
 CORE Working Group P. Urien
 Internet Draft Telecom ParisTech
 Intended status: Experimental

 December 29 2014
 Expires: June 2015

Remote APDU Call Secure (RACS)
draft-urien-core-racs-04.txt

Abstract

 This document describes the Remote APDU Call Protocol Secure (RACS)
 protocol, dedicated to Grid of Secure Elements (GoSE). These servers
 host Secure Elements (SE), i.e. tamper resistant chips offering
 secure storage and cryptographic resources.

 Secure Elements are microcontrollers whose chip area is about 25mm2;
 they deliver trusted computing services in constrained environments.

 RACS supports commands for GoSE inventory and data exchange with
 secure elements. It is designed according to the representational
 State Transfer (REST) architecture. RACS resources are identified by
 dedicated URIs. An HTTP interface is also supported.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 2015.

 .

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

 Urien Expires June 2015 [Page 1]

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Urien Expires June 2015 [page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

 RACS December 2014

Table of Contents

 Abstract... 1
 Requirements Language.. 1
 Status of this Memo.. 1
 Copyright Notice... 2

1 Overview... 4
1.1 What is a Secure Element.................................... 4
1.2 Grid Of Secure Elements (GoSE).............................. 5
1.3 Secure Element Identifier (SEID)............................ 6

1.3.1 SlotID example 6
1.3.2 SEID for Secure Elements 7

1.4 APDUs... 8
1.4.1 ISO7816 APDU request 8
1.4.2 ISO7816 APDU response 8

2 The RACS protocol.. 9
2.1 Structure of RACS request................................... 9
2.2 Structure of a RACS response............................... 10

2.2.1 BEGIN Header .. 10
2.2.2 END Header .. 10
2.2.3 Status line ... 10
2.2.4 Examples of RACS responses: 11

2.3 RACS request commands...................................... 11
2.3.1 BEGIN ... 11
2.3.2 END ... 11
2.3.3 The APPEND parameter 12
2.3.4 GET-VERSION ... 13
2.3.5 SET-VERSION ... 13
2.3.6 LIST .. 14
2.3.7 RESET ... 14
2.3.8 APDU .. 15
2.3.9 SHUTDOWN .. 18
2.3.10 POWERON .. 19

2.4 Status header encoding..................................... 20
2.4.1 Event class ... 20
2.4.2 Command class 20

3 URI for the GoSE.. 21
4 HTTP interface.. 21

4.1 HTTPS Request.. 21
4.2 HTTPS response... 22

5 Security Considerations... 22
5.1 Authorization.. 22
5.2 Secure Element access...................................... 22
5.3 Applications security policy............................... 23

5.3.1 Users-Table ... 23
5.3.2 SEID-Table .. 23

6 IANA Considerations... 23
7 References.. 23

7.1 Normative References....................................... 23

7.2 Informative References..................................... 24
8 Authors' Addresses.. 24

 Urien Expires January 2015 [Page 3]

 RACS December 2014

1 Overview

 This document describes the Remote APDU Call Protocol Secure (RACS)
 protocol, dedicated to Grids of Secure Elements (GoSE). These
 servers host Secure Elements (SE), i.e. tamper resistant chips
 offering secure storage and cryptographic resources.

 Secure Elements are microcontrollers whose chip area is about 25mm2;
 they deliver trusted computing services in constrained environments.

 RACS supports commands for GoSE inventory and data exchange with
 secure elements.

 RACS is designed according to the representational State Transfer
 (REST) architecture [REST], which encompasses the following
 features:
 - Client-Server architecture.
 - Stateless interaction.
 - Cache operation on the client side.
 - Uniform interface.
 - Layered system.
 - Code On Demand.

1.1 What is a Secure Element

 A Secure Element (SE) is a tamper resistant microcontroller equipped
 with host interfaces such as [ISO7816], SPI (Serial Peripheral
 Interface) or I2C (Inter Integrated Circuit).

