
 TLS Working Group P. Urien
 Internet Draft Telecom ParisTech
 Intended status: Experimental

 July 16 2017
 Expires: January 2018

LLCPS
draft-urien-tls-llcp-10.txt

Abstract

 This document describes the support of the TLS protocol over the NFC
 (Near Field Communication) LLCP (Logical Link Control Protocol)
 layer, which is referred as LLCPS. The NFC peer to peer (P2P)
 protocol may be used by any application that needs communication
 between two devices at very small distances (a few centimeters).
 LLCPS enforces a strong security in NFC P2P exchanges, and may be
 deployed for many services, in the Internet of Things (IoT)
 ecosystem, such as payments, access control or ticketing operations.
 Applications secured by LLCPS are identified by the service name
 "urn:nfc:sn:tls:service".

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 2018.

 .

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

 Urien Expires January 2018 [Page 1]

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Urien Expires January 2018 [page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

 LLCPS July 2017

Table of Contents

 Abstract... 1
 Requirements Language.. 1
 Status of this Memo.. 1
 Copyright Notice... 2

1 Overview... 5
1.1 About the NFC protocol...................................... 5
1.2 The LLCP layer.. 7
1.3 LLCPS basic guidelines...................................... 9

2 TLS support over LLCP, Connection-oriented Transport............ 10
2.1 Peer To Peer Link Establishment............................ 10

 2.3 Connection Process, the Initiator is Server, the Target is
 Client... 13

2.3.1 Initiator side 13
2.3.2 Target side ... 14
2.3.3 Connection choreography 14

 2.4 Connection Process, the Initiator is Client, the Target is
 Server... 14

2.4.1 Initiator side 14
2.4.2 Target side ... 15
2.4.3 Connection choreography 15

2.5 Disconnection Process...................................... 15
2.5.1 Disconnection initiated by the Initiator 15
2.5.2 Disconnection initiated by the Target 15
2.5.3 Disconnection choreography 16

2.6 Sending Process.. 16
2.7 Receiving Process.. 18

3 TLS support over LLCP, Connectionless Transport................. 21
3.1 Peer To Peer Link Establishment............................ 23
3.2 Inactivity Process... 24

 3.3 Connection Process, the Initiator is Server, the Target is
 Client... 24

3.3.1 Initiator side 24
3.3.2 Target side ... 25
3.3.3 Connection choreography 25

 3.4 Connection Process, the Initiator is Client, the Target is
 Server... 25

3.4.1 Initiator side 25
3.4.2 Target side ... 25
3.4.3 Connection choreography 26

3.5 Disconnection Process...................................... 26
3.5.1 Disconnection initiated by the Initiator 26
3.5.2 Disconnection initiated by the Target 26
3.5.3 Disconnection choreography 27

3.6 Sending Process.. 27
3.7 Receiving Process.. 29

4 Example of LLCPS session, connected mode........................ 32
4.1 Protocol Activation and Parameters Selection............... 32

4.1.1 Initiator ATR-REQ 32
4.1.2 Target ATR-RESP 32

 Urien Expires January 2018 [Page 3]

 LLCPS July 2017

4.2 LLCP connection.. 32
4.3 Target: sending Client Hello............................... 33
4.4 Inactivity Process... 33
4.5 Server: sending Server Hello............................... 33
4.6 LLCP Inactivity Process.................................... 34
4.7 Client: sending Client Finished............................ 34
4.8 Exchanging Data.. 35

4.8.1 Sending data from client to server 35
4.8.2 Sending data from server to client 35

4.9 Closing TLS session, initiated by the Initiator............ 36
5 Example of LLCPS session, Connectionless mode................... 36

5.1 Protocol Activation and Parameters Selection............... 36
5.1.1 Initiator ATR-REQ 36
5.1.2 Target ATR-RESP 36

5.2 LLCP connection.. 37
5.3 Client Hello... 37
5.4 Server Hello... 37
5.5 Client Finished.. 38
5.6 Exchanging Data.. 38

5.6.1 Sending data from client to server 38
5.6.2 Sending data from server to client 39

5.7 End of Session... 39
6 Security Considerations... 40
7 IANA Considerations... 40
8 References.. 40

8.1 Normative References....................................... 40
8.2 Informative References..................................... 41

9 Authors' Addresses.. 41

 Urien Expires January 2018 [Page 4]

 LLCPS July 2017

1 Overview

1.1 About the NFC protocol

 The Near Field Communication protocol (NFC) is based on standards
 such as [ECMA340] or [ISO/IEC 18092]. It uses the 13,56 MHz
 frequency, with data rates ranging from 106 To 848 kbps. The working
 distance between two nodes is about a few centimeters, with
 electromagnetic fields ranging between 1 and 10 A/M.

 There are two classes of working operations:

 - Reader/Writer and Card Emulation. A device named "Reader" feeds
 another device called "Card", thanks to a 13,56 MHz electromagnetic
 field coupling. This mode is typically used with [ISO7816]
 contactless smartcards or with NFC RFIDs.

 - Peer To Peer (P2P). Two devices, the "Initiator" and the "Target"
 establish a NFC communication link. In the "Active" mode these two
 nodes are managing their own energy resources. In the "Passive" mode
 the Initiator powers the Target via a 13,56 MHz electromagnetic
 field coupling.

 This draft focuses on P2P security, which is required by many
 applications, targeting access control, transport, or other Internet
 of Things (IoT) items. Although the NFC protocol enables data
 exchange at small physical distances, it doesn't support
 standardized security features providing privacy or integrity. Thus,
 protocols such as [SNEP] or [NPP], whose goal is to push NDEF [NDEF]
 contents, are not today secured. In this draft we define a profile
 for TLS support in P2P operations.

