rfc/rfc8445#section-9

Configure the ICE components associated with this media section

to use the supplied ICE remote ufrag and password for their

connectivity checks.

Pair any supplied ICE candidates with any gathered local

candidates, as described in [RFC8445], Section 6.1.2, and start

connectivity checks with the appropriate credentials.

If an "a=end-of-candidates" attribute is present, process the

end-of-candidates indication as described in [RFC8838],

Section 14.

If the "m=" section <proto> value indicates use of RTP:

If the "m=" section is being recycled (see Section 5.2.2),

disassociate the currently associated RtpTransceiver by

setting its mid property to "null", and discard the mapping

between the transceiver and its "m=" section index.

If the "m=" section is not associated with any RtpTransceiver

(possibly because it was disassociated in the previous step),

either find an RtpTransceiver or create one according to the

following steps:

If the "m=" section is sendrecv or recvonly, and there are

RtpTransceivers of the same type that were added to the

PeerConnection by addTrack and are not associated with any

"m=" section and are not stopped, find the first (according

to the canonical order described in Section 5.2.1) such

RtpTransceiver.

If no RtpTransceiver was found in the previous step, create

one with a recvonly direction.

Associate the found or created RtpTransceiver with the "m="

section by setting the value of the RtpTransceiver's mid

property to the MID of the "m=" section, and establish a

mapping between the transceiver and the index of the "m="

section. If the "m=" section does not include a MID (i.e.,

the remote endpoint does not support the MID extension),

generate a value for the RtpTransceiver mid property,

following the guidance for "a=mid" mentioned in Section

5.2.1.

For each specified media format that is also supported by the

local implementation, establish a mapping between the

specified payload type and the media format, as described in

[RFC3264], Section 6.1. Specifically, this means that the

implementation records the payload type to be used in outgoing

RTP packets when sending each specified media format, as well

*

¶

*

¶

*

¶

* ¶

-

¶

-

¶

o

¶

o

¶

o

¶

-

https://rfc-editor.org/rfc/rfc8445#section-6.1.2
https://rfc-editor.org/rfc/rfc8838#section-14
https://rfc-editor.org/rfc/rfc3264#section-6.1

as the relative preference for each format that is indicated

in their ordering. If any indicated media format is not

supported by the local implementation, it MUST be ignored.

For each specified "rtx" media format, establish a mapping

between the RTX payload type and its associated primary

payload type, as described in [RFC4588], Section 4. If any

referenced primary payload types are not present, this MUST

result in an error. Note that RTX payload types may refer to

primary payload types that are not supported by the local

media implementation, in which case the RTX payload type MUST

also be ignored.

For each specified fmtp parameter that is supported by the

local implementation, enable them on the associated media

formats.

For each specified Synchronization Source (SSRC) that is

signaled in the "m=" section, prepare to demux RTP streams

intended for this "m=" section using that SSRC, as described

in [RFC8843], Section 9.2.

For each specified RTP header extension that is also supported

by the local implementation, establish a mapping between the

extension ID and URI, as described in [RFC5285], Section 5.

Specifically, this means that the implementation records the

extension ID to be used in outgoing RTP packets when sending

each specified header extension. If any indicated RTP header

extension is not supported by the local implementation, it

MUST be ignored.

For each specified RTCP feedback mechanism that is supported

by the local implementation, enable them on the associated

media formats.

For any specified "TIAS" ("Transport Independent Application

Specific Maximum") bandwidth value, set this value as a

constraint on the maximum RTP bitrate to be used when sending

media, as specified in [RFC3890]. If a "TIAS" value is not

present but an "AS" value is specified, generate a "TIAS"

value using this formula:

TIAS = AS * 1000 * 0.95 - (50 * 40 * 8)

The 1000 changes the unit from kbps to bps (as required by

TIAS), and the 0.95 is to allocate 5% to RTCP. An estimate of

header overhead is then subtracted out, in which the 50 is

based on 50 packets per second, the 40 is based on typical

header size (in bytes), and the 8 converts bytes to bits. Note

¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

¶

¶

https://rfc-editor.org/rfc/rfc4588#section-4
https://rfc-editor.org/rfc/rfc8843#section-9.2
https://rfc-editor.org/rfc/rfc5285#section-5

that "TIAS" is preferred over "AS" because it provides more

accurate control of bandwidth.

For any "RR" or "RS" bandwidth values, handle as specified in

[RFC3556], Section 2.

Any specified "CT" bandwidth value MUST be ignored, as the

meaning of this construct at the media level is not well

defined.

If the "m=" section is of type "audio":

For each specified "CN" media format, configure silence

suppression for all supported media formats with the same

clock rate, as described in [RFC3389], Section 5, except

for formats that have their own internal silence

suppression mechanisms. Silence suppression for such

formats (e.g., Opus) is controlled via fmtp parameters, as

discussed in Section 5.2.3.2.

For each specified "telephone-event" media format, enable

dual-tone multifrequency (DTMF) transmission for all

supported media formats with the same clock rate, as

described in [RFC4733], Section 2.5.1.2. If there are any

supported media formats that do not have a corresponding

telephone-event format, disable DTMF transmission for those

formats.

For any specified "ptime" value, configure the available

media formats to use the specified packet size when

sending. If the specified size is not supported for a media

format, use the next closest value instead.

Finally, if this description is of type "pranswer" or "answer",

follow the processing defined in Section 5.11 below.

5.11. Applying an Answer

In addition to the steps mentioned above for processing a local or

remote description, the following steps are performed when

processing a description of type "pranswer" or "answer".

For each "m=" section, the following steps MUST be performed:

If the "m=" section has been rejected (i.e., the <port> value is

set to zero in the answer), stop any reception or transmission of

media for this section, and, unless a non-rejected "m=" section

is bundled with this "m=" section, discard any associated ICE

components, as described in [RFC8839], Section 4.4.3.1.

¶

-

¶

-

¶

- ¶

o

¶

o

¶

o

¶

¶

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc3556#section-2
https://rfc-editor.org/rfc/rfc3389#section-5
https://rfc-editor.org/rfc/rfc4733#section-2.5.1.2
https://rfc-editor.org/rfc/rfc8839#section-4.4.3.1

If the remote DTLS fingerprint has been changed or the value of

the "a=tls-id" attribute has changed, tear down the DTLS

connection. This includes the case when the PeerConnection state

is "have-remote-pranswer". If a DTLS connection needs to be torn

down but the answer does not indicate an ICE restart or, in the

case of "have-remote-pranswer", new ICE credentials, an error

MUST be generated. If an ICE restart is performed without a

change in the tls-id value or fingerprint, then the same DTLS

connection is continued over the new ICE channel. Note that

although JSEP requires that answerers change the tls-id value if

and only if the offerer does, non-JSEP answerers are permitted to

change the tls-id value as long as the offer contained an ICE

restart. Thus, JSEP implementations that process DTLS data prior

to receiving an answer MUST be prepared to receive either a

ClientHello or data from the previous DTLS connection.

If no valid DTLS connection exists, prepare to start a DTLS

connection, using the specified roles and fingerprints, on any

underlying ICE components, once they are active.

If the "m=" section <proto> value indicates use of RTP:

If the "m=" section references RTCP feedback mechanisms that

were not present in the corresponding "m=" section in the

offer, this indicates a negotiation problem and MUST result in

an error. However, new media formats and new RTP header

extension values are permitted in the answer, as described in

[RFC3264], Section 7 and [RFC5285], Section 6.

If the "m=" section has RTCP mux enabled, discard the RTCP ICE

component, if one exists, and begin or continue muxing RTCP

over the RTP ICE component, as specified in [RFC5761],

Section 5.1.3. Otherwise, prepare to transmit RTCP over the

RTCP ICE component; if no RTCP ICE component exists because

RTCP mux was previously enabled, this MUST result in an error.

If the "m=" section has Reduced-Size RTCP enabled, configure

the RTCP transmission for this "m=" section to use Reduced-

Size RTCP, as specified in [RFC5506].

If the direction attribute in the answer indicates that the

JSEP implementation should be sending media ("sendonly" for

local answers, "recvonly" for remote answers, or "sendrecv"

for either type of answer), choose the media format to send as

the most preferred media format from the remote description

that is also locally supported, as discussed in Sections 6.1

and 7 of [RFC3264], and start transmitting RTP media using

that format once the underlying transport layers have been

established. If an SSRC has not already been chosen for this

*

¶

*

¶

* ¶

-

¶

-

¶

-

¶

-

https://rfc-editor.org/rfc/rfc3264#section-7
https://rfc-editor.org/rfc/rfc5285#section-6
https://rfc-editor.org/rfc/rfc5761#section-5.1.3
https://rfc-editor.org/rfc/rfc3264#section-6.1
https://rfc-editor.org/rfc/rfc3264#section-7

outgoing RTP stream, choose a unique random one. If media is

already being transmitted, the same SSRC SHOULD be used unless

the clock rate of the new codec is different, in which case a

new SSRC MUST be chosen, as specified in [RFC7160],

Section 4.1.