 The typical area size of these electronic chips is about 25mm2. They
 comprise CPU (8, 16, 32 bits), ROM (a few hundred KB), nonvolatile
 memory (EEPROM, FLASH, a few hundred KB) and RAM (a few ten KB).
 Security is enforced by multiple hardware and logical
 countermeasures.

 According to the [EUROSMART] association height billion of such
 secure devices were shipped in 2013. Secure elements are widely
 deployed for electronic payment (EMV cards), telecommunication (SIM
 modules), identity (electronic passports), ticketing, and access
 control.

 Most of secure elements include a Java Virtual Machine and therefore
 are able to execute embedded program written in the JAVACARD
 language. Because these devices are dedicated to security purposes
 they support numerous cryptographic resources such as digest
 functions (MD5, SHA1, SHA2...), symmetric cipher (3xDES, AES) or
 asymmetric procedures (RSA, ECC).

 A set of Global Platform [GP] standards control the lifecycle of
 embedded software, i.e. application downloading, activation and

 deletion.

 Urien Expires January 2015 [Page 4]

 RACS December 2014

 As an illustration a typical Secure Element has the following
 characteristics:

 - JAVACARD operating system;
 - Compliant with the GP (Global Platform) standards;
 - 160 KB of ROM;
 - 72 KB of EEPROM;
 - 4KB of RAM;
 - Embedded crypto-processor;
 - 3xDES, AES, RSA, ECC;
 - Certification according to Common Criteria (CC) EAL5+ level;
 - Security Certificates from payment operators.

1.2 Grid Of Secure Elements (GoSE)

 Grid Of Secure Elements
 +---+
 | SlotID |
 | Grid +------+ +------+ SEID |
 | Inventory | |----+ | |----+ |
 | | | SLOT | SE | | SLOT | SE | |
 +-+-+-+--|-+ | |----+ | |----+ |
 |I|T|T| | +------+ +------+ |
 |P|C|L|RACS| |
 | |P|S| | +------+ +------+ |
 +-+-+-+--|-+ | |----+ | |----+ |
 | | | SLOT | SE | | SLOT | SE | |
 | | | |--+-+ | |----+ |
 | | +------+ | +------+ |
 | +-ISO7816 Requests-+ |
 +---+

 Figure 1. Architecture of a Grid of Secure Elements

 +----+----+----+
 Vcc->| | |<-Ground
 +----+ +----+
 RESET->| | | |
 +----+ +----+
 Clock->| | | |<-Input/Output
 +----+ +----+
 | | | |
 +----+----+----+

 Figure 2. Illustration of an ISO7816 Secure Element

 A grid of Secure Elements (GoSE) is a server hosting a set of secure
 elements.

 Urien Expires January 2015 [Page 5]

 RACS December 2014

 The goal of these platforms is to deliver trusted services over the
 Internet. These services are available in two functional planes,
 - The user plane, which provides trusted computing and secure
 storage.
 - The management plane, which manages the lifecycle (downloading,
 activation, deletion) of applications hosted by the Secure Element.

 A grid of Secure Elements offers services similar to HSM (Hardware
 Secure Module), but may be managed by a plurality of administrators,
 dealing with specific secure microcontrollers.

 According to this draft all accesses to a GoSE require the TCP
 transport and are secured by the TLS [TLS 1.0] [TLS 1.1] [TLS 2.0]
 protocol.

 The RACS protocol provides all the features needed for the remote
 use of secure elements, i.e.
 - Inventory of secure elements
 - Information exchange with the secure elements

1.3 Secure Element Identifier (SEID)

 Every secure element needs a physical slot that provides electrical
 feeding and communication resources. This electrical interface is
 for example realized by a socket soldered on an electronic board, or
 a CAD (Card Acceptance Device, i.e. a reader) supporting host buses
 such as USB.

 Within the GoSE each slot is identified by a SlotID (slot
 identifier) attribute, which may be a socket number or a CAD name.

 The SEID (Secure Element IDentifier) is a unique identifier
 indicating that a given SE is hosted by a GoSE. It also implicitly
 refers the physical slot (SlotID) to which the SE is plugged.

 The GoSE manages an internal table that establishes the relationship
 between SlotIDs and SEIDs.