 A P2P session (see figure 1) occurs in four logical phases:

 1) Initialization and Anti-collision. The Initiator periodically
 sends a request packet (and therefore generates a RF field), which
 is acknowledged by a Target response packet. Because several Targets
 may be located near the Initiator, an anti-collision mechanism is
 managed by the Initiator in order to establish a session with a
 single Target.
 2) Protocol Activation and Parameters Selection. The Initiator
 starts a logical session with a detected Target by sending a ATR-REQ
 (Attribute-Request) message, which is confirmed by a Target ATR-RESP
 (Attribute-Response) message. These messages fix the device IDs
 (DIDi, Device ID Initiator and DIDt, Device ID Target) used in
 further packet exchanges. Optional information fields (Gi for the
 Initiator, and Gt for the Target) identify the protocol to be used
 over the MAC level; in this document it is assumed that the LLCP
 [LLCP] (Logical Link Control Protocol) protocol is selected by the

 Gi and Gt bytes. Optionally some parameters are negotiated by
 additional packets.

 Urien Expires January 2018 [Page 5]

 LLCPS July 2017

 3) Data Exchange. Frames are exchanged via the DEP (Data Exchange
 Protocol) protocol. DEP works with DEP-REQ (DEP-Request) transmitted
 by the Initiator and DEP-RESP (DEP-Response) delivered by the
 Target. DEP provides error detection and recovery. It uses small
 data unit size (from 64 to 256 bytes); however it supports a
 chaining mode for larger sizes. DEP frames typically transport LLCP
 packets, and provide an error free service
 4) De-Activation. The Initiator may deactivate the Target by sending
 a RLS-REQ (Release Request) message acknowledged by a RLS-RESP
 (Release Response).

 Usually, and for practical reasons, P2P sessions are established
 between a unique Target and an Initiator, for example a mobile phone
 and another NFC device. They are automatically started when the
 distance between the two NFC modes is sufficiently small. The MAC
 link may be broken at any time, as soon as the distance disables
 radio operations.

 Initiator Target
 | |
 |<------ (1) Initialization and Anti-Collision ------->|
 | |
 |<- (2) Protocol Activation and Parameters Selection ->|
 | ------------------- ATR-REQ -----------------------> |
 | <------------------ ATR-RESP ----------------------- |
 | |
 |<---------------- (3) Data Exchange ----------------->|
 | LLCP packets over DEP frames |
 | TLS over LLCP |
 | |
 |<----------------(4) De-Activation ------------------>|
 | |

 Figure 1. A NFC P2P Session

 Due to the dissymmetry of the DEP protocol (see figure 2), in which
 the Initiator sends requests and Target returns responses, the NFC-
 P2P MAC services are dissymmetric on the Initiator and Target sides.

 - The Initiator delivers Data.Request-i and gets Data.Indication-i.
 - The Target gets Data.Indication-t and delivers Data.Request-t

 MAC services implemented by NFC controllers usually support such
 dissymmetric primitives for Initiator and Target procedures (MAC
 Data.request-i/t and Data.Indication-i/t).

 The timeout value (between DEP-REQ and DEP-RESP messages) is deduced
 from the RWT attribute (Response Waiting Time) returned by the
 Target in the ATR-RESP message. RWT ranges between 0,6 ms and 9,9

 ms. It may be extended to the RWT-INT by a factor RTOX (RWT-INT =
 RTOX x RWT) between 1 and 60, so the maximum value is about 6s.

 Urien Expires January 2018 [Page 6]

 LLCPS July 2017

 Initiator Target
 | | | |
 | | | |
 | Data.Request-i --- DEP-REQ --> Data.Indication-t |
 | | |
 | RWT-INT ms |
 | | |
 Data.Indication-i <---- DEP-RESP --------- Data.Request-t

 Figure 2. NFC-P2P MAC layer service, based on DEP frames

1.2 The LLCP layer

 The LLCP [LLCP] protocol works like a light LLC [IEEE 802.2] layer.
 It provides two classes of services, connectionless transport and
 connection-oriented transport.

 This draft focuses both on connection-oriented transport, in which
 TLS services are identified by a Service Name (SN), and on non-
 connected mode, in which a fix (well-known) Service Access Point
 (SAP) is used.

 A LLCP packet (see figure 3) comprises three mandatory fields, DSAP
 (Destination Service Access Point, 6 bits), SSAP (Source Service
 Access Point, 6 bits), and PTYPE (Protocol data unit type field, 4
 bits).

 An optional sequence field (8 bits) contains two 4 bits number N(S)
 and N(R) respectively giving the number of the information SDU to be
 sent and the number of the next information PDU to be received.

 An optional Information field transports the LLCP payload.

 <--------------LLCP Header--------------><-LLCP Payload ->
 | DSAP | PTYPE | SSAP | Sequence | INFORMATION |
 | 6 bits | 4 bits | 6 bits | 0 or 8 bits | M x 8 bits |

 Figure 3. Structure of an LLCP packet

 There are sixteen types of LLCP packets, identified by PTYPE values
 ranging between 0 and 15. In this draft we use only nine of these
 PDUs.

 1) Symmetry (SYMM, PTYPE=0, DSAP=SSAP=0, No Sequence, No
 Information). This PDU is produced as soon as there is no
 information to provide. This mechanism avoids timeout at the MAC
 (DEP) level. SYMM SHOULD be generated after an inactivity period of

 about LTO/2, where LTO is the link timeout.

 Urien Expires January 2018 [Page 7]

 LLCPS July 2017

 2) Connect (CONNECT, PTYPE=4, No sequence, Information). This PDU
 MUST include a SN (service name parameter) that identified the TLS
 service ("urn:nfc:sn:tls:service"). It uses a DSAP value set to 1
 (the SAP of the Service Discovery Protocol, SDP) and a SSAP value
 ranging between 16 and 31. It indicates the connection the well-
 known service (WKS) SDP (SAP=1), which SHOULD deliver an ephemeral
 SAP (SAP-client) ranging between 16 and 31.