The payload type mapping from the remote description is used

to determine payload types for the outgoing RTP streams,

including the payload type for the send media format chosen

above. Any RTP header extensions that were negotiated should

be included in the outgoing RTP streams, using the extension

mapping from the remote description. If the MID header

extension has been negotiated, include it in the outgoing RTP

streams, as indicated in [RFC8843], Section 15. If the

RtpStreamId or RepairedRtpStreamId header extensions have been

negotiated and rid-ids have been established, include these

header extensions in the outgoing RTP streams, as indicated in

[RFC8851], Section 4.

If the "m=" section is of type "audio", and silence

suppression was (1) configured for the send media format as a

result of processing the remote description and (2) also

enabled for that format in the local description, use silence

suppression for outgoing media, in accordance with the

guidance in Section 5.2.3.2. If these conditions are not met,

silence suppression MUST NOT be used for outgoing media.

If simulcast has been negotiated, send the appropriate number

of Source RTP Streams as specified in

[RFC8853], Section 5.3.3.

If the send media format chosen above has a corresponding

"rtx" media format or a FEC mechanism has been negotiated,

establish a redundancy RTP stream with a unique random SSRC

for each Source RTP Stream, and start or continue transmitting

RTX/FEC packets as needed.

If the send media format chosen above has a corresponding

"red" media format of the same clock rate, allow redundant

encoding using the specified format for resiliency purposes,

as discussed in [RFC8854], Section 3.2. Note that unlike RTX

or FEC media formats, the "red" format is transmitted on the

Source RTP Stream, not the redundancy RTP stream.

Enable the RTCP feedback mechanisms referenced in the media

section for all Source RTP Streams using the specified media

formats. Specifically, begin or continue sending the requested

feedback types and reacting to received feedback, as specified

in [RFC4585], Section 4.2. When sending RTCP feedback, follow

¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

https://rfc-editor.org/rfc/rfc7160#section-4.1
https://rfc-editor.org/rfc/rfc8843#section-15
https://rfc-editor.org/rfc/rfc8851#section-4
https://rfc-editor.org/rfc/rfc8853#section-5.3.3
https://rfc-editor.org/rfc/rfc8854#section-3.2
https://rfc-editor.org/rfc/rfc4585#section-4.2

the rules and recommendations from [RFC8108], Section 5.4.1 to

select which SSRC to use.

If the direction attribute in the answer indicates that the

JSEP implementation should not be sending media ("recvonly"

for local answers, "sendonly" for remote answers, or

"inactive" for either type of answer), stop transmitting all

RTP media, but continue sending RTCP, as described in

[RFC3264], Section 5.1.

If the "m=" section <proto> value indicates use of SCTP:

If an SCTP association exists and the remote SCTP port has

changed, discard the existing SCTP association. This includes

the case when the PeerConnection state is "have-remote-

pranswer".

If no valid SCTP association exists, prepare to initiate an

SCTP association over the associated ICE component and DTLS

connection, using the local SCTP port value from the local

description and the remote SCTP port value from the remote

description, as described in [RFC8841], Section 10.2.

If the answer contains valid bundle groups, discard any ICE

components for the "m=" sections that will be bundled onto the

primary ICE components in each bundle, and begin muxing these "m="

sections accordingly, as described in [RFC8843], Section 7.4.

If the description is of type "answer" and there are still remaining

candidates in the ICE candidate pool, discard them.

6. Processing RTP/RTCP

When bundling, associating incoming RTP/RTCP with the proper "m="

section is defined in [RFC8843], Section 9.2. When not bundling, the

proper "m=" section is clear from the ICE component over which the

RTP/RTCP is received.

Once the proper "m=" section or sections are known, RTP/RTCP is

delivered to the RtpTransceiver(s) associated with the "m="

section(s) and further processing of the RTP/RTCP is done at the

RtpTransceiver level. This includes using the RID mechanism

[RFC8851] and its associated RtpStreamId and RepairedRtpStreamId

identifiers to distinguish between multiple encoded streams and

determine which Source RTP stream should be repaired by a given

redundancy RTP stream.

¶

-

¶

* ¶

-

¶

-

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8108#section-5.4.1
https://rfc-editor.org/rfc/rfc3264#section-5.1
https://rfc-editor.org/rfc/rfc8841#section-10.2
https://rfc-editor.org/rfc/rfc8843#section-7.4
https://rfc-editor.org/rfc/rfc8843#section-9.2

7. Examples

Note that this example section shows several SDP fragments. To

accommodate RFC line-length restrictions, some of the SDP lines have

been split into multiple lines, where leading whitespace indicates

that a line is a continuation of the previous line. In addition,

some blank lines have been added to improve readability but are not

valid in SDP.

More examples of SDP for WebRTC call flows, including examples with

IPv6 addresses, can be found in [SDP4WebRTC].

7.1. Simple Example

This section shows a very simple example that sets up a minimal

audio/video call between two JSEP endpoints without using Trickle

ICE. The example in the following section provides a more detailed

example of what could happen in a JSEP session.

The code flow below shows Alice's endpoint initiating the session to

Bob's endpoint. The messages from the JavaScript application in

Alice's browser to the JavaScript in Bob's browser, abbreviated as

"AliceJS" and "BobJS", respectively, are assumed to flow over some

signaling protocol via a web server. The JavaScript on both Alice's

side and Bob's side waits for all candidates before sending the

offer or answer, so the offers and answers are complete; Trickle ICE

is not used. The user agents (JSEP implementations) in Alice's and

Bob's browsers, abbreviated as "AliceUA" and "BobUA", respectively,

are both using the default bundle policy of "balanced" and the

default RTCP mux policy of "require".

¶

¶

¶

¶

The SDP for |offer-A1| looks like:

// set up local media state

AliceJS->AliceUA: create new PeerConnection

AliceJS->AliceUA: addTrack with two tracks: audio and video

AliceJS->AliceUA: createOffer to get offer

AliceJS->AliceUA: setLocalDescription with offer

AliceUA->AliceJS: multiple onicecandidate events with candidates

// wait for ICE gathering to complete

AliceUA->AliceJS: onicecandidate event with null candidate

AliceJS->AliceUA: get |offer-A1| from pendingLocalDescription

// |offer-A1| is sent over signaling protocol to Bob

AliceJS->WebServer: signaling with |offer-A1|

WebServer->BobJS: signaling with |offer-A1|

// |offer-A1| arrives at Bob

BobJS->BobUA: create a PeerConnection

BobJS->BobUA: setRemoteDescription with |offer-A1|

BobUA->BobJS: ontrack events for audio and video tracks

// Bob accepts call

BobJS->BobUA: addTrack with local tracks

BobJS->BobUA: createAnswer

BobJS->BobUA: setLocalDescription with answer

BobUA->BobJS: multiple onicecandidate events with candidates

// wait for ICE gathering to complete

BobUA->BobJS: onicecandidate event with null candidate

BobJS->BobUA: get |answer-A1| from currentLocalDescription

// |answer-A1| is sent over signaling protocol

// to Alice

BobJS->WebServer: signaling with |answer-A1|

WebServer->AliceJS: signaling with |answer-A1|

// |answer-A1| arrives at Alice

AliceJS->AliceUA: setRemoteDescription with |answer-A1|

AliceUA->AliceJS: ontrack events for audio and video tracks

// media flows

BobUA->AliceUA: media sent from Bob to Alice

AliceUA->BobUA: media sent from Alice to Bob

¶

¶

v=0

o=- 4962303333179871722 1 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 v1

a=group:LS a1 v1

m=audio 10100 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 203.0.113.100

a=mid:a1

a=sendrecv

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:47017fee-b6c1-4162-929c-a25110252400

a=ice-ufrag:ETEn

a=ice-pwd:OtSK0WpNtpUjkY4+86js7ZQl

a=fingerprint:sha-256

 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04:

 BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2

a=setup:actpass

a=tls-id:91bbf309c0990a6bec11e38ba2933cee

a=rtcp:10101 IN IP4 203.0.113.100

a=rtcp-mux

a=rtcp-rsize

a=candidate:1 1 udp 2113929471 203.0.113.100 10100 typ host

a=candidate:1 2 udp 2113929470 203.0.113.100 10101 typ host

a=end-of-candidates

m=video 10102 UDP/TLS/RTP/SAVPF 100 101 102 103

c=IN IP4 203.0.113.100

a=mid:v1

a=sendrecv

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

a=msid:47017fee-b6c1-4162-929c-a25110252400

a=ice-ufrag:BGKk

a=ice-pwd:mqyWsAjvtKwTGnvhPztQ9mIf

a=fingerprint:sha-256

 19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04:

 BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2

a=setup:actpass

a=tls-id:91bbf309c0990a6bec11e38ba2933cee

a=rtcp:10103 IN IP4 203.0.113.100

a=rtcp-mux

a=rtcp-rsize

a=candidate:1 1 udp 2113929471 203.0.113.100 10102 typ host

a=candidate:1 2 udp 2113929470 203.0.113.100 10103 typ host

a=end-of-candidates

The SDP for |answer-A1| looks like:

¶

¶

v=0

o=- 6729291447651054566 1 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 v1

a=group:LS a1 v1

m=audio 10200 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 203.0.113.200

a=mid:a1

a=sendrecv

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:61317484-2ed4-49d7-9eb7-1414322a7aae

a=ice-ufrag:6sFv

a=ice-pwd:cOTZKZNVlO9RSGsEGM63JXT2

a=fingerprint:sha-256

 6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35:

 DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08

a=setup:active

a=tls-id:eec3392ab83e11ceb6a0990c903fbb19

a=rtcp-mux

a=rtcp-rsize

a=candidate:1 1 udp 2113929471 203.0.113.200 10200 typ host

a=end-of-candidates

m=video 10200 UDP/TLS/RTP/SAVPF 100 101 102 103

c=IN IP4 203.0.113.200

a=mid:v1

a=sendrecv

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

a=msid:61317484-2ed4-49d7-9eb7-1414322a7aae

7.2. Detailed Example

This section shows a more involved example of a session between two

JSEP endpoints. Trickle ICE is used in full trickle mode, with a

bundle policy of "must-bundle", an RTCP mux policy of "require", and

a single TURN server. Initially, both Alice and Bob establish an

audio channel and a data channel. Later, Bob adds two video flows --

one for his video feed and one for screen sharing, both supporting

FEC -- with the video feed configured for simulcast. Alice accepts

these video flows but does not add video flows of her own, so they

are handled as recvonly. Alice also specifies a maximum video

decoder resolution.

¶

¶

// set up local media state

AliceJS->AliceUA: create new PeerConnection

AliceJS->AliceUA: addTrack with an audio track

AliceJS->AliceUA: createDataChannel to get data channel

AliceJS->AliceUA: createOffer to get |offer-B1|

AliceJS->AliceUA: setLocalDescription with |offer-B1|

// |offer-B1| is sent over signaling protocol to Bob

AliceJS->WebServer: signaling with |offer-B1|

WebServer->BobJS: signaling with |offer-B1|

// |offer-B1| arrives at Bob

BobJS->BobUA: create a PeerConnection

BobJS->BobUA: setRemoteDescription with |offer-B1|

BobUA->BobJS: ontrack event with audio track from Alice

// candidates are sent to Bob

AliceUA->AliceJS: onicecandidate (host) |offer-B1-candidate-1|

AliceJS->WebServer: signaling with |offer-B1-candidate-1|

AliceUA->AliceJS: onicecandidate (srflx) |offer-B1-candidate-2|

AliceJS->WebServer: signaling with |offer-B1-candidate-2|

AliceUA->AliceJS: onicecandidate (relay) |offer-B1-candidate-3|

AliceJS->WebServer: signaling with |offer-B1-candidate-3|

WebServer->BobJS: signaling with |offer-B1-candidate-1|

BobJS->BobUA: addIceCandidate with |offer-B1-candidate-1|

WebServer->BobJS: signaling with |offer-B1-candidate-2|

BobJS->BobUA: addIceCandidate with |offer-B1-candidate-2|

WebServer->BobJS: signaling with |offer-B1-candidate-3|

BobJS->BobUA: addIceCandidate with |offer-B1-candidate-3|

// Bob accepts call

BobJS->BobUA: addTrack with local audio

BobJS->BobUA: createDataChannel to get data channel

BobJS->BobUA: createAnswer to get |answer-B1|

BobJS->BobUA: setLocalDescription with |answer-B1|

// |answer-B1| is sent to Alice

BobJS->WebServer: signaling with |answer-B1|

WebServer->AliceJS: signaling with |answer-B1|

AliceJS->AliceUA: setRemoteDescription with |answer-B1|

AliceUA->AliceJS: ontrack event with audio track from Bob

// candidates are sent to Alice

BobUA->BobJS: onicecandidate (host) |answer-B1-candidate-1|

BobJS->WebServer: signaling with |answer-B1-candidate-1|

BobUA->BobJS: onicecandidate (srflx) |answer-B1-candidate-2|

BobJS->WebServer: signaling with |answer-B1-candidate-2|

BobUA->BobJS: onicecandidate (relay) |answer-B1-candidate-3|

BobJS->WebServer: signaling with |answer-B1-candidate-3|

WebServer->AliceJS: signaling with |answer-B1-candidate-1|

AliceJS->AliceUA: addIceCandidate with |answer-B1-candidate-1|

WebServer->AliceJS: signaling with |answer-B1-candidate-2|

AliceJS->AliceUA: addIceCandidate with |answer-B1-candidate-2|

WebServer->AliceJS: signaling with |answer-B1-candidate-3|

AliceJS->AliceUA: addIceCandidate with |answer-B1-candidate-3|

// data channel opens

BobUA->BobJS: ondatachannel event

AliceUA->AliceJS: ondatachannel event

BobUA->BobJS: onopen

AliceUA->AliceJS: onopen

// media is flowing between endpoints

BobUA->AliceUA: audio+data sent from Bob to Alice

AliceUA->BobUA: audio+data sent from Alice to Bob

// some time later, Bob adds two video streams

// note: no candidates exchanged, because of bundle

BobJS->BobUA: addTrack with first video stream

BobJS->BobUA: addTrack with second video stream

BobJS->BobUA: createOffer to get |offer-B2|

BobJS->BobUA: setLocalDescription with |offer-B2|

// |offer-B2| is sent to Alice

BobJS->WebServer: signaling with |offer-B2|

WebServer->AliceJS: signaling with |offer-B2|

AliceJS->AliceUA: setRemoteDescription with |offer-B2|

AliceUA->AliceJS: ontrack event with first video track

AliceUA->AliceJS: ontrack event with second video track

AliceJS->AliceUA: createAnswer to get |answer-B2|

AliceJS->AliceUA: setLocalDescription with |answer-B2|

// |answer-B2| is sent over signaling protocol

// to Bob

AliceJS->WebServer: signaling with |answer-B2|

WebServer->BobJS: signaling with |answer-B2|

BobJS->BobUA: setRemoteDescription with |answer-B2|

// media is flowing between endpoints

BobUA->AliceUA: audio+video+data sent from Bob to Alice

AliceUA->BobUA: audio+video+data sent from Alice to Bob

¶

The SDP for |offer-B1| looks like:

v=0

o=- 4962303333179871723 1 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 d1

m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 0.0.0.0

a=mid:a1

a=sendrecv

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:57017fee-b6c1-4162-929c-a25110252400

a=ice-ufrag:ATEn

a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl

a=fingerprint:sha-256

 29:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04:

 BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2

a=setup:actpass

a=tls-id:17f0f4ba8a5f1213faca591b58ba52a7

a=rtcp-mux

a=rtcp-mux-only

a=rtcp-rsize

m=application 0 UDP/DTLS/SCTP webrtc-datachannel

c=IN IP4 0.0.0.0

a=mid:d1

a=sctp-port:5000

a=max-message-size:65536

a=bundle-only

|offer-B1-candidate-1| looks like:

¶

¶

¶

ufrag ATEn

index 0

mid a1

attr candidate:1 1 udp 2113929471 203.0.113.100 10100 typ host

|offer-B1-candidate-2| looks like:

ufrag ATEn

index 0

mid a1

attr candidate:1 1 udp 1845494015 198.51.100.100 11100 typ srflx

 raddr 203.0.113.100 rport 10100

|offer-B1-candidate-3| looks like:

ufrag ATEn

index 0

mid a1

attr candidate:1 1 udp 255 192.0.2.100 12100 typ relay

 raddr 198.51.100.100 rport 11100

The SDP for |answer-B1| looks like:

¶

¶

¶

¶

¶

¶

v=0

o=- 7729291447651054566 1 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 d1

m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 0.0.0.0

a=mid:a1

a=sendrecv

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:71317484-2ed4-49d7-9eb7-1414322a7aae

a=ice-ufrag:7sFv

a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2

a=fingerprint:sha-256

 7B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35:

 DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08

a=setup:active

a=tls-id:7a25ab85b195acaf3121f5a8ab4f0f71

a=rtcp-mux

a=rtcp-mux-only

a=rtcp-rsize

m=application 9 UDP/DTLS/SCTP webrtc-datachannel

c=IN IP4 0.0.0.0

a=mid:d1

a=sctp-port:5000

a=max-message-size:65536

|answer-B1-candidate-1| looks like:

ufrag 7sFv

index 0

mid a1

attr candidate:1 1 udp 2113929471 203.0.113.200 10200 typ host

¶

¶

¶

|answer-B1-candidate-2| looks like:

ufrag 7sFv

index 0

mid a1

attr candidate:1 1 udp 1845494015 198.51.100.200 11200 typ srflx

 raddr 203.0.113.200 rport 10200

|answer-B1-candidate-3| looks like:

ufrag 7sFv

index 0

mid a1

attr candidate:1 1 udp 255 192.0.2.200 12200 typ relay

 raddr 198.51.100.200 rport 11200

The SDP for |offer-B2| is shown below. In addition to the new "m="

sections for video, both of which are offering FEC and one of which

is offering simulcast, note the increment of the version number in

the "o=" line; changes to the "c=" line, indicating the local

candidate that was selected; and the inclusion of gathered

candidates as a=candidate lines.