 Therefore three parameters are needed for remote communication with
 secure element, the IP address of the GoSE, the associated TCP port,
 and the SEID.

 1.3.1 SlotID example

 According to the PC/SC (Personal Computer/Smart Card) standard
 [PS/SC], a smart card reader MAY include a serial number. This
 attribute (VENDOR-IFD-SERIAL) is associated to the tag 0x0103 in the
 class VENDOR-INFO.

 Urien Expires January 2015 [Page 6]

 RACS December 2014

 1.3.2 SEID for Secure Elements

 According to the Global Platform standard [GP] the Issuer Security
 Domain (ISD) manages applications lifecycle (downloading,
 activation, deletion). The command 'initialize update' is used to
 start a mutual authentication between the administration entity and
 the secure element; it collects a set of data whose first ten bytes
 are called the 'key diversification data'. This information is used
 to compute symmetric keys, and according for example to [EMV] MAY
 comprise a serial number.

 Urien Expires January 2015 [Page 7]

 RACS December 2014

1.4 APDUs

 According to the [ISO7816] standards secure element process ISO7816
 request messages and return ISO7816 response messages, named APDUs
 (application protocol data unit).

 1.4.1 ISO7816 APDU request

 An APDU request comprises two parts: a header and an optional body.

 The header is a set of four or five bytes noted CLA INS P1 P2 P3

 - CLA indicates the class of the request, and is usually bound to
 standardization committee (00 for example means ISO request).
 -INS indicates the type of request, for example B0 for reading or D0
 for writing.
 - P1 P2 gives additional information for the request (such index in
 a file or identifier of cryptographic procedures)
 - P3 indicates the length of the request body (from P3=01 to P3=FF),
 or the size of the expected response body (a null value meaning 256
 bytes). Short ISO7816 requests may comprise only 4 bytes
 - The body may be empty. Its maximum size is 255 bytes

 1.4.2 ISO7816 APDU response

 An APDU response comprises two parts an optional body and a
 mandatory status word.

 - The optional body is made of 256 bytes at the most.

 - The response ends by a two byte status noted SW. SW1 refers the
 most significant byte and SW2 the less significant byte.

 An error free operation is usually associated to the 9000 status
 word. Following are some interpretations of the tuple SW1, SW2
 according to various standards:

 - '61' 'xx', indicates that xx bytes (modulus 256) are ready for
 reading. Operation result MUST be fetched by the ISO
 Get Response APDU (CLA=00, INS=C0, P1=P2=00, P3=XX)
 - '9F' 'xx', indicates that xx bytes (modulus 256) are ready for
 reading. Operation result MUST be fetched by the ISO
 Get Response APDU (CLA=00, INS=C0, P1=P2=00, P3=XX)
 - '6C' 'XX', the P3 value is wrong, request must be performed
 again with the LE parameter value sets to 'XX'
 - '6E' 'XX', wrong instruction class (CLA) given in the request
 - '6D' 'XX', unknown instruction code (INS) given in the request
 - '6B' 'XX', incorrect parameter P1 or P2
 - '67' 'XX', incorrect parameter P3

 - '6F' 'XX', technical problem, not implemented...

 Urien Expires January 2015 [Page 8]

 RACS December 2014

2 The RACS protocol

 +-----------------+
 | RACS |
 +-----------------+
 | TLS |
 +-----------------+
 | TCP |
 +-----------------+
 | IP |
 +------------- ---+

 Figure 2. The RACS stack

 The RACS protocol works over the TCP transport layer and is secured
 by the TLS protocol. The TLS client (i.e. the RACS client) MUST be
 authenticated by a certificate.

 One of the main targets of the RACS protocol is to efficiently push
 a set of ISO7816 requests towards a secure element in order to
 perform cryptographic operations in the user's plane. In that case a
 RACS request typically comprises a prefix made with multiple ISO7816
 requests and a suffix that collects the result of a cryptographic
 procedure.

 The mandatory use of TLS with mutual authentication based on
 certificate provides a simple and elegant way to establish the
 credentials of a RACS client over the GoSE. It also enables an easy
 splitting between users' and administrators' privileges.