 3) Connection Complete (CC, PTYPE=6, No sequence, Optional
 Information). This PDU notifies the successful connection to the
 "urn:nfc:sn:tls:service" service. It allocates the SAP (DSAP=SAP-
 client) to be used for this session identified by the tuple (SAP-
 server, SAP-client)

 4) Disconnection (DISC, PTYPE=5, No sequence, No Information). This
 PDU indicates the disconnection of the (SAP-server, SAP-client)
 session. Null SAP values MAY be used to notify the disconnection of
 the LLCP entity.

 5) Disconnected Mode (DM, TYPE=7, No sequence, one byte of
 Information). This PDU confirms the disconnection of the (SAP-
 server, SAP-client) session; one information byte gives the
 "Disconnected Mode Reasons". Null SAP values notify the
 disconnection of the LLCP entity.

 6) Information (INFORMATION, PTYPE=10, Sequence, information). This
 PDU transport a SDU; N(S) indicates the SDU number, N(R) indicates
 the next SDU number to be received. In this draft the Receive
 Windows Size (RW) MUST be set to one, which is the default LLCP
 value.

 7) Receive Ready (RR, PTYPE=11, sequence N(R) only, no Information).
 This PDU is used for the acknowledgment of previously received
 information PDU. It indicates the next sequence number (N(R)) to be
 received.

 8) Receive Not Ready (RNR, PTYPE=12, sequence N(R) only, no
 Information).This PDU indicates a temporary inability to process
 subsequent information PDUs.

 9) Unnumbered Information (UI, PTYPE=3, no Sequence, Optional
 Information). This PDU is used to transfer service data units to the
 peer LLC without prior establishment of a data link connection.

 According to [LLCP] some LLCP functional parameters are updated by
 LLCP-Parameter attributes exchanged in LLCP packets or in ATR-REQ
 and ATR-RESP messages. Parameters are encoding according to TLV
 format, in which Type size is one byte, Length size is one byte and
 Value is a set of L bytes. In this document we use 6 parameters.

 Urien Expires January 2018 [Page 8]

 LLCPS July 2017

 1) Version Number (VERSION, T=01h, L=01h, V=10h). In this document
 this option MUST be included in the general bytes of ATR-REQ and
 ATR-RESP.

 2) Maximum Information Unit Extension (MIUX, T=02h, L=02h). This
 parameter extends the maximum size of the LLCP PDU (MIU), whose
 default value is 128 bytes, according to the relation: MIU = MIUX +
 128. The MIUX parameter MAY be inserted in general bytes of ATR-REQ
 and ATR-RESP, and in LLCP PDUs CONNECT and CC.

 3) Well-Known Service List (WKS, T=03h, L=02h). This parameter
 associates a bit to the instance of a well-known LLCP parameter. A
 typical value is 00001h, indicating the availability of the DSP
 service. WKS MAY be inserted in general bytes of ATR-REQ and ATR-
 RESP.

 4) Link Timeout (LTO, T=04h, L=01h). This parameter indicates the
 timeout value for the LLCP layer, in multiples of 10ms. LTO MAY be
 inserted in general bytes of ATR-REQ and ATR-RESP.

 5) Receive Windows Frame (RW, T=05h, L=01h). This parameter
 indicates the size of the receive windows, its value ranges between
 0 and 15. The default value is one, and MUST be set to one according
 to this document. It MAY be inserted in LLCP PDUs CONNECT or CC.

 6) Service Name (SN, T=06h). This parameter indicates the name of a
 service. It MUST be inserted in the CONNECT PDU. In this document
 its value is set to "urn:nfc:sn:tls:service", where "service" is the
 application name securely transported by TLS.

1.3 LLCPS basic guidelines

 The TLS protocol is a series of record messages, which MAY be
 encrypted or integrity-protected. Each record message includes a
 five bytes prefix that comprises three attributes:
 - The type (one byte) of the message,
 - The version (two bytes),
 - The message length (two bytes).

 The client and the server exchange RECORD messages whose meaning is
 deduced from the TLS protocol rules, according to a half-duplex
 paradigm. Therefore as soon as the beginning of the TLS session is
 detected, the two TLS entities alternatively send and receive a set
 of record messages, whose synchronization is handled by the
 knowledge of TLS protocol.

 The EAP-TLS protocol [RFC 5216] demonstrates how TLS record messages
 may be gathered in blocks exchanged according to a half-duplex
 mechanism.

https://datatracker.ietf.org/doc/html/rfc5216

 Urien Expires January 2018 [Page 9]

 LLCPS July 2017

 LLCPS specifies the TLS session establishment and release, and the
 transport of TLS packets in a NFC P2P context.

 Applications secured by LLCPS are identified by the service name
 "urn:nfc:sn:tls:service" where "service" is the application name.

2 TLS support over LLCP, Connection-oriented Transport

 In NFC P2P mode the Initiator detects a Target and afterwards starts
 and manages a data exchange session; it may optionally feeds the
 Target device. The Initiator has consequently a longer useful life
 than the Target; it is a legitimate place to host TLS server in a
 permanent way.

 However the TLS server MAY be hosted on the Initiator or on the
 Target side.

 Each entity manages five exclusive processes

 - The Connection Process (CP)
 - The Disconnection Process (DP)
 - The Sending Process (SP)
 - The Receiving Process (RP)
 - The Inactivity Process (IP)

 The Inactivity Process MAY be started (see figure 4) each time a
 receiving or sending buffer is empty; in this case it is assumed
 that the computing time or the delay required before the next
 input/output operation is greater than the LLCP timeout (LTO).

2.1 Peer To Peer Link Establishment

 As described in section 1, the Initiator periodically probes the
 presence of a Target. At the end of the "Protocol Activation and
 Parameters Selection" phase, ATR-REQ and ATR-RESP messages have been
 exchanged, and LLCP services are available on both Initiator and
 Target nodes, including in particular the Data-Request-i/t and Data-
 Indication-i/t primitives.

 Due to the ephemeral intrinsic nature of an NFC connection, the P2P
 session may be broken at any time, which implies transmission or
 reception errors notified by the MAC primitives.