¶

¶

¶

¶

¶

v=0

o=- 7729291447651054566 2 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 d1 v1 v2

a=group:LS a1 v1

m=audio 12200 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 192.0.2.200

a=mid:a1

a=sendrecv

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:71317484-2ed4-49d7-9eb7-1414322a7aae

a=ice-ufrag:7sFv

a=ice-pwd:dOTZKZNVlO9RSGsEGM63JXT2

a=fingerprint:sha-256

 7B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35:

 DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08

a=setup:actpass

a=tls-id:7a25ab85b195acaf3121f5a8ab4f0f71

a=rtcp-mux

a=rtcp-mux-only

a=rtcp-rsize

a=candidate:1 1 udp 2113929471 203.0.113.200 10200 typ host

a=candidate:1 1 udp 1845494015 198.51.100.200 11200 typ srflx

 raddr 203.0.113.200 rport 10200

a=candidate:1 1 udp 255 192.0.2.200 12200 typ relay

 raddr 198.51.100.200 rport 11200

a=end-of-candidates

m=application 12200 UDP/DTLS/SCTP webrtc-datachannel

c=IN IP4 192.0.2.200

a=mid:d1

a=sctp-port:5000

a=max-message-size:65536

m=video 12200 UDP/TLS/RTP/SAVPF 100 101 102 103 104

c=IN IP4 192.0.2.200

a=mid:v1

a=sendrecv

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=rtpmap:104 flexfec/90000

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

a=msid:71317484-2ed4-49d7-9eb7-1414322a7aae

a=rid:1 send

a=rid:2 send

a=rid:3 send

a=simulcast:send 1;2;3

m=video 12200 UDP/TLS/RTP/SAVPF 100 101 102 103 104

c=IN IP4 192.0.2.200

a=mid:v2

a=sendrecv

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=rtpmap:104 flexfec/90000

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

a=msid:81317484-2ed4-49d7-9eb7-1414322a7aae

The SDP for |answer-B2| is shown below. In addition to the

acceptance of the video "m=" sections, the use of a=recvonly to

indicate one-way video, and the use of a=imageattr to limit the

received resolution, note the use of setup:passive to maintain the

existing DTLS roles.

¶

¶

v=0

o=- 4962303333179871723 2 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 d1 v1 v2

a=group:LS a1 v1

m=audio 12100 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 192.0.2.100

a=mid:a1

a=sendrecv

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:57017fee-b6c1-4162-929c-a25110252400

a=ice-ufrag:ATEn

a=ice-pwd:AtSK0WpNtpUjkY4+86js7ZQl

a=fingerprint:sha-256

 29:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04:

 BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2

a=setup:passive

a=tls-id:17f0f4ba8a5f1213faca591b58ba52a7

a=rtcp-mux

a=rtcp-mux-only

a=rtcp-rsize

a=candidate:1 1 udp 2113929471 203.0.113.100 10100 typ host

a=candidate:1 1 udp 1845494015 198.51.100.100 11100 typ srflx

 raddr 203.0.113.100 rport 10100

a=candidate:1 1 udp 255 192.0.2.100 12100 typ relay

 raddr 198.51.100.100 rport 11100

a=end-of-candidates

m=application 12100 UDP/DTLS/SCTP webrtc-datachannel

c=IN IP4 192.0.2.100

a=mid:d1

a=sctp-port:5000

a=max-message-size:65536

m=video 12100 UDP/TLS/RTP/SAVPF 100 101 102 103

c=IN IP4 192.0.2.100

a=mid:v1

a=recvonly

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=imageattr:100 recv [x=[48:1920],y=[48:1080],q=1.0]

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

m=video 12100 UDP/TLS/RTP/SAVPF 100 101 102 103

c=IN IP4 192.0.2.100

a=mid:v2

a=recvonly

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=imageattr:100 recv [x=[48:1920],y=[48:1080],q=1.0]

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

7.3. Early Transport Warmup Example

This example demonstrates the early-warmup technique described in

Section 4.1.10.1. Here, Alice's endpoint sends an offer to Bob's

endpoint to start an audio/video call. Bob immediately responds with

an answer that accepts the audio/video "m=" sections but marks them

as sendonly (from his perspective), meaning that Alice will not yet

send media. This allows the JSEP implementation to start negotiating

ICE and DTLS immediately. Bob's endpoint then prompts him to answer

the call, and when he does, his endpoint sends a second offer, which

enables the audio and video "m=" sections, and thereby bidirectional

media transmission. The advantage of such a flow is that as soon as

the first answer is received, the implementation can proceed with

ICE and DTLS negotiation and establish the session transport. If the

¶

transport setup completes before the second offer is sent, then

media can be transmitted by the callee immediately upon answering

the call, minimizing perceived post-dial delay. The second offer/

answer exchange can also change the preferred codecs or other

session parameters.

This example also makes use of the "relay" ICE candidate policy

described in Section 3.5.3 to minimize the ICE gathering and

checking needed.

¶

¶

// set up local media state

AliceJS->AliceUA: create new PeerConnection with "relay" ICE policy

AliceJS->AliceUA: addTrack with two tracks: audio and video

AliceJS->AliceUA: createOffer to get |offer-C1|

AliceJS->AliceUA: setLocalDescription with |offer-C1|

// |offer-C1| is sent over signaling protocol to Bob

AliceJS->WebServer: signaling with |offer-C1|

WebServer->BobJS: signaling with |offer-C1|

// |offer-C1| arrives at Bob

BobJS->BobUA: create new PeerConnection with "relay" ICE policy

BobJS->BobUA: setRemoteDescription with |offer-C1|

BobUA->BobJS: ontrack events for audio and video

// a relay candidate is sent to Bob

AliceUA->AliceJS: onicecandidate (relay) |offer-C1-candidate-1|

AliceJS->WebServer: signaling with |offer-C1-candidate-1|

WebServer->BobJS: signaling with |offer-C1-candidate-1|

BobJS->BobUA: addIceCandidate with |offer-C1-candidate-1|

// Bob prepares an early answer to warm up the

// transport

BobJS->BobUA: addTransceiver with null audio and video tracks

BobJS->BobUA: transceiver.setDirection(sendonly) for both

BobJS->BobUA: createAnswer

BobJS->BobUA: setLocalDescription with answer

// |answer-C1| is sent over signaling protocol

// to Alice

BobJS->WebServer: signaling with |answer-C1|

WebServer->AliceJS: signaling with |answer-C1|

// |answer-C1| (sendonly) arrives at Alice

AliceJS->AliceUA: setRemoteDescription with |answer-C1|

AliceUA->AliceJS: ontrack events for audio and video

// a relay candidate is sent to Alice

BobUA->BobJS: onicecandidate (relay) |answer-B1-candidate-1|

BobJS->WebServer: signaling with |answer-B1-candidate-1|

WebServer->AliceJS: signaling with |answer-B1-candidate-1|

AliceJS->AliceUA: addIceCandidate with |answer-B1-candidate-1|

// ICE and DTLS establish while call is ringing

// Bob accepts call, starts media, and sends

// new offer

BobJS->BobUA: transceiver.setTrack with audio and video tracks

BobUA->AliceUA: media sent from Bob to Alice

BobJS->BobUA: transceiver.setDirection(sendrecv) for both

 transceivers

BobJS->BobUA: createOffer

BobJS->BobUA: setLocalDescription with offer

// |offer-C2| is sent over signaling protocol

// to Alice

BobJS->WebServer: signaling with |offer-C2|

WebServer->AliceJS: signaling with |offer-C2|

// |offer-C2| (sendrecv) arrives at Alice

AliceJS->AliceUA: setRemoteDescription with |offer-C2|

AliceJS->AliceUA: createAnswer

AliceJS->AliceUA: setLocalDescription with |answer-C2|

AliceUA->BobUA: media sent from Alice to Bob

// |answer-C2| is sent over signaling protocol

// to Bob

AliceJS->WebServer: signaling with |answer-C2|

WebServer->BobJS: signaling with |answer-C2|

BobJS->BobUA: setRemoteDescription with |answer-C2|

¶

The SDP for |offer-C1| looks like:¶

v=0

o=- 1070771854436052752 1 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 v1

a=group:LS a1 v1

m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 0.0.0.0

a=mid:a1

a=sendrecv

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:bbce3ba6-abfc-ac63-d00a-e15b286f8fce

a=ice-ufrag:4ZcD

a=ice-pwd:ZaaG6OG7tCn4J/lehAGz+HHD

a=fingerprint:sha-256

 C4:68:F8:77:6A:44:F1:98:6D:7C:9F:47:EB:E3:34:A4:

 0A:AA:2D:49:08:28:70:2E:1F:AE:18:7D:4E:3E:66:BF

a=setup:actpass

a=tls-id:9e5b948ade9c3d41de6617b68f769e55

a=rtcp-mux

a=rtcp-mux-only

a=rtcp-rsize

m=video 0 UDP/TLS/RTP/SAVPF 100 101 102 103

c=IN IP4 0.0.0.0

a=mid:v1

a=sendrecv

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

a=msid:bbce3ba6-abfc-ac63-d00a-e15b286f8fce

a=bundle-only

|offer-C1-candidate-1| looks like:

ufrag 4ZcD

index 0

mid a1

attr candidate:1 1 udp 255 192.0.2.100 12100 typ relay

 raddr 0.0.0.0 rport 0

The SDP for |answer-C1| looks like:

¶

¶

¶

¶

v=0

o=- 6386516489780559513 1 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 v1

a=group:LS a1 v1

m=audio 9 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 0.0.0.0

a=mid:a1

a=sendonly

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:751f239e-4ae0-c549-aa3d-890de772998b

a=ice-ufrag:TpaA

a=ice-pwd:t2Ouhc67y8JcCaYZxUUTgKw/

a=fingerprint:sha-256

 A2:F3:A5:6D:4C:8C:1E:B2:62:10:4A:F6:70:61:C4:FC:

 3C:E0:01:D6:F3:24:80:74:DA:7C:3E:50:18:7B:CE:4D

a=setup:active

a=tls-id:55e967f86b7166ed14d3c9eda849b5e9

a=rtcp-mux

a=rtcp-mux-only

a=rtcp-rsize

m=video 9 UDP/TLS/RTP/SAVPF 100 101 102 103

c=IN IP4 0.0.0.0

a=mid:v1

a=sendonly

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

a=msid:751f239e-4ae0-c549-aa3d-890de772998b

|answer-C1-candidate-1| looks like:

ufrag TpaA

index 0

mid a1

attr candidate:1 1 udp 255 192.0.2.200 12200 typ relay

 raddr 0.0.0.0 rport 0

The SDP for |offer-C2| looks like:

¶

¶

¶

¶

v=0

o=- 6386516489780559513 2 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 v1

a=group:LS a1 v1

m=audio 12200 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 192.0.2.200

a=mid:a1

a=sendrecv

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:751f239e-4ae0-c549-aa3d-890de772998b

a=ice-ufrag:TpaA

a=ice-pwd:t2Ouhc67y8JcCaYZxUUTgKw/

a=fingerprint:sha-256

 A2:F3:A5:6D:4C:8C:1E:B2:62:10:4A:F6:70:61:C4:FC:

 3C:E0:01:D6:F3:24:80:74:DA:7C:3E:50:18:7B:CE:4D

a=setup:actpass

a=tls-id:55e967f86b7166ed14d3c9eda849b5e9

a=rtcp-mux

a=rtcp-mux-only

a=rtcp-rsize

a=candidate:1 1 udp 255 192.0.2.200 12200 typ relay

 raddr 0.0.0.0 rport 0

a=end-of-candidates

m=video 12200 UDP/TLS/RTP/SAVPF 100 101 102 103

c=IN IP4 192.0.2.200

a=mid:v1

a=sendrecv

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

a=msid:751f239e-4ae0-c549-aa3d-890de772998b

The SDP for |answer-C2| looks like:

¶

¶

v=0

o=- 1070771854436052752 2 IN IP4 0.0.0.0

s=-

t=0 0

a=ice-options:trickle ice2

a=group:BUNDLE a1 v1

a=group:LS a1 v1

m=audio 12100 UDP/TLS/RTP/SAVPF 96 0 8 97 98

c=IN IP4 192.0.2.100

a=mid:a1

a=sendrecv

a=rtpmap:96 opus/48000/2

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 telephone-event/8000

a=rtpmap:98 telephone-event/48000

a=fmtp:97 0-15

a=fmtp:98 0-15

a=maxptime:120

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:ssrc-audio-level

a=msid:bbce3ba6-abfc-ac63-d00a-e15b286f8fce

a=ice-ufrag:4ZcD

a=ice-pwd:ZaaG6OG7tCn4J/lehAGz+HHD

a=fingerprint:sha-256

 C4:68:F8:77:6A:44:F1:98:6D:7C:9F:47:EB:E3:34:A4:

 0A:AA:2D:49:08:28:70:2E:1F:AE:18:7D:4E:3E:66:BF

a=setup:passive

a=tls-id:9e5b948ade9c3d41de6617b68f769e55

a=rtcp-mux

a=rtcp-mux-only

a=rtcp-rsize

a=candidate:1 1 udp 255 192.0.2.100 12100 typ relay

 raddr 0.0.0.0 rport 0

a=end-of-candidates

m=video 12100 UDP/TLS/RTP/SAVPF 100 101 102 103

c=IN IP4 192.0.2.100

a=mid:v1

a=sendrecv

a=rtpmap:100 VP8/90000

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=1;profile-level-id=42e01f

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=100

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=101

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

[RFC2119]

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=rtcp-fb:100 ccm fir

a=rtcp-fb:100 nack

a=rtcp-fb:100 nack pli

a=msid:bbce3ba6-abfc-ac63-d00a-e15b286f8fce

8. Security Considerations

The IETF has published separate documents [RFC8827] [RFC8826]

describing the security architecture for WebRTC as a whole. The

remainder of this section describes security considerations for this

document.

While formally the JSEP interface is an API, it is better to think

of it as an Internet protocol, with the application JavaScript being

untrustworthy from the perspective of the JSEP implementation. Thus,

the threat model of [RFC3552] applies. In particular, JavaScript can

call the API in any order and with any inputs, including malicious

ones. This is particularly relevant when we consider the SDP that is

passed to setLocalDescription. While correct API usage requires that

the application pass in SDP that was derived from createOffer or

createAnswer, there is no guarantee that applications do so. The

JSEP implementation MUST be prepared for the JavaScript to pass in

bogus data instead.

Conversely, the application programmer needs to be aware that the

JavaScript does not have complete control of endpoint behavior. One

case that bears particular mention is that editing ICE candidates

out of the SDP or suppressing trickled candidates does not have the

expected behavior: implementations will still perform checks from

those candidates even if they are not sent to the other side. Thus,

for instance, it is not possible to prevent the remote peer from

learning your public IP address by removing server-reflexive

candidates. Applications that wish to conceal their public IP

address MUST instead configure the ICE agent to use only relay

candidates.

9. IANA Considerations

This document has no IANA actions.

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

¶

[RFC3261]

[RFC3264]

[RFC3552]

[RFC3605]

[RFC3711]

[RFC3890]

[RFC4145]

[RFC4566]

[RFC4585]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model

with Session Description Protocol (SDP)", RFC 3264, DOI

10.17487/RFC3264, June 2002, <https://www.rfc-editor.org/

info/rfc3264>.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC

Text on Security Considerations", BCP 72, RFC 3552, DOI

10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/

info/rfc3552>.

Huitema, C., "Real Time Control Protocol (RTCP) attribute

in Session Description Protocol (SDP)", RFC 3605, DOI

10.17487/RFC3605, October 2003, <https://www.rfc-

editor.org/info/rfc3605>.

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.

Norrman, "The Secure Real-time Transport Protocol

(SRTP)", RFC 3711, DOI 10.17487/RFC3711, March 2004,

<https://www.rfc-editor.org/info/rfc3711>.