2.1 Structure of RACS request

 A RACS request is a set of command lines, encoded according to the
 ASCII format. Each line ends by the Cr (carriage return) and line
 feed (Lf) characters. The RACS protocol is case sensitive.

 Each command is a set of tokens (i.e. words) separated by space
 (0x20) character(s).

 The first token of each line is the command to be executed.

 A command line MAY comprise other tokens, which are called the
 command parameters.

 A RACS request MUST start by a BEGIN command and MUST end by an END
 command.

 Each command line is associated to an implicit line number. The

 BEGIN line is associated to the zero line number.

 Urien Expires January 2015 [Page 9]

 RACS December 2014

 The processing of a RACS request is stopped after the first error.
 In that case the returned response contained the error status
 induced by the last executed command.

2.2 Structure of a RACS response

 A RACS response is a set of lines, encoded according to the ASCII
 format. Each line ends by the Cr (carriage return) and line feed
 (Lf) characters. The RACS protocol is case sensitive.

 Each line is a set of tokens (i.e. words) separated by space (0x20)
 character(s).

 The first token of each line is the header.

 The second token of response each line is associated command line
 number

 A response line MAY comprise other tokens, which are called the
 response parameters.

 Three classes of headers are defined BEGIN, END and Status.

 A RACS response MUST start by a BEGIN header and MUST end by an END
 header. It comprises one or several status lines.

 2.2.1 BEGIN Header

 This header starts a response message.

 It comprises an optional parameter, an identifier associated to a
 previous request message.

 2.2.2 END Header

 This header ends a response message.

 2.2.3 Status line

 A status header indicates a status line.

 It begins by the character '+' in case of success or '-' if an error
 occurred during the RACS request execution. It is followed by an
 ASCII encoded integer, which is the value of the status.

 The second mandatory token of a status line is the command line
 number (starting from zero)

 Urien Expires January 2015 [Page 10]

 RACS December 2014

 A status line MAY comprise other tokens, which are called the
 response parameters.

 2.2.4 Examples of RACS responses:

 BEGIN CrLf
 +001 000 Success CrLf
 END CrLf

 BEGIN moon1969 CrLf
 -301 007 Illegal command, BEGIN condition not satisfied at line 7
 END CrLf

 BEGIN Asterix237 CrLf
 +006 001 [ISO7816-Response] CrLf
 END CrLf

 BEGIN CrLf
 -100 002 Unknown command at line 2 CrLf
 END CrLf

 BEGIN CrLf
 -606 001 Unauthorized command APDU command at line 1
 END CrLf

 BEGIN CrLf
 -706 001 SEID Already in use, APDU command at line 1
 END CrLf

2.3 RACS request commands

 2.3.1 BEGIN

 This command starts a request message. A response message is
 returned if an error is detected.

 An optional parameter is the request identifier, which MUST be
 echoed in the parameter of the first response line (i.e. starting by
 the BEGIN header).

 2.3.2 END

 This command ends a request message. It returns the response message
 triggered by the last command.

 Urien Expires January 2015 [Page 11]

 RACS December 2014

 Example1
 ========
 Request:
 BEGIN CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +001 000 Success CrLf
 END CrLF

 Example2
 ========
 Request:
 BEGIN Marignan1515 CrLf
 APDU ASTERIX-CRYPTO-MODULE [ISO7816-Request] CrLf
 END CrLf

 Response:
 BEGIN Marignan1515 CrLf
 +006 001 [ISO7816-Response] CrLf
 END CrLf

 2.3.3 The APPEND parameter

 The APPEND parameter MAY be used in all command lines, excepted
 BEGIN and END.

 By default a response message returns only the last status line.
 When APPEND is inserted, the command line, if executed, MUST produce
 a status line.