 As a consequence an LLCP session is assumed to be released at the
 first MAC error.

 Once a NFC P2P link is established, TLS server and client software
 entities are activated. Procedures such as:

 - SOCKET acceptllcp (char *ServiceName), and

 - SOCKET connectllcp(char *ServiceName)

 Urien Expires January 2018 [Page 10]

 LLCPS July 2017

 MAY be used respectively on Initiator and Target sides, in order to
 get a SOCKET.

 A SOCKET object supports additional facilities, typically the
 following procedures:

 - int sendllcp(SOCKET s, char *buffer, int length)
 - int recvllcp(SOCKET s, char *buffer, int length)
 - int closellcp(SOCKET s)

 which are used for the LLCP session management.

 Urien Expires January 2018 [Page 11]

 LLCPS July 2017

 Initiator Target
 | |
 Connection Process Connection Process
 | |
 Send SYMM ---------------> Receive SYMM
 Receive CONNECT <---------------- Send CONNECT
 Send CC ----------------> Receive CC
 Receive SYMM <---------------- Send SYMM
 | |
 =========================TLS Session============================
 | |
 Receiving Process Sending Process
 | |
 Send SYMM -------------> Receive SYMM
 Receive INFORMATION <------------ Send INFORMATION
 Send RR -------------> Receive RR
 Receive SYMM <------------- Send SYMM
 | |
 Inactivity Process Receiving Process
 | |
 Send SYMM ------------------> Receive SYMM
 Receive SYMM <----------------- Send SYMM
 | |
 Sending Process |
 | |
 Send INFORMATION ---------------> Receive INFORMATION
 Receive RR <-------------- Send RR
 | |
 Receiving Process Inactivity Process
 | |
 Send SYMM -------------------> Receive SYMM
 Receive SYMM <------------------ Send SYMM
 | |
 | Receiving Process
 | |
 Send SYMM ------------> Receiving SYMM
 Receive INFORMATION <----------- Send INFORMATION
 Send RR ------------> Receive RR
 Receive SYMM <----------- Send SYMM
 | |
 ===========================End Of TLS Session=====================
 | |
 Inactivity Process Inactivity Process
 | |
 Disconnection Process |
 | |
 Send DISC -------------------> Receive DISC
 Receive DM <------------------- Send DM
 | |

 Figure 4. Overview of Operations, Connected Mode

 Urien Expires January 2018 [Page 12]

 LLCPS July 2017

 2.2 Inactivity Process

 When the LLCP layer detects an inactivity period greater than a
 given timeout value (see figure 5), it generates a SYMM PDU.
 Therefore each time a LLCP layer is waiting for a non SYMM PDU, and
 receives a SYMM PDU, it MUST acknowledge it by sending a SYMM PDU. A
 maximum number (SYMM-Ct-i/t) of echoed SYMM PDU SHOULD be defined.

 The Inactivity Process (IP) MAY start between the Receiving Process
 (RP) and the Sending Process (SP).

 Upon the reception of an INFORMATION PDU, the packet is stored in
 the reception buffer, and is acknowledged by a RR PDU.

 Initiator Target
 | |
 +------> LLCP inactivity + <-------------+
 | | | |
 | +----------+-----------+ +------------+-----------+ |
 | + Inactivity Timeout + + Waiting for a LLCP PDU + |
 | +----------+-----------+ +------------+-----------+ |
 | | | |
 | Send SYMM PDU ----> Reception of a PDU |
 | | | | | |
 | | |SYMM |Other |
 | Reception of a PDU <---- |Send SYMM PDU |PDU |
 | | | | |Excepted|
 | SYMM| |Other PDU SYMM-Ct-t++ |INFOR- |
 | SYMM-Ct-i++| |Excepted | |-MATION |
 +-------------+ +--+INFORMATION +------------|--------+
 | |
 End Of LLCP Inactivity Send a LLCP PDU

 Figure 5. Inactivity Process

2.3 Connection Process, the Initiator is Server, the Target is Client

 2.3.1 Initiator side

 The Initiator MUST transmit a SYMM LLCP PDU.

 The Initiator MUST receive a CONNECT PDU, with DSAP=1, including the
 SN option, whose value MUST be set to "urn:nfc:sn:tls:service". If
 the SN value is incorrect the Initiator transmits a DM PDU with a
 reason code.

 The Initiator MUST send a CC PDU, with an SSAP ranging between 16
 and 31.

 Urien Expires January 2018 [Page 13]

 LLCPS July 2017

 The Initiator SHOULD receive a SYMM PDU. It MAY receive an
 INFORMATION PDU but this behavior is not recommended, since it
 complicates the implementation of the acceptllcp (and connectllcp)
 procedure.

 2.3.2 Target side

 The Target MUST wait for the reception of a SYMM PDU

 The Target MUST send a CONNECT PDU, with DSAP=1 and SSAP ranging
 between 16 and 31, including the option SN, whose value MUST be set
 to "urn:nfc:sn:tls:service".

 The Target MUST receive a CC PDU.

 The Target SHOULD send a SYMM PDU. It MAY send an INFORMATION PDU
 but this behavior is not recommended, since it complicates the
 implementation of the connectllcp (and acceptllcp) procedure.

 2.3.3 Connection choreography

 Initiator Target
 | |
 socket= acceptllcp() socket=connectllcp()
 | |
 Send SYMMM ------------> Receive SYMM
 | |
 Receive CONNECT <------------- Send CONNECT, DSAP=1
 Check SN SN = "urn:nfc:sn:tls:x"
 | |
 Send CC --------------> Receive CC
 Allocate Ephemeral SAP |
 | |
 Receive SYMM <-------------- Send SYMM
 | |
 Done Done

 Figure 6. Connection Choreography

2.4 Connection Process, the Initiator is Client, the Target is Server

 2.4.1 Initiator side

 The Initiator MUST send a CONNECT PDU, with DSAP=1 and SSAP ranging
 between 16 and 31, including the SN option, whose value MUST be set
 to "com.ietf.tls.