Westerlund, M., "A Transport Independent Bandwidth

Modifier for the Session Description Protocol (SDP)", RFC

3890, DOI 10.17487/RFC3890, September 2004, <https://

www.rfc-editor.org/info/rfc3890>.

Yon, D. and G. Camarillo, "TCP-Based Media Transport in

the Session Description Protocol (SDP)", RFC 4145, DOI

10.17487/RFC4145, September 2005, <https://www.rfc-

editor.org/info/rfc4145>.

Handley, M., Jacobson, V., and C. Perkins, "SDP: Session

Description Protocol", RFC 4566, DOI 10.17487/RFC4566,

July 2006, <https://www.rfc-editor.org/info/rfc4566>.

Ott, J., Wenger, S., Sato, N., Burmeister, C., and J.

Rey, "Extended RTP Profile for Real-time Transport

Control Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC

4585, DOI 10.17487/RFC4585, July 2006, <https://www.rfc-

editor.org/info/rfc4585>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3605
https://www.rfc-editor.org/info/rfc3605
https://www.rfc-editor.org/info/rfc3711
https://www.rfc-editor.org/info/rfc3890
https://www.rfc-editor.org/info/rfc3890
https://www.rfc-editor.org/info/rfc4145
https://www.rfc-editor.org/info/rfc4145
https://www.rfc-editor.org/info/rfc4566
https://www.rfc-editor.org/info/rfc4585
https://www.rfc-editor.org/info/rfc4585

[RFC5124]

[RFC5285]

[RFC5761]

[RFC5888]

[RFC6236]

[RFC6347]

[RFC6716]

[RFC6904]

[RFC7160]

[RFC7587]

Ott, J. and E. Carrara, "Extended Secure RTP Profile for

Real-time Transport Control Protocol (RTCP)-Based

Feedback (RTP/SAVPF)", RFC 5124, DOI 10.17487/RFC5124,

February 2008, <https://www.rfc-editor.org/info/rfc5124>.

Singer, D. and H. Desineni, "A General Mechanism for RTP

Header Extensions", RFC 5285, DOI 10.17487/RFC5285, July

2008, <https://www.rfc-editor.org/info/rfc5285>.

Perkins, C. and M. Westerlund, "Multiplexing RTP Data and

Control Packets on a Single Port", RFC 5761, DOI

10.17487/RFC5761, April 2010, <https://www.rfc-

editor.org/info/rfc5761>.

Camarillo, G. and H. Schulzrinne, "The Session

Description Protocol (SDP) Grouping Framework", RFC 5888,

DOI 10.17487/RFC5888, June 2010, <https://www.rfc-

editor.org/info/rfc5888>.

Johansson, I. and K. Jung, "Negotiation of Generic Image

Attributes in the Session Description Protocol (SDP)",

RFC 6236, DOI 10.17487/RFC6236, May 2011, <https://

www.rfc-editor.org/info/rfc6236>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Valin, JM., Vos, K., and T. Terriberry, "Definition of

the Opus Audio Codec", RFC 6716, DOI 10.17487/RFC6716,

September 2012, <https://www.rfc-editor.org/info/

rfc6716>.

Lennox, J., "Encryption of Header Extensions in the

Secure Real-time Transport Protocol (SRTP)", RFC 6904,

DOI 10.17487/RFC6904, April 2013, <https://www.rfc-

editor.org/info/rfc6904>.

Petit-Huguenin, M. and G. Zorn, Ed., "Support for

Multiple Clock Rates in an RTP Session", RFC 7160, DOI

10.17487/RFC7160, April 2014, <https://www.rfc-

editor.org/info/rfc7160>.

Spittka, J., Vos, K., and JM. Valin, "RTP Payload Format

for the Opus Speech and Audio Codec", RFC 7587, DOI

https://www.rfc-editor.org/info/rfc5124
https://www.rfc-editor.org/info/rfc5285
https://www.rfc-editor.org/info/rfc5761
https://www.rfc-editor.org/info/rfc5761
https://www.rfc-editor.org/info/rfc5888
https://www.rfc-editor.org/info/rfc5888
https://www.rfc-editor.org/info/rfc6236
https://www.rfc-editor.org/info/rfc6236
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6716
https://www.rfc-editor.org/info/rfc6716
https://www.rfc-editor.org/info/rfc6904
https://www.rfc-editor.org/info/rfc6904
https://www.rfc-editor.org/info/rfc7160
https://www.rfc-editor.org/info/rfc7160

[RFC7742]

[RFC7850]

[RFC7874]

[RFC8108]

[RFC8122]

[RFC8174]

[RFC8445]

[RFC8826]

[RFC8827]

[RFC8829]

10.17487/RFC7587, June 2015, <https://www.rfc-editor.org/

info/rfc7587>.

Roach, A.B., "WebRTC Video Processing and Codec

Requirements", RFC 7742, DOI 10.17487/RFC7742, March

2016, <https://www.rfc-editor.org/info/rfc7742>.

Nandakumar, S., "Registering Values of the SDP 'proto'

Field for Transporting RTP Media over TCP under Various

RTP Profiles", RFC 7850, DOI 10.17487/RFC7850, April

2016, <https://www.rfc-editor.org/info/rfc7850>.

Valin, JM. and C. Bran, "WebRTC Audio Codec and

Processing Requirements", RFC 7874, DOI 10.17487/RFC7874,

May 2016, <https://www.rfc-editor.org/info/rfc7874>.

Lennox, J., Westerlund, M., Wu, Q., and C. Perkins,

"Sending Multiple RTP Streams in a Single RTP Session",

RFC 8108, DOI 10.17487/RFC8108, March 2017, <https://

www.rfc-editor.org/info/rfc8108>.

Lennox, J. and C. Holmberg, "Connection-Oriented Media

Transport over the Transport Layer Security (TLS)

Protocol in the Session Description Protocol (SDP)", RFC

8122, DOI 10.17487/RFC8122, March 2017, <https://www.rfc-

editor.org/info/rfc8122>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive

Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal", RFC 8445, DOI

10.17487/RFC8445, July 2018, <https://www.rfc-editor.org/

info/rfc8445>.

Rescorla, E., "Security Considerations for WebRTC", RFC

8826, DOI 10.17487/RFC8826, January 2021, <https://

www.rfc-editor.org/info/rfc8826>.

Rescorla, E., "WebRTC Security Architecture", RFC 8827,

DOI 10.17487/RFC8827, January 2021, <https://www.rfc-

editor.org/info/rfc8827>.

Uberti, J., Jennings, C., and E. Rescorla, Ed.,

"JavaScript Session Establishment Protocol (JSEP)", RFC

8829, DOI 10.17487/RFC8829, January 2021, <https://

www.rfc-editor.org/info/rfc8829>.

https://www.rfc-editor.org/info/rfc7587
https://www.rfc-editor.org/info/rfc7587
https://www.rfc-editor.org/info/rfc7742
https://www.rfc-editor.org/info/rfc7850
https://www.rfc-editor.org/info/rfc7874
https://www.rfc-editor.org/info/rfc8108
https://www.rfc-editor.org/info/rfc8108
https://www.rfc-editor.org/info/rfc8122
https://www.rfc-editor.org/info/rfc8122
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8826
https://www.rfc-editor.org/info/rfc8826
https://www.rfc-editor.org/info/rfc8827
https://www.rfc-editor.org/info/rfc8827
https://www.rfc-editor.org/info/rfc8829
https://www.rfc-editor.org/info/rfc8829

[RFC8830]

[RFC8834]

[RFC8838]

[RFC8839]

[RFC8840]

[RFC8841]

[RFC8842]

[RFC8843]

Alvestrand, H., "WebRTC MediaStream Identification in the

Session Description Protocol", RFC 8830, DOI 10.17487/

RFC8830, January 2021, <https://www.rfc-editor.org/info/

rfc8830>.

Perkins, C., Westerlund, M., and J. Ott, "Media Transport

and Use of RTP in WebRTC", RFC 8834, DOI 10.17487/

RFC8834, January 2021, <https://www.rfc-editor.org/info/

rfc8834>.

Ivov, E., Uberti, J., and P. Saint-Andre, "Trickle ICE:

Incremental Provisioning of Candidates for the

Interactive Connectivity Establishment (ICE) Protocol",

RFC 8838, DOI 10.17487/RFC8838, January 2021, <https://

www.rfc-editor.org/info/rfc8838>.

Petit-Huguenin, M., Nandakumar, S., Holmberg, C.,

Keränen, A., and R. Shpount, "Session Description

Protocol (SDP) Offer/Answer Procedures for Interactive

Connectivity Establishment (ICE)", RFC 8839, DOI

10.17487/RFC8839, January 2021, <https://www.rfc-

editor.org/info/rfc8839>.

