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Abstract

   In this draft context, things are powered by micro controllers units
   (MCU) comprising a set of memories such as static RAM (SRAM), FLASH
   and EEPROM. The total memory size, ranges from 10KB to a few
   megabytes. In this context code and data integrity are major
   security issues, for the deployment of Internet of Things
   infrastructure. The goal of the bijective MAC (bMAC) is to compute
   an integrity value, which cannot be guessed by malicious software.
   In classical keyed MACs, MAC is computing according to a fixed
   order.
   In the bijective MAC, the content of N addresses is hashed according
   to a permutation P (i.e. bijective application).
   The bijective MAC key is the permutation P.
   The number of permutations for N addresses is N!. So the computation
   of the bMAC requires the knowledge of the whole space memory; this
   is trivial for genuine software, but could very difficult for
   corrupted software, especially for time stamped bMAC.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF). Note that other groups may also distribute
   working documents as Internet-Drafts. The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other documents
   at any time. It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 2020.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
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1 Overview

   In this draft context, things are powered by micro controllers units
   (MCU) comprising a set of memories such as static RAM (SRAM), FLASH
   and EEPROM. The total memory size ranges from 10KB to a few
   megabytes.
   In this context code and data integrity is a major security issue
   for the deployment of Internet of Things infrastructure.
   The goal of the bijective MAC (bMAC) is to compute an integrity
   value, which cannot be guessed by malicious software.
   In classical keyed MACs, MAC is computing according to a fixed
   order.
   In the bijective MAC, the content of N addresses (A[0]...A[N-1]) is
   hashed according to a hash function H and a permutation P (i.e.
   bijective application in [0,N-1])so that :

   bMAC(A, P) = H( A[P(0)] || A[P(1)] ... || A[P(N-1)] )

   The bijective MAC key is the permutation P. The number of
   permutations for N addresses is N!, as an illustration 35! is
   greater than 2**128. So the bMAC computation requires the knowledge
   of the whole space memory. This is trivial for genuine software, but
   could very difficult for corrupted software, especially for time
   stamped bMAC.

2 Bijective MAC

2.1 Memory space

   The memory space is represented by an application A, working with N
   addresses, whose content is a byte value.

                       | [0,N-1] -> [0,255]
                     A |
                       | x       -> A[x]

   Non volatile memories (FLASH, EEPROM) MUST be included in the memory
   space. A subset of SRAM is included in the memory, whose structure
   relies on operational constraints (heap size, stack size,...).

2.2 Permutation

   For practical reasons, permutation MAY use a range of M values,
   greater than the size N of the memory space (M>=N).

                       | [0,M-1] -> [0,M-1]
                     P |
                       | x       -> P(x)
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   For example, given a N memory space, and q a prime number so that
   q>N, and g a generator for the group Z/qZ, the P permutation (with
   M= q-1) can computed as:

                        | [0,q-2] -> [0,q-2]
                      P |
                        | x       -> (g**(1+x) mod q)-1

2.3 bMAC computation

   We consider a one way hash function H (such as SHA2 or SHA3) with
   three procedures, H.reset, H.update, and H.final.

   Given a space memory N, a permutation P with M values, the bMAC,
   according to C like notation, is computed as:

   H.reset() ;
   for (i=0; i< M; i++)
   { if (P(i) < N)
          H.update(A[P[i]);
   }
   bMAC= H.final();

2.4 Unused memory

   Unused memory MAY be filled by pseudo random values, before
   performing the bMAC computation.

2.5 Permutation entropy

   A family of Pk permutations is a subset of M! permutations of M
   elements, which is computed according to dedicated algorithms.

   We note #Pk the number of elements of a Pk family.

   The entropy is the integer e, such as 2**e is closed to #Pk:

   2**e <= #Pk < 2**(e+1)

   The entropy of a family may be increased by the composition of Pk
   functions so that :

   P(k1,k2,...,kn) = Pkn o ... o Pk2 o Pk1
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2.6 Time-stamped bMAC

  2.6.1 Rational

   The main idea is to detect corrupted software that uses a code
   compression algorithm.

    +-------------------------+    +-------------------------------+
    |                         |    | +-+  Genuine Code Compressed  |
    |                         |    +-|-|---------------------------+
    |                         |    | | | Code Compression Algo.    |
    |       Genuine Code      |    +-|-|---------------------------+
    |                         |    | V +     Malicious bMAC + ^    |
    |                         |    +------------------------|-|----+
    |                         |    |         Genuine Code   +-+    |
    +-------------------------+    +-------------------------------+
    |          bMAC           |    |             MALWARE           |
    +-------------------------+    +-------------------------------+

   The basic principle of the time stamped bMAC is that the code
   compression algorithm modifies the time needed for the bMAC
   computing. Furthermore we assume that the time required by the bMAC
   computing is dependent on the permutation.