 The Initiator MUST receive a CC PDU.

 Urien Expires January 2018 [Page 14]

 LLCPS July 2017

 2.4.2 Target side

 The Target MUST receive a CONNECT PDU, with DSAP=1, including the SN
 option, whose value MUST be set to "urn:nfc:sn:tls:service". If the
 SN value is incorrect the Initiator transmits a DM PDU with a reason
 code.

 The Target MUST send a CC PDU, with an SSAP ranging between 16 and
 31.

 2.4.3 Connection choreography

 Initiator Target
 | |
 socket= connectllcp() socket= acceptllcp()
 | |
 Send CONNECT, DSAP=1 --------------> Receive CONNECT
 SN = "urn:nfc:sn:tls:service" Check SN
 | Allocate Ephemeral SAP
 | |
 Receive CC <-------------- Send CC
 | |
 | |
 Done Done

 Figure 7. Connection Choreography

2.5 Disconnection Process

 Due to the ephemeral nature of P2P NFC session, the disconnection
 process MAY be unavailable. Nerveless it SHOULD be used for a
 graceful closing of a TLS session.

 The Disconnection Process is started by the Initiator or the Target.

 2.5.1 Disconnection initiated by the Initiator

 The Initiator MUST send a DISC PDU.

 The Target receives the DISC PDU.

 The Target MUST send the DM PDU.

 The Initiator MUST receive the DM PDU.

 2.5.2 Disconnection initiated by the Target

 The Target receives a LLCP PDU. If it receives DISC then it sends
 DM; else it sends the DISC PDU.

 Urien Expires January 2018 [Page 15]

 LLCPS July 2017

 The target waits for an LLCP PDU. Upon reception of a LLCP PDU it
 MUST send the SYMM or the DM PDU.

 2.5.3 Disconnection choreography

 Initiator Target
 | |
 closellcp(socket) |
 | |
 Send DISC --------------> Receive DISC
 | |
 Receive DM <-------------- Send DM
 | |
 Done

 Figure 8. Disconnection started by the Initiator

 Initiator Target
 | |
 | closellcp(socket)
 | |
 Send SYMM -------------> Receive LLCP PDU
 | | |
 | | DISC |Other
 |<-----------------------+ Send DM |(SYMM)
 | | Done |
 |<------------------------------------+Send DISC
 Receive LLCP PDU |
 | | |
 | DM |DISC Receive LLCP PDU
 | |Send DM |
 Send DM ---------------------> Receive DM
 | |
 | <----------------------------- +Send SYMM
 | |or DM
 | Done
 | |

 Figure 9. Disconnection started by the Target

2.6 Sending Process

 The data transmission is managed by the sendllcp(SOCKET s, char
 *buffer, int length) procedure.

 2.6.1 Initiator side

 The buffer to be transmitted is segmented in LLCP INFORMATION

 packets.

 Urien Expires January 2018 [Page 16]

 LLCPS July 2017

 Each packet MUST be acknowledged by the Target with a RR PDU.

 If a RNR PDU is received instead of a RR PDU then the initiator
 sends a SYMM PDU that should be acknowledged either by a SYMM (if
 the target is still overloaded) or by a RR PDU (if the target is
 ready again to process INFORMATION PDUs).

 Initiator Target
 | |
 Sendllcp(buffer) recvllcp()
 | |
 Send INFORMATION PDU -----------------> Receive INFORMATION PDU
 NS-i++ |
 | |
 Receive RR <--------------------------- Send RR(NR-t)
 | |
 Send INFORMATION PDU -----------------> Receive INFORMATION PDU
 NS-i++ |
 | |
 Receive RR <--------------------------- Send RR(NR-t)
 | |
 Buffer Empty |
 |
 Done

 Figure 10. Sending Process, Initiator side.

 2.6.2 Target side

 The Target switches to the sending process, managed by the
 sendllcp() procedure.

 The Target MUST receive a SYMM PDU.

 The buffer to be sent is segmented in INFORMATION PDUs.

 Each INFORMATION PDU is sent by the Target to the Initiator and MUST
 be acknowledged by a RR PDU.

 If a RNR PDU is received instead of a RR PDU then the target sends a
 SYMM PDU that should be acknowledged either by a SYMM (if the
 initiator is still overloaded) or by a RR PDU (if the initiator is
 ready again to process INFORMATION PDUs).

 Upon the reception of the last RR PDU a SYMM PDU MUST be sent by the
 Target to the Initiator.

 Urien Expires January 2018 [Page 17]

 LLCPS July 2017

 Initiator Target
 | |
 recvllcp() sendllcp(buffer)
 | |
 Send SYMM --------> Receive SYMM
 | |
 Receive INFORMATION PDU <------- Send INFORMATION PDU
 | NS-t++
 | |
 SEND RR(NR-i) -------> Receive RR
 | |
 Receive INFORMATION PDU <------- Send INFORMATION PDU
 | NS-t++
 | |
 SEND RR(NR-i) -------> Receive RR
 | |
 | Buffer Empty
 | |
 Receive SYMM <------- Send SYMM
 | |
 Done Done

 Figure 11. Sending Process, Target side.

2.7 Receiving Process

 The Receiving process is handled by the recvllcp(SOCKET s, char
 *buffer, int length) procedure, which manages a reception buffer.

 2.7.1 Initiator side

 A1) If the reception buffer is empty, the Initiator sends a SYMM
 PDU. This PDU starts the Target receiving process. The expected PDU
 received from the Target is either an INFORMATION PDU or a SYMM PDU
 (notifying an ephemeral inactivity state).

 B1) If the reception buffer stores enough data, then the size
 requested by the recvllcp() procedure is returned. If the buffer
 gets empty after this operation, a RR PDU is sent to the Target. The
 PDU received from the Target is either an INFORMATION PDU or a SYMM
 PDU.