Ivov, E., Stach, T., Marocco, E., and C. Holmberg, "A

Session Initiation Protocol (SIP) Usage for Incremental

Provisioning of Candidates for the Interactive

Connectivity Establishment (Trickle ICE)", RFC 8840, DOI

10.17487/RFC8840, January 2021, <https://www.rfc-

editor.org/info/rfc8840>.

Holmberg, C., Shpount, R., Loreto, S., and G. Camarillo,

"Session Description Protocol (SDP) Offer/Answer

Procedures for Stream Control Transmission Protocol

(SCTP) over Datagram Transport Layer Security (DTLS)

Transport", RFC 8841, DOI 10.17487/RFC8841, January 2021,

<https://www.rfc-editor.org/info/rfc8841>.

Holmberg, C. and R. Shpount, "Session Description

Protocol (SDP) Offer/Answer Considerations for Datagram

Transport Layer Security (DTLS) and Transport Layer

Security (TLS)", RFC 8842, DOI 10.17487/RFC8842, January

2021, <https://www.rfc-editor.org/info/rfc8842>.

Holmberg, C., Alvestrand, H., and C. Jennings,

"Negotiating Media Multiplexing Using the Session

Description Protocol (SDP)", RFC 8843, DOI 10.17487/

RFC8843, January 2021, <https://www.rfc-editor.org/info/

rfc8843>.

https://www.rfc-editor.org/info/rfc8830
https://www.rfc-editor.org/info/rfc8830
https://www.rfc-editor.org/info/rfc8834
https://www.rfc-editor.org/info/rfc8834
https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8839
https://www.rfc-editor.org/info/rfc8839
https://www.rfc-editor.org/info/rfc8840
https://www.rfc-editor.org/info/rfc8840
https://www.rfc-editor.org/info/rfc8841
https://www.rfc-editor.org/info/rfc8842
https://www.rfc-editor.org/info/rfc8843
https://www.rfc-editor.org/info/rfc8843

[RFC8851]

[RFC8852]

[RFC8853]

[RFC8854]

[RFC8858]

[RFC8859]

[RFC3389]

[RFC3556]

[RFC3960]

[RFC4568]

Roach, A.B., Ed., "RTP Payload Format Restrictions", RFC

8851, DOI 10.17487/RFC8851, January 2021, <https://

www.rfc-editor.org/info/rfc8851>.

Roach, A.B., Nandakumar, S., and P. Thatcher, "RTP Stream

Identifier Source Description (SDES)", RFC 8852, DOI

10.17487/RFC8852, January 2021, <https://www.rfc-

editor.org/info/rfc8852>.

Burman, B., Westerlund, M., Nandakumar, S., and M.

Zanaty, "Using Simulcast in Session Description Protocol

(SDP) and RTP Sessions", RFC 8853, DOI 10.17487/RFC8853,

January 2021, <https://www.rfc-editor.org/info/rfc8853>.

Uberti, J., "WebRTC Forward Error Correction

Requirements", RFC 8854, DOI 10.17487/RFC8854, January

2021, <https://www.rfc-editor.org/info/rfc8854>.

Holmberg, C., "Indicating Exclusive Support of RTP and

RTP Control Protocol (RTCP) Multiplexing Using the

Session Description Protocol (SDP)", RFC 8858, DOI

10.17487/RFC8858, January 2021, <https://www.rfc-

editor.org/info/rfc8858>.

Nandakumar, S., "A Framework for Session Description

Protocol (SDP) Attributes When Multiplexing", RFC 8859,

DOI 10.17487/RFC8859, January 2021, <https://www.rfc-

editor.org/info/rfc8859>.

10.2. Informative References

Zopf, R., "Real-time Transport Protocol (RTP) Payload for

Comfort Noise (CN)", RFC 3389, DOI 10.17487/RFC3389,

September 2002, <https://www.rfc-editor.org/info/

rfc3389>.

Casner, S., "Session Description Protocol (SDP) Bandwidth

Modifiers for RTP Control Protocol (RTCP) Bandwidth", RFC

3556, DOI 10.17487/RFC3556, July 2003, <https://www.rfc-

editor.org/info/rfc3556>.

Camarillo, G. and H. Schulzrinne, "Early Media and

Ringing Tone Generation in the Session Initiation

Protocol (SIP)", RFC 3960, DOI 10.17487/RFC3960, December

2004, <https://www.rfc-editor.org/info/rfc3960>.

Andreasen, F., Baugher, M., and D. Wing, "Session

Description Protocol (SDP) Security Descriptions for

https://www.rfc-editor.org/info/rfc8851
https://www.rfc-editor.org/info/rfc8851
https://www.rfc-editor.org/info/rfc8852
https://www.rfc-editor.org/info/rfc8852
https://www.rfc-editor.org/info/rfc8853
https://www.rfc-editor.org/info/rfc8854
https://www.rfc-editor.org/info/rfc8858
https://www.rfc-editor.org/info/rfc8858
https://www.rfc-editor.org/info/rfc8859
https://www.rfc-editor.org/info/rfc8859
https://www.rfc-editor.org/info/rfc3389
https://www.rfc-editor.org/info/rfc3389
https://www.rfc-editor.org/info/rfc3556
https://www.rfc-editor.org/info/rfc3556
https://www.rfc-editor.org/info/rfc3960

[RFC4588]

[RFC4733]

[RFC5245]

[RFC5506]

[RFC5576]

[RFC5763]

[RFC5764]

[RFC6120]

[RFC6464]

Media Streams", RFC 4568, DOI 10.17487/RFC4568, July

2006, <https://www.rfc-editor.org/info/rfc4568>.

Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.

Hakenberg, "RTP Retransmission Payload Format", RFC 4588,

DOI 10.17487/RFC4588, July 2006, <https://www.rfc-

editor.org/info/rfc4588>.

Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF

Digits, Telephony Tones, and Telephony Signals", RFC

4733, DOI 10.17487/RFC4733, December 2006, <https://

www.rfc-editor.org/info/rfc4733>.

Rosenberg, J., "Interactive Connectivity Establishment

(ICE): A Protocol for Network Address Translator (NAT)

Traversal for Offer/Answer Protocols", RFC 5245, DOI

10.17487/RFC5245, April 2010, <https://www.rfc-

editor.org/info/rfc5245>.

Johansson, I. and M. Westerlund, "Support for Reduced-

Size Real-Time Transport Control Protocol (RTCP):

Opportunities and Consequences", RFC 5506, DOI 10.17487/

RFC5506, April 2009, <https://www.rfc-editor.org/info/

rfc5506>.

Lennox, J., Ott, J., and T. Schierl, "Source-Specific

Media Attributes in the Session Description Protocol

(SDP)", RFC 5576, DOI 10.17487/RFC5576, June 2009,

<https://www.rfc-editor.org/info/rfc5576>.

Fischl, J., Tschofenig, H., and E. Rescorla, "Framework

for Establishing a Secure Real-time Transport Protocol

(SRTP) Security Context Using Datagram Transport Layer

Security (DTLS)", RFC 5763, DOI 10.17487/RFC5763, May

2010, <https://www.rfc-editor.org/info/rfc5763>.

McGrew, D. and E. Rescorla, "Datagram Transport Layer

Security (DTLS) Extension to Establish Keys for the

Secure Real-time Transport Protocol (SRTP)", RFC 5764,

DOI 10.17487/RFC5764, May 2010, <https://www.rfc-

editor.org/info/rfc5764>.

Saint-Andre, P., "Extensible Messaging and Presence

Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,

March 2011, <https://www.rfc-editor.org/info/rfc6120>.

Lennox, J., Ed., Ivov, E., and E. Marocco, "A Real-time

Transport Protocol (RTP) Header Extension for Client-to-

Mixer Audio Level Indication", RFC 6464, DOI 10.17487/

https://www.rfc-editor.org/info/rfc4568
https://www.rfc-editor.org/info/rfc4588
https://www.rfc-editor.org/info/rfc4588
https://www.rfc-editor.org/info/rfc4733
https://www.rfc-editor.org/info/rfc4733
https://www.rfc-editor.org/info/rfc5245
https://www.rfc-editor.org/info/rfc5245
https://www.rfc-editor.org/info/rfc5506
https://www.rfc-editor.org/info/rfc5506
https://www.rfc-editor.org/info/rfc5576
https://www.rfc-editor.org/info/rfc5763
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc6120

[RFC8828]

[SDP4WebRTC]

[TS26.114]

[W3C.webrtc]

RFC6464, December 2011, <https://www.rfc-editor.org/info/

rfc6464>.

Uberti, J. and G. Shieh, "WebRTC IP Address Handling

Requirements", RFC 8828, DOI 10.17487/RFC8828, January

2021, <https://www.rfc-editor.org/info/rfc8828>.