   Below is an illustration of C code that returns the content of a
   corrupted address:

   if ((Adr >= Adr-Min) && (Adr <= Adr-Max))
   v =decompress(Adr);
   else
   v= read(Adr);

   Many computing cycles are added to the genuine code (read(Adr)) due
   to Program Counter jumps and execution of the decompression
   procedure.

  2.6.2 Canonical time

   We assume that the bMAC computing time (T) ranges between the values
   Tmin and Tmax

   Tmin <= T <= Tmax

   If the computing time is fixed (Tmin=Tmax) then the Canonical Time
   (cT) is the computing time T.

   If Tmin#Tmax we define the following values:
   Range = Tmax-Tmin+1
   Delta = Tmin modulo Range
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   For a given computing time T, we define the canonical computing time
   cT as:
   cT = (T-Delta)/Range

   For every T value, cT has a fix value equal to the quotient of
   Tmin/Range.

   The main interest of the canonical time is that it works as a secret
   value, deduced from the bMAC computing but not stored in the
   software memory image.

   The time-stamped bMAC is computed from an exor operation between the
   bMAC and the canonical time:

   Time-Stamped bMAC = bMAC exor cT

3. The Pq permutation family

   We consider a N memory space, and q a prime number so that q>N.

   Z/qZ is a monogenous group with n=phi(q-1) generators (g), phi being
   the Euler number. Generators (g) in Z/qZ can be used to build a
   permutation family Pq= = {Pg1, Pg2,.., Pgn}, so that:

                         | [1,q-1] -> [1,q-1]
                   Pg(x) |
                         | x       -> g**x  mod q

   Given a P permutation working in the [1,q-1] range (such as Pg), we
   use the P*(P) permutation in order to enforce compatibility with the
   memory space A(x) starting at the zero address :

                         | [0,q-2] -> [0,q-2]
                      P* |
                         | x       -> P*(x) = P(1+x)-1

3.1 How to find a generator

  3.1.1 Method 1

   Given x in [2, q-1],
   If x**k mod q # 1 for all k in [1, q-2], then g is a generator.

  3.1.2 Method 2

   Factorize q-1 into primes: q-1 = q1**k1...qi**ki...qn**kn
   Find n integers ai (a1...an) of order qi**ki, in Z/qZ (phi(qi**ki)
   elements)
   The product of the n elements a1 x...x an, is a generator.
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  3.1.3 Method 3

   q being a safe prime, q = 2*p+1 with p prime (p is the Sophie
   Germain prime),and q = 7 mod 8.

   phi(q-1) = phi(2p) = p-1
   1 generator of order 2, i.e. q-1
   p-1 generators of order p, i.e. 2**k mod q with k in [1,p-1]
   p-1 generators gk of order q-1.
   The generators gk are the product of (q-1).2**k mod q, for k in
   [1,p-1]. In other words the generators gk are equal to q-(2**k mod
   q), for k in [1,p-1]

3.2 How to compute generators

   Find a generator g.

   There are phi(q-1) generators g**k, with k prime with q-1.

   GCD(k,q-1)=1, GCD being the Greatest Common Divisor of two integers.

  3.2.1 Example 1

   q=11, phi(10)= 4
   10= 2x5, phi(2)=1, phi(5)=4
   prime numbers with 10= {1,3,7,9}

   k     1 2 3 4  5 6 7 8 9 10
   x**k  1
         2 4 8 5 10 9 7 3 6 1
         3 9 5 4 1
         4 5 9 3 1
         5 3 4 9 1
         6 3 7 9 10 5 8 4 2 1
         7 5 2 3 10 4 6 9 8 1
         8 9 6 4 10 3 2 5 7 1
         9 4 3 5 1
         10 1

   10 has an order 2
   3, 4, 5, 9 have order 5
   10*3= 8, 4*10= 7, 5*10=6, 9*10=2 are generators

   2 is a generator
   2**3 = 8 is a generator
   2**7 = 7 is a generator
   2**9 = 6 is a generator

  3.2.2 Example 2.



   q= 23 = 2x11 + 1, p=11, q is a safe prime with q mod 8 =7
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   power of 2 mod 23 = {2**k, k in [1,10]}= {2,4,8,16,9,18,13,3,6,12}
   10 generators gk of order 22 = {21,19,15,7,14,5,10,20,17,11}

  3.2.3 Example 3.

   Memory space N = 512B EEPROM + 8192B FLASH + 1024B SRAM = 9728B
   Nearest prime number q = 9733
   q-1 = 9732= 811 x 4 x 3
   phi(9732) = 3240
   2 is a generator
   generators are numbers 2**k mod q, with k less than q-1, and k prime
   with 811, 4 and 3.