 B2) Else, while there is not enough data in the buffer, the
 following loop is performed
 - Send RR PDU
 - Receive INFORMATION PDU

 B2.1) at this end of this loop the size requested by the recvllcp()
 procedure is returned. If the buffer gets empty after this

 Urien Expires January 2018 [Page 18]

 LLCPS July 2017

 operation, a RR PDU is sent to the Target. The PDU received from the
 Target is either an INFORMATION PDU or a SYMM PDU.

 Initiator Target
 | |
 buffer empty sendllcp()
 | |
 recvllcp() ===> Send SYMM --------> Receive SYMM
 | |
 Receive INFORMATION PDU <------- Send INFORMATION PDU
 | NS-t++
 enough data <=== | |
 | |
 recvllcp() ===> | |
 enough data <=== | |
 buffer empty |
 | |
 Send RR(NR-i) -------> Receive RR
 | |
 Receive INFORMATION PDU <------- Send INFORMATION PDU
 | NS-t++
 | |
 recvllcp() ===> Send RR(NR-i) -------> Receive RR
 | |
 Receive INFORMATION PDU <------- Send INFORMATION PDU
 | NS-t++
 enough data <=== | |
 | |
 recvllcp() ===> | |
 Send RR(NR-i) -------> Receive RR
 | |
 Receive INFORMATION PDU <------- Send INFORMATION PDU
 | NS-t++
 | |
 ===> Send RR(NR-i) -------> Receive RR
 | |
 Receive INFORMATION PDU <------- Send INFORMATION PDU
 | NS-t++
 enough data <=== | |
 buffer empty |
 | |
 Send RR(NR-i) -------> Receive RR
 | |
 | buffer empty
 | |
 Receive SYMM <------- Send SYMM
 | |
 Done Done

 Figure 12. Receiving Process, Initiator side.

 Urien Expires January 2018 [Page 19]

 LLCPS July 2017

 2.7.2 Target side

 A1) If the reception buffer stores enough data, then the size
 requested by the recvllcp() procedure is returned.

 B1) Else, while there is not enough data in the buffer, the
 following loop is performed
 - Receive INFORMATION PDU
 - Send RR PDU

 Initiator Target
 | |
 Sendllcp(buffer) buffer empty
 | |
 | | <=== recvllcp()
 | |
 Send INFORMATION PDU ----> Receive INFORMATION PDU
 NS-i++ |
 | |
 Receive RR <------------ Send RR(NR-t)
 | |
 | | ===> enough data
 | |
 | | <=== recvllcp()
 | | ===> enough data
 | |
 | buffer empty
 | |
 | | <=== recvllcp()
 | |
 Send INFORMATION PDU --> Receive INFORMATION PDU
 NS-i++ |
 | |
 Receive RR <------------ Send RR(NR-t)
 | |
 Send INFORMATION PDU --> Receive INFORMATION PDU
 NS-i++ |
 | |
 Receive RR <------------ Send RR(NR-t)
 | |
 buffer empty | ===> enough data
 | buffer empty
 Done |
 Done

 Figure 13. Receiving Process, Initiator side.

 Urien Expires January 2018 [Page 20]

 LLCPS July 2017

3 TLS support over LLCP, Connectionless Transport

 In NFC P2P mode the Initiator detects a Target and afterwards starts
 and manages a data exchange session; it may optionally feed the
 Target device.

 The Initiator has consequently a longer useful life than the Target;
 it is a legitimate place to host TLS server in a permanent way.

 However the TLS server MAY be hosted on the Initiator or on the
 Target side.

 Each entity manages five exclusive processes

 - The Connection Process (CP)
 - The Disconnection Process (DP)
 - The Sending Process (SP)
 - The Receiving Process (RP)
 - The Inactivity Process (IP)

 The Inactivity Process MAY be started (see figure 14) each time a
 receiving or sending buffer is empty; in this case it is assumed
 that the computing time or the delay required before the next
 input/output operation is greater than the LLCP timeout (LTO).

 Urien Expires January 2018 [Page 21]

 LLCPS July 2017

 Initiator Target
 | |
 Connection Process Connection Process
 | |
 | Sending Process
 | |
 Send SYMM ---------------> Receive SYMM
 Receive UI <---------------- Send UI
 | |
 Receiving Process |
 | |
 Send SYMM -----------------> Receive SYMM
 Receive UI <---------------- Send UI
 | |
 | Inactivity Process
 | |
 Send SYMM ----------------> Receive SYMM
 Receive SYMM <---------------- Send SYMM
 | |
 Inactivity Process Receiving Process
 | |
 Send SYMM -----------------> Receive SYMM
 Receive SYMM <---------------- Send SYMM
 | |
 Sending Process |
 Send UI ------------------> Receive UI
 Receive SYMM <----------------- Send SYMM
 | |
 Receiving Process Inactivity Process
 | |
 Send SYMM -----------------> Receive SYMM
 Receive SYMM <---------------- Send SYMM
 | |
 | Sending Process
 Send SYMM ------------> Receiving SYMM
 Receive UI <------------- Send UI
 | |
 | Inactivity Process
 Send SYMM -----------------> Receive SYMM
 Receive SYMM <---------------- Send SYMM
 | |
 | |
 Disconnection Process |
 | |
 Send DM --------------> Receive DM
 Receive SYMM or DM <------------ Send SYMM or DM
 | |

 Figure 14. Overview of Process Operations, connectionless mode

 Urien Expires January 2018 [Page 22]

 LLCPS July 2017

3.1 Peer To Peer Link Establishment

 As described in section 1, the Initiator periodically probes the
 presence of a Target. At the end of the "Protocol Activation and
 Parameters Selection" phase, ATR-REQ and ATR-RESP messages have been
 exchanged, and LLCP services are available on both Initiator and
 Target nodes, including in particular the Data-Request-i/t and Data-
 Indication-i/t primitives.