 Example

 Request:
 BEGIN SanchoPanza CrLf
 APDU 100 [ISO7816-Request-1] CrLf
 APDU 100 [ISO7816-Request-2] CrLf
 END CrLf

 Response:
 BEGIN SanchoPanza CrLf
 +006 002 [ISO7816-Response-2] CrLf
 END CrLf

 Request:
 BEGIN DonQuichotte CrLf
 APDU 100 [ISO7816-Request-1] APPEND CrLf
 APDU 100 [ISO7816-Request-2] APPEND CrLf
 END CrLf

 Urien Expires January 2015 [Page 12]

 RACS December 2014

 Response:
 BEGIN DonQuichotte CrLf
 +006 001 [ISO7816-Response-1] CrLf
 +006 002 [ISO7816-Response-2] CrLf
 END CrLf

 2.3.4 GET-VERSION

 This command requests the current version of the RACS protocol.
 The returned response is the current version encoded by two integer
 separated by the '.' character. The first integer indicates the
 major version and the second integer gives the minor version.

 This draft version is 0.2

 Example
 =======
 Request:
 BEGIN CrLf
 GET-VERSION CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +002 001 1.0 CrLf
 END CrLf

 2.3.5 SET-VERSION

 This command sets the version to be used for the RACS request. An
 error status is returned by the response if an error occurred.

 Example 1
 =========
 Request:
 BEGIN CrLf
 SET-VERSION 2.0 CrLf
 END CrLf

 Response:
 BEGIN CrLf
 -403 001 Error line 1 RACS 2.0 is not supported CrLf
 END CrLf

 Example 2
 =========
 Request:
 BEGIN CrLf
 SET-VERSION 1.0 CrLf

 END CrLf

 Urien Expires January 2015 [Page 13]

 RACS December 2014

 Response:
 BEGIN CrLf
 +003 001 RACS 1.0 has been activated CrLf
 END CrLf

 2.3.6 LIST

 This command requests the list of SEID plugged in the GoSE.

 It returns a list of SEIDs separated by space (0x20) character(s).

 Some SEID attributes MAY be built from a prefix and an integer
 suffix (such as SE#100 in which SE# is the suffix and 100 is the
 integer suffix. A list of non-consecutive SEID MAY be encoded as
 prefix[i1;i2;..;ip] where i1,i2,ip indicates the integer suffix. A
 list of consecutive SEID could be encoded as prefix[i1-ip] where
 i1,i2,ip indicates the integer suffix.

 Example 1
 =========
 Request:
 BEGIN CrLf
 LIST CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +004 001 SEID1 SEID2 CR LF
 END CrLf

 Example 2
 =========
 Request:
 BEGIN CrLf
 LIST CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +004 001 Device[1000-2000] SerialNumber[567;789;243] CrLf
 END CrLf

 2.3.7 RESET

 This command resets a secure element. The first parameter gives the
 secure element identifier (SEID). An optional second parameter
 specifies a warm reset. The default behavior is a cold reset.
 The response status indicates the success or the failure of this

 operation.

 Urien Expires January 2015 [Page 14]

 RACS December 2014

 Syntax: RESET SEID [WARM] CrLf

 Example 1
 =========
 Request:
 BEGIN CrLf
 RESET device#45 CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +005 001 device#45 Reset Done
 END CrLf

 Example 2
 =========
 Request:
 BEGIN CrLf
 RESET device#45 CrLf
 END CrLf

 Response:
 BEGIN CrLf
 -705 001 error device#45 is already in use
 END CrLf

 Example 3
 =========
 Request:
 BEGIN CrLf
 RESET device#45 WARM CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +005 001 device#45 Warm Reset Done CrLf
 END CrLf

 2.3.8 APDU

 This command sends an ISO7816 request to a secure element or a set
 of ISO7816 commands.

 The first parameter specifies the SEID.
 The second parameter is an ISO7816 request.
 Three optional parameters are available; they MUST be located after
 the second parameter.