  3.2.4 Example 4

   Memory space N = 512B EEPROM + 8192B FLASH + 1024B SRAM = 9728B
   Safe prime = 9887
   4943 generators

  3.2.5 Example 5

   Memory space N = 4096B EEPROM + 262144B FLASH + 1024B SRAM= 274432
   prime number q = 278543
   q-1= 278542 = 2 x 11**2 x 1151
   phi(278542) = 126500
   5 is a generator
   generators are numbers, 5**k mod q, with k less than q-1, prime with
   2, 11, and 1151

  3.2.6 Example 6

   Memory space N = 4096B EEPROM + 262144B FLASH + 1024B SRAM= 274432
   Safe prime = 275447
   137723 generators

3.3 Shifted permutation

   Given an integer s in the range [0, q-1], the shifted permutation
   P(g,s) is defined as

                        | [1,q-1] -> [1,q-1]
              P(g,s)(x) |
                        | x       -> s.g**x mod q

   In other words P(g,s)(x) = s x Pg(x).

   Because s can be written in the form s = g**d, s.g = g**(x+d), which
   leads to a right shift.
   The number of shifted permutations is (q-1)*phi(q-1).
   The benefit of shifted permutation is to increase, with a low cost



   computation, the bMAC entropy.
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3.4 Composition in Fq

   Given a set of k ptuples {(g1,s1), (g2,s2),..., (gk,sk)} and
   associated shifted permutations P(gi,si), a permutation P(q,k) is
   computed according to the relation :

   P(q,k) = P(gk,sk) o ... o P(g2,s2) o P(g1,s1)

3.5 Code example

   The bMAC is computed with a permutation P= P(g2) o P(g1,s1)
   The pseudo code is written in a C like way.
   H is a SHA3-256 KECCAK hash function.

  3.5.1 Example 1

   In this example 32 bits integers are used.
   The prime number q is 9733.
   The address space is N= 9664.
   For a 8 bits processor, 12MHz clock, the bMAC is computed in about
   10s, i.e. 1ms per byte.

   uint32-t x,y,bitn,v,gi[14];
   uint32-t PRIME, g1=a-generator, s1=a-value, g2=a-generator;
   bool tohash;

     PRIME =9733;
     H.reset();

     gi[0]= g2;
     for (int n=1;n<=13;n++)
     gi[n] = (gi[n-1] * gi[n-1]) % PRIME;

     x= s1;

     for(int i=1;i<PRIME;i++)
     { tohash = false
       x = (x*g1) % PRIME;
       bitn=x;
       y=1;
       for (int n=1;n<=14;n++)
       { if ( (bitn & 0x1) == 0x1)  y = (y*gi[n-1]) % PRIME;
         bitn = bitn >>1;
       }
       v = (y-1);
       // if address v exists, read the v address content A(v)
       // tohash=true ;
       if (tohash) H.update(A(v));
     }



     H.dofinal();
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  3.5.2 Example 2

   In this example 64 bits and 32 bits integers are used.
   The prime number q is 278543.
   The address space is N= 271360.
   For a 8 bits processor, 16MHz clock, the bMAC is computed in about
   320s, i.e. 1.1 ms per byte.

   uint32-t bitn,v;
   uint64-t x,y,gi[19];
   uint32-t PRIME, g1=a-generator, s1=a-value, g2=a-generator;
   bool tohash;

     PRIME = 278543;
     H.reset();

     gi[0]=(uint64-t)g2;
     for (n=1;n<=18;n++)
     { gi[n] =  gi[n-1] * gi[n-1];
       gi[n] =  gi[n] % PRIME;
     }

     x= s1;

     for(i=1;i<PRIME;i++)
     { tohash=false;
       x = x * (uint64-t)g1 ;
       x=  x  % PRIME ;
       bitn= (uint32-t) x;
       y=    (uint64-t) 1;

       for (n=1;n<=19;n++)
       { if ( (bitn & 0x1) == 0x1)
         { y = y * gi[n-1] ;
           y = y % PRIME;
         }
         bitn = bitn >>1;
       }

       v = (uint32-t)(y-1);
       // if address v exists, read the v address content A(v)
       // tohash=true ;
       if (tohash) H.update(A(v));
     }

     H.final();
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4 bMAC protocol

   A bMAC protocol involves a bMAC requester and a bMAC provider.

   The requester sends to the bMAC provider the parameters needed for
   the P permutation.

   The bMAC provider computes the bMAC according to the P permutation
   and returns the result.

   If the bMAC provider has access to internet, the requester
   (typically a gateway) SHOULD control its internet access in order to
   avoid side channel attack.

5 IANA Considerations

   TODO

6 Security Considerations

   TODO
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