 Due to the ephemeral intrinsic nature of an NFC connection, the P2P
 session may be broken at any time, which implies transmission or
 reception errors notified by the MAC primitives.

 As a consequence an LLCP session is assumed to be released at the
 first MAC error.

 Once a NFC P2P link is established, TLS server and client software
 entities are activated. Procedures such as:

 - SOCKET acceptllcp(char TLS-SAP), and
 - SOCKET connectllcp(char TLS-SAP)

 MAY be used respectively on Initiator and Target sides, in order to
 get a SOCKET. This object supports additional facilities, typically
 the following procedures:

 - int sendllcp(SOCKET s, char *buffer, int length)
 - int recvllcp(SOCKET s, char *buffer, int length)
 - int closellcp(SOCKET s)

 which are used for the LLCP session management.

 Urien Expires January 2018 [Page 23]

 LLCPS July 2017

3.2 Inactivity Process

 When the LLCP layer detects an inactivity period greater that a
 given timeout value (see figure 15), it generates a SYMM PDU.
 Therefore each time a LLCP layer is waiting for a non SYMM PDU, and
 receives a SYMM PDU, it MUST acknowledge it by sending a SYMM PDU. A
 maximum number (SYMM-Ct-i/t) of echoed SYMM PDU SHOULD be defined.

 Upon the reception of an UI PDU, the packet is stored in the
 reception buffer.

 The Inactivity Process (IP) MAY start between the Receiving Process
 (RP) and the Sending Process (SP).

 Initiator Target
 | |
 +------> LLCP inactivity + <-------------+
 | | | |
 | +----------+-----------+ +------------+-----------+ |
 | + Inactivity Timeout + + Waiting for a LLCP PDU + |
 | +----------+-----------+ +------------+-----------+ |
 | | | |
 | Send SYMM PDU ----> Reception of a PDU |
 | | | | | |
 | | |SYMM or UI |Other |
 | Reception of a PDU <---- |Send SYMM PDU |PDU |
 | | | | |Excepted|
 | SYMM or UI| |Other PDU SYMM-Ct-t++ |UI |
 | SYMM-Ct-i++| |Excepted UI | | |
 +-------------+ +--+ +------------|--------+
 | |
 End Of LLCP Inactivity Send a LLCP PDU

 Figure 15. Inactivity Process

3.3 Connection Process, the Initiator is Server, the Target is Client

 3.3.1 Initiator side

 The Initiator MUST transmit a SYMM PDU.

 If the Initiator receives a SYMM then it sends a SYMM.

 If the Initiator receives an UI PDU, with the DSAP set to a well-
 known value that identifies the TLS service, then the service data
 unit transported by the UI is stored in the reception buffer.

 If the DSAP value is incorrect the Initiator transmits a DM PDU with
 a reason code.

 Urien Expires January 2018 [Page 24]

 LLCPS July 2017

 3.3.2 Target side

 The Target allocates an ephemeral SSAP ranging between 16 and 31,
 and sends a SYMM.

 The DSAP of UI PDU will use the allocated SSAP, and DSAP set to a
 well-known value that identifies the TLS service.

 3.3.3 Connection choreography

 Initiator Target
 | |
 socket= acceptllcp(TLS-SAP) socket=connectllcp(TLS-SAP)
 | |
 | DSAP=well-known value
 | Allocate Ephemeral SSAP
 | |
 | Done
 | |
 | sendllcp()
 | |
 Send SYMM ------------------> Receive SYMM
 | |
 Receive UI <------------------ Send UI
 Check DSAP |
 | |
 Done

 Figure 15. Connection Choreography

3.4 Connection Process, the Initiator is Client, the Target is Server

 3.4.1 Initiator side

 The initiator allocates an ephemeral SSAP ranging between 16 and 31,
 and sends a SYMM.

 The DSAP of UI PDU will use the allocated SSAP, and DSAP set to a
 well-known value that identifies the TLS service.

 3.4.2 Target side

 If target receives a SYMM, then it sends A SYMM.

 If the Target receives an UI PDU, with the DSAP set to a well-known
 value that identifies the TLS service, then the service data unit
 transported by the UI is stored in the reception buffer.

 Upon success the Target sends a SYMM.

 Urien Expires January 2018 [Page 25]

 LLCPS July 2017

 If the DSAP value is incorrect the Initiator transmits a DM PDU with
 a reason code.

 3.4.3 Connection choreography

 Initiator Target
 | |
 socket= connectllcp(TLS-SAP) socket= acceptllcp(TLS-SAP)
 | |
 DSAP=well-known value |
 Allocate Ephemeral SSAP |
 | |
 Done |
 | |
 Sendllcp() |
 | |
 Send UI -------------------> Receive UI
 receive SYMM <------------------ Send SYMM
 | |
 Done Done

 Figure 16. Connection Choreography

3.5 Disconnection Process

 Due to the ephemeral nature of P2P NFC session, the disconnection
 process MAY be unavailable. Nerveless it SHOULD be used for a
 graceful closing of a TLS session. The Disconnection Process is
 initiated by the Initiator or the Target.

 3.5.1 Disconnection initiated by the Initiator

 The Initiator MUST send a DM PDU

 The Target receives the DM PDU.

 The Target sends a SYMM or a DM PDU.

 3.5.2 Disconnection initiated by the Target

 If the Target receives a DM PDU, then it sends the DM or the SYMM
 PDU.

 Else the Target sends the DM PDU.

 Urien Expires January 2018 [Page 26]

 LLCPS July 2017

 3.5.3 Disconnection choreography

 Initiator Target
 | |
 closellcp(socket) |
 | |
 Send DM -----------------> Receive DM
 | |
 Receive SYMM or DM <---------------- Send SYMM or DM
 | |
 Done Done

 Figure 17. Disconnection initiated by the Initiator

 Initiator Target
 | |
 | closellcp(socket)
 | |
 Send SYMM -------------> Receive LLCP PDU
 | |
 Receive DM <------------ Send DM
 | |
 Done Done

 Figure 18. Disconnection initiated by the Target

3.6 Sending Process

 The data transmission is managed by the
 sendllcp(SOCKET s, char *buffer, int length)
 procedure.