 Urien Expires January 2015 [Page 15]

 RACS December 2014

 - CONTINUE=value, indicates that the next RACS command will be
 executed only if the ISO7816 status word (SW) is equal to a given
 value. Otherwise an error status is returned.
 - MORE=value, indicates that a FETCH request will be performed (i.e.
 a new ISO7816 request will be sent) if the first byte of the ISO7816
 status word (SW1) is equal to a given value.
 - FETCH=value fixes the four bytes of the ISO7816 FETCH request
 (i.e. CLA INS P1 P2). The default value (when FETCH is omitted) is
 00C00000 (CLA=00, INS=C0, P1=00, P2=00)

 When the options CONTINUE and MORE are simultaneously set the SW1
 byte is first checked. If there is no match then the SW word is
 afterwards checked.

 The ISO7816 6Cxx status MUST be autonomously processed by the GoSE.

 SYNTAX
 APDU SEID ISO7816-REQUEST [CONTINUE=SW] [MORE=SW1] [FETCH=CMD] CrLf

 The returned response is the ISO7816 response. If multiple ISO7816
 requests are executed (due to the MORE option), the bodies are
 concatenated in the response, which ends by the last ISO7816 status
 word.

 The pseudo code of the APDU command is the following :

 1. BODY = empty;
 2. SW = empty;
 3. DoIt = true;
 3. Do
 4. { iso7816-response = send(iso7816-request);
 5. body || sw1 || sw2 = iso7816-response;
 6. If ((first request) && (iso7816-request.size==5) &&
 (body==empty) && (sw1==6C))
 8. { iso7816-request.P3 = sw2 ; }
 6. Else
 7. { SW = sw1 || sw2
 8. BODY = BODY || body;
 9. If (sw1 == MORE)
 10. { iso7816-request = FETCH || sw2 ; }
 11. Else
 12. { DoIt=false;}
 13. }
 14. }
 15. While (DoIt == true)

 16. iso7816-response = BODY || SW ;
 17. If (SW != CONTINUE) Error ;

 18. Else No Error;

 Urien Expires January 2015 [Page 16]

 RACS December 2014

 Example 1
 =========
 Request:
 BEGIN CrLf
 APDU SEID ISO7816-REQUEST CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +006 001 ISO7816-RESPONSE CrLf
 END CrLf

 Example 2
 =========
 Request:
 BEGIN CrLf
 APDU SEID ISO7816-REQUEST CrLf
 END CrLf

 Response:
 BEGIN CrLf
 -706 001 error SEID is already used CrLf
 END CrLf

 Example 3
 =========
 Request:
 BEGIN CrLf
 APDU SEID ISO7816-REQUEST CrLf
 END CrLf

 Response:
 BEGIN CrLf
 -606 001 error access unauthorized access CrLf
 END CrLf

 Example 4
 =========
 BEGIN CrLf
 APDU SEID ISO7816-REQUEST-1 CONTINUE=9000 CrLf
 APDU SEID ISO7816-REQUEST-2 CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +006 002 ISO7816-RESPONSE-2 CrLf
 END CrLf

 Urien Expires January 2015 [Page 17]

 RACS December 2014

 Example 5
 =========
 BEGIN CrLf
 APDU SEID ISO7816-REQUEST-1 CONTINUE=9000 CrLf
 APDU SEID ISO7816-REQUEST-2 CrLf
 END CrLf

 Response:
 BEGIN CrLf
 -006 001 Request Error line 1 wrong SW CrLf
 END CrLf

 Example 6
 =========
 BEGIN CrLf
 APDU SEID ISO7816-REQ-1 CONTINUE=9000 CrLf
 APDU SEID ISO7816-REQ-2 CONTINUE=9000 CrLf
 APDU SEID ISO7816-REQ-3 CONTINUE=9000 MORE=61 FETCH=00C00000 CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +006 003 ISO7816-RESP-3 CrLf
 END CrLf

 Multiple ISO7816 requests have been performed by the third APDU
 command according to the following scenario :
 - the ISO7816-REQ-3 request has been forwarded to the secure element
 (SEID)
 - the ISO 7816 response comprises a body (body-0) and a status word
 (SW-0) whose first byte is 0x61, and the second byte is SW2-0
 - the FETCH command CLA=00, INS=00, P1=00, P2=00, P3=SW2-0 is sent
 to the secure element
 - the ISO 7816 response comprises a body (body-1) and a status word
 (SW-1) set to 9000

 The RACS response is set to
 +006 003 body-0 || body-1 || SW-1 CrLf
 where ||indicates a concatenation operation.