Nandakumar, S. and C. Jennings, "Annotated Example SDP

for WebRTC", Work in Progress, Internet-Draft, draft-

ietf-rtcweb-sdp-14, 17 December 2020, <https://

datatracker.ietf.org/doc/html/draft-ietf-rtcweb-sdp-14>.

3GPP, "3rd Generation Partnership Project; Technical

Specification Group Services and System Aspects; IP

Multimedia Subsystem (IMS); Multimedia Telephony; Media

handling and interaction (Release 16)", 3GPP TS 26.114

V16.3.0, September 2019, <https://www.3gpp.org/

DynaReport/26114.htm>.

Jennings, C., Ed., Boström, H., Ed., and J. Bruaroey,

Ed., "WebRTC 1.0: Real-time Communication Between

Browsers", World Wide Web Consortium PR PR-

webrtc-20201215, December 2020, <https://www.w3.org/TR/

2020/PR-webrtc-20201215/>.

Appendix A. SDP ABNF Syntax

For the syntax validation performed in Section 5.8, the following

list of ABNF definitions is used:

Attribute Reference

ptime Section 6 of [RFC4566]

maxptime Section 6 of [RFC4566]

rtpmap Section 6 of [RFC4566]

recvonly Section 9 of [RFC4566]

sendrecv Section 9 of [RFC4566]

sendonly Section 9 of [RFC4566]

inactive Section 9 of [RFC4566]

fmtp Section 9 of [RFC4566]

rtcp Section 2.1 of [RFC3605]

setup Section 4 of [RFC4145]

fingerprint Section 5 of [RFC8122]

rtcp-fb Section 4.2 of [RFC4585]

extmap Section 7 of [RFC5285]

mid Section 4 of [RFC5888]

group Section 5 of [RFC5888]

imageattr Section 3.1 of [RFC6236]

extmap (encrypt option) Section 4 of [RFC6904]

¶

https://www.rfc-editor.org/info/rfc6464
https://www.rfc-editor.org/info/rfc6464
https://www.rfc-editor.org/info/rfc8828
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-sdp-14
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-sdp-14
https://www.3gpp.org/DynaReport/26114.htm
https://www.3gpp.org/DynaReport/26114.htm
https://www.w3.org/TR/2020/PR-webrtc-20201215/
https://www.w3.org/TR/2020/PR-webrtc-20201215/
https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc4566#section-6
https://rfc-editor.org/rfc/rfc4566#section-9
https://rfc-editor.org/rfc/rfc4566#section-9
https://rfc-editor.org/rfc/rfc4566#section-9
https://rfc-editor.org/rfc/rfc4566#section-9
https://rfc-editor.org/rfc/rfc4566#section-9
https://rfc-editor.org/rfc/rfc3605#section-2.1
https://rfc-editor.org/rfc/rfc4145#section-4
https://rfc-editor.org/rfc/rfc8122#section-5
https://rfc-editor.org/rfc/rfc4585#section-4.2
https://rfc-editor.org/rfc/rfc5285#section-7
https://rfc-editor.org/rfc/rfc5888#section-4
https://rfc-editor.org/rfc/rfc5888#section-5
https://rfc-editor.org/rfc/rfc6236#section-3.1
https://rfc-editor.org/rfc/rfc6904#section-4

Attribute Reference

candidate Section 5.1 of [RFC8839]

remote-candidates Section 5.2 of [RFC8839]

ice-lite Section 5.3 of [RFC8839]

ice-ufrag Section 5.4 of [RFC8839]

ice-pwd Section 5.4 of [RFC8839]

ice-options Section 5.6 of [RFC8839]

msid Section 3 of [RFC8830]

rid Section 10 of [RFC8851]

simulcast Section 5.1 of [RFC8853]

tls-id Section 4 of [RFC8842]

Table 1: SDP ABNF References

Acknowledgements

Harald Alvestrand, Taylor Brandstetter, Suhas Nandakumar, and Peter

Thatcher provided significant text for this document. Bernard Aboba,

Adam Bergkvist, Jan-Ivar Bruaroey, Dan Burnett, Ben Campbell, Alissa

Cooper, Richard Ejzak, Stefan Håkansson, Ted Hardie, Christer

Holmberg, Andrew Hutton, Randell Jesup, Matthew Kaufman, Anant

Narayanan, Adam Roach, Robert Sparks, Neil Stratford, Martin

Thomson, Sean Turner, and Magnus Westerlund all provided valuable

feedback on this document.

Authors' Addresses

Justin Uberti

Clubhouse

Email: justin@uberti.name

Cullen Jennings

Cisco

400 3rd Avenue SW

Calgary AB T2P 4H2

Canada

Email: fluffy@iii.ca

Eric Rescorla (editor)

Mozilla

Email: ekr@rtfm.com

¶

https://rfc-editor.org/rfc/rfc8839#section-5.1
https://rfc-editor.org/rfc/rfc8839#section-5.2
https://rfc-editor.org/rfc/rfc8839#section-5.3
https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc8839#section-5.4
https://rfc-editor.org/rfc/rfc8839#section-5.6
https://rfc-editor.org/rfc/rfc8830#section-3
https://rfc-editor.org/rfc/rfc8851#section-10
https://rfc-editor.org/rfc/rfc8853#section-5.1
https://rfc-editor.org/rfc/rfc8842#section-4
mailto:justin@uberti.name
mailto:fluffy@iii.ca
mailto:ekr@rtfm.com

	JavaScript Session Establishment Protocol (JSEP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. General Design of JSEP
	1.2. Other Approaches Considered
	1.3. Changes from RFC 8829

	2. Terminology
	3. Semantics and Syntax
	3.1. Signaling Model
	3.2. Session Descriptions and State Machine
	3.3. Session Description Format
	3.4. Session Description Control
	3.4.1. RtpTransceivers
	3.4.2. RtpSenders
	3.4.3. RtpReceivers

	3.5. ICE
	3.5.1. ICE Gathering Overview
	3.5.2. ICE Candidate Trickling
	3.5.2.1. ICE Candidate Format

	3.5.3. ICE Candidate Policy
	3.5.4. ICE Candidate Pool
	3.5.5. ICE Versions

	3.6. Video Size Negotiation
	3.6.1. Creating an imageattr Attribute
	3.6.2. Interpreting imageattr Attributes

	3.7. Simulcast
	3.8. Interactions with Forking
	3.8.1. Sequential Forking
	3.8.2. Parallel Forking

	4. Interface
	4.1. PeerConnection
	4.1.1. Constructor
	4.1.2. addTrack
	4.1.3. removeTrack
	4.1.4. addTransceiver
	4.1.5. onaddtrack Event
	4.1.6. createDataChannel
	4.1.7. ondatachannel Event
	4.1.8. createOffer
	4.1.9. createAnswer
	4.1.10. SessionDescriptionType
	4.1.10.1. Use of Provisional Answers
	4.1.10.2. Rollback

	4.1.11. setLocalDescription
	4.1.12. setRemoteDescription
	4.1.13. currentLocalDescription
	4.1.14. pendingLocalDescription
	4.1.15. currentRemoteDescription
	4.1.16. pendingRemoteDescription
	4.1.17. canTrickleIceCandidates
	4.1.18. setConfiguration
	4.1.19. addIceCandidate
	4.1.20. onicecandidate Event

	4.2. RtpTransceiver
	4.2.1. stop
	4.2.2. stopped
	4.2.3. setDirection
	4.2.4. direction
	4.2.5. currentDirection
	4.2.6. setCodecPreferences

	5. SDP Interaction Procedures
	5.1. Requirements Overview
	5.1.1. Usage Requirements
	5.1.2. Profile Names and Interoperability

	5.2. Constructing an Offer
	5.2.1. Initial Offers
	5.2.2. Subsequent Offers
	5.2.3. Options Handling
	5.2.3.1. IceRestart
	5.2.3.2. VoiceActivityDetection

	5.3. Generating an Answer
	5.3.1. Initial Answers
	5.3.2. Subsequent Answers
	5.3.3. Options Handling
	5.3.3.1. VoiceActivityDetection

	5.4. Modifying an Offer or Answer
	5.5. Processing a Local Description
	5.6. Processing a Remote Description
	5.7. Processing a Rollback
	5.8. Parsing a Session Description
	5.8.1. Session-Level Parsing
	5.8.2. Media Section Parsing
	5.8.3. Semantics Verification

	5.9. Applying a Local Description
	5.10. Applying a Remote Description
	5.11. Applying an Answer

	6. Processing RTP/RTCP
	7. Examples
	7.1. Simple Example
	7.2. Detailed Example
	7.3. Early Transport Warmup Example

	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. SDP ABNF Syntax
	Acknowledgements
	Authors' Addresses