 3.6.1 Initiator side

 The buffer to be transmitted is segmented in LLCP UI packets.

 Initiator Target
 | |
 Sendllcp(buffer) recvllcp()
 | |
 Send UI PDU -----------------> Receive UI PDU
 Receive SYMM <----------------- Send SYMM
 | |
 Send UI PDU -----------------> Receive UI PDU
 Receive SYMM <----------------- Send SYMM
 | |
 Buffer Empty |
 |
 Done

 Figure 19. Sending Process, Initiator side.

 Urien Expires January 2018 [Page 27]

 LLCPS July 2017

 The following loop is performed

 - The Initiator sends an UI PDU
 - The initiator receive a SYMM PDU

 3.6.2 Target side

 The Target switches to the sending process, managed by the
 sendllcp() procedure.

 The Target MUST receive a SYMM PDU.

 The buffer to be sent is segmented in UI PDUs.

 The following loop is performed

 - The Target sends an UI PDU
 - The Target receives a SYMM PDU

 When the buffer is empty a last SYMM is sent.

 Initiator Target
 | |
 recvllcp() sendllcp(buffer)
 | |
 Send SYMM --------> Receive SYMM
 | |
 Receive UI <------- Send UI
 | |
 Send SYMM --------> Receive SYMM
 | |
 Receive UI <------- Send UI
 | Buffer Empty
 | |
 Receive SYMM <------- Send SYMM
 | |
 | Done

 Figure 20. Sending Process, Target side.

 Urien Expires January 2018 [Page 28]

 LLCPS July 2017

3.7 Receiving Process

 The Receiving process is handled by the
 recvllcp(SOCKET s, char *buffer, int length)
 procedure, which manages a reception buffer.

 3.7.1 Initiator side

 A1) If the reception buffer is empty, the Initiator sends a SYMM
 PDU. This PDU starts the Target receiving process. The expected PDU
 received from the Target is either an UI PDU or a SYMM PDU
 (notifying an ephemeral inactivity state).

 B1) If the reception buffer stores enough data, then the size
 requested by the recvllcp() procedure is returned. If the buffer
 gets empty after this operation, the SYMM PDU SHOULD be sent to the
 Target. The PDU received from the Target is either an UI PDU or a
 SYMM PDU.

 B2) Else, while there is not enough data in the buffer, the
 following loop is performed
 - Send SYMM
 - Receive UI PDU

 B2.1) at this end of this loop the size requested by the recvllcp()
 procedure is returned. If the buffer gets empty after this
 operation, the SYMM PDU SHOULD be sent to the Target. The PDU
 received from the Target is either an UI PDU or a SYMM PDU.

 In B1 and B2.1 a SYMM PDU SHOULD be sent when the reception buffer
 gets empty. This rule avoids un-needed transition to the IP process.
 It is a "double checking" of the empty buffer event.

 Urien Expires January 2018 [Page 29]

 LLCPS July 2017

 Initiator Target
 | |
 buffer empty sendllcp()
 | |
 recvllcp() ===> Send SYMM --------> Receive SYMM
 | |
 Receive UI <------- Send UI PDU
 enough data <=== | |
 | |
 recvllcp() ===> | |
 enough data <=== | |
 buffer empty |
 | |
 Send SYMM --------> Receive SYMM
 Receive UI <-------- Send UI
 | |
 Send SYMM -------> Receive SYMM
 | |
 Receive UI <------- Send UI PDU
 | |
 recvllcp() ===> | |
 enough data <=== | |
 | |
 recvllcp() ===> | |
 Send SYMM -------> Receive SYMM
 | |
 Receive UI <------- Send UI PDU
 | |
 Send SYMM -------> Receive SYMM
 | |
 Receive UI <------- Send UI PDU
 enough data <=== | |
 buffer empty Done
 | |
 | Inactivity Process
 | |
 Send SYMM --------> Receive SYMM
 Receive SYMM <-------- Send SYMM
 | |
 Done Done

 Figure 21. Receiving Process, Initiator side.

 Urien Expires January 2018 [Page 30]

 LLCPS July 2017

 3.7.2 Target side

 A1) If the reception buffer stores enough data, then the size
 requested by the recvllcp() procedure is returned.

 B1) Else, while there is not enough data in the buffer, the
 following loop is performed
 - Receive UI PDU
 - Send SYMM PDU

 Initiator Target
 | |
 Sendllcp(buffer) buffer empty
 | |
 | | <=== recvllcp()
 | |
 Send UI PDU -----------> Receive UI PDU
 | |
 Receive SYMM <------------ Send SYMM
 | |
 | | ===> enough data
 | |
 | | <=== recvllcp()
 | | ===> enough data
 | |
 | buffer empty
 | |
 | | <=== recvllcp()
 | |
 Send UI PDU ----------> Receive UI PDU
 | |
 Receive SYMM <----------- Send SYMM
 | |
 Send UI -----------> Receive UI PDU
 | |
 Receive SYMM <------------ Send SYMM
 | |
 Done | ===> enough data
 | buffer empty
 | |
 | |
 Done

 Figure 22. Receiving Process, Target side.

 Urien Expires January 2018 [Page 31]

 LLCPS July 2017

4 Example of LLCPS session, connected mode

4.1 Protocol Activation and Parameters Selection

 4.1.1 Initiator ATR-REQ

 Raw-data:
 5C A9 BE E1 C0 35 A0 BF 16 0F 00 00 00 02 46 66
 6D 01 01 10 03 02 00 01 04 01 01 10 64

 NFCID3i= 5C A9 BE E1 C0 35 A0 BF 16 0F
 DIDi (Initiator ID) = 00
 BSi= 00
 BRi= 