 2.3.9 SHUTDOWN

 This command powers down a secure element. The first parameter gives
 the secure element identifier (SEID).

 Syntax: SHUTDOWN SEID CrLf

 Urien Expires January 2015 [Page 18]

 RACS December 2014

 Example
 =========
 Request:
 BEGIN Goodbye CrLf
 SHUTDOWN device#45 CrLf
 END CrLf

 Response:
 BEGIN Goodbye CrLf
 +007 001 device#45 has been powered down CrLf
 END CrLf

 2.3.10 POWERON

 This command powers up a secure element. The first parameter gives
 the secure element identifier (SEID).

 Syntax: POWERON SEID CrLf

 Example 1
 =========
 Request:
 BEGIN CrLf
 POWERON device#45 CrLf
 END CrLf

 Response:
 BEGIN CrLf
 +008 001 device#45 Has been powered up CrLf
 END CrLf

 Example 2
 =========
 Request:
 BEGIN CrLf
 POWERON device#45 CrLf
 END CrLf

 Response:
 BEGIN CrLf
 -708 001 error device#45 is already in use CrLf
 END CrLf

 Example 3
 =========
 Request:
 BEGIN CrLf
 POWERON device#45 CrLf

 END CrLf

 Urien Expires January 2015 [Page 19]

 RACS December 2014

 Response:
 BEGIN CrLf
 -608 001 error unauthorized access CrLf
 END CrLf

2.4 Status header encoding

 The first token of a response line is the status header. It begins
 by a '+' or a '-' character, and comprises three decimal digits
 (xyz).

 The first digit (x) MUST indicates an event class.
 The second and third digits (yz) MAY indicate a command class.

 2.4.1 Event class

 This draft only defines the meaning of the first digit located at
 the left most side.

 +0yz: No error
 -0yz: Command execution error
 -1yz: Unknown command, the command is not defined by this draft
 -2yz: Not implemented command
 -3yz: Illegal command, the command can't be executed
 -4yz: Not supported parameter or parameter illegal value
 -5yz: Parameter syntax error or parameter missing
 -6yz: Unauthorized command
 -7yz: Already in use, a session with this SE is already opened
 -8yz: Hardware error
 -9yz: System error

 2.4.2 Command class

 The second and third digits (yz) MAY indicates the command that
 trigged the current line status

 01 BEGIN
 02 GET-VERSION
 03 SET-VERSION
 04 LIST
 05 RESET
 06 APDU
 07 SHUTDOWN
 08 POWERON

 Urien Expires January 2015 [Page 20]

 RACS December 2014

3 URI for the GoSE

 The URI addressing the resources hosted by the GoSE is represented
 by the string:

 RACS://GoSE-Name:port/?request

 where request is the RACS request to be forwarded to a the GoSE.

 RACS command lines are encoded in a way similar to the INPUT field
 of an HTML form. Each command is associated to an INPUT name, the
 remaining of the command line i.e. a set of ASCII characters, is
 written according to the URL encoding rules. End of line characters,
 i.e. carriage return (Cr) and line feed (Lf) are omitted.

 As a consequence a request is written to the following syntax
 cmd1=cmd1-parameters&cmd2=cmd2-parameters

 Example:
 RACS://GoSE-Name:port/?BEGIN=&APDU=SEID%20[ISO7816-REQUEST]&END=

4 HTTP interface

 A GoSE SHOULD support an HTTP interface. RACS requests/responses are
 transported by HTTP messages. The use of TLS is mandatory.

4.1 HTTPS Request

https://GoSE-Name:port/RACS?request

 where request is the RACS request to be forwarded to a secure
 element (SEID)

 The RACS request is associated to an HTML form whose name is "RACS".
 The request command lines are encoded as the INPUT field of an HTML
 form. Each command is associated to an INPUT name, the remaining of
 the command line i.e. a set of ASCII characters is written according
 to the URL encoding rules. End of line characters, i.e. carriage
 return (Cr) and line feed (Lf) are omitted.

 As a consequence a RACS request is written as
 https://GoSE-Name/RACS?cmd1=cmd1-parameters&cmd2=cmd2-parameters

 Example:

 https://GoSE-Name/RACS?BEGIN=&APDU=SEID%20[ISO7816-REQUEST]&END=

https://GoSE-Name:port/RACS?request

 Urien Expires January 2015 [Page 21]

 RACS December 2014

4.2 HTTPS response

 The RACS response is returned in an XML document.

 The root element of the document is <RACS-Response>

 The optional parameter of the BEGIN header, is the content of the
 <begin> element.

 Each status line is the content of the <Cmd-Response> element, which
 includes the following information :

 - The status header is the content of the <status> element.

 - The line number is the content of the <line> element.

 - The other parameters of the status line are the content of the
 <parameters> element.

 The END header is associated to the element <end>

 End of line, i.e. carriage return (Cr) and line feed (Lf) characters
 are omitted.

 As a consequence a RACS response is written as :
 <RACS-Response>
 <begin>Optionnal-ID</begin>
 <Cmd-Response
 <status>+000</status>
 <line>001</line>
 <parameters>other parameters of the RACS response</parameters>
 </Cmd-Response>
 <end></end>
 </RACS-Response>

5 Security Considerations

5.1 Authorization

 A RACS client MUST be authenticated by an X509 certificate.

 The GoSE software MUST provide a mean to establish a list of SEID
 that can be accessed from a client whose identity is the CommonName
 (CN) attribute of its certificate.

5.2 Secure Element access

 The GoSE MUST manage a unique session identifier (SID) for each TLS
 session. The SID is bound to the client's certificate CommonName
 (SID(CN))

 Urien Expires January 2015 [Page 22]

 RACS December 2014

 A secure element has two states, unlocked and locked. In the locked
 state the secure element may be only used by the SID that previously
 locked it.

 The first authorized command that successfully accesses to a SEID
 (either POWERON ,RESET, APDU) locks a secure element (SEID) with the
 current session (SID).

 The SHUTDOWN command MUST unlock a secure element (SEID).

 The end of a TLS session MUST unlock all the secure elements locked
 by the session.

5.3 Applications security policy

 According to the [ISO7816] standards each Application embedded
 within a secure element (associated to a SEID) is identified by an
 AID parameter (16 bytes at the most)

 The RACS server SHOULD support the following facilities

 5.3.1 Users-Table

 Each CN (the Users-Table primary key) is associated to a list of
 SEIDs whose access is authorized.

 5.3.2 SEID-Table

 Each AID (the SEID-Table primary key) is associated to a list of CNs
 whose access is authorized

6 IANA Considerations

7 References

7.1 Normative References

 [TLS 1.0] Dierks, T., C. Allen, "The TLS Protocol Version 1.0", RFC
2246, January 1999

 [TLS 1.1] Dierks, T., Rescorla, E., "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006

 [TLS 1.2] Dierks, T., Rescorla, E., "The Transport Layer Security
 (TLS) Protocol Version 1.1", draft-ietf-tls-rfc4346-bis-10.txt,
 March 2008

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-10.txt

 Urien Expires January 2015 [Page 23]

 RACS December 2014

 [ISO7816] ISO 7816, "Cards Identification - Integrated Circuit Cards
 with Contacts", The International Organization for Standardization
 (ISO)

7.2 Informative References

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000,

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

 [GP] Global Platform Standards, http://www.globalplatform.org

 [EUROSMART] The EUROSMART association, http://www.eurosmart.com

 [PC/SC] The PC/SC workgroup, http://www.pcscworkgroup.com

 [EMV] EMV Card Personalization Specification, Version 1.1, July 2007

8 Authors' Addresses

 Pascal Urien
 Telecom ParisTech
 23 avenue d'Italie
 75013 Paris Phone: NA
 France Email: Pascal.Urien@telecom-paristech.fr

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.globalplatform.org
http://www.eurosmart.com
http://www.pcscworkgroup.com

 Urien Expires January 2015 [Page 24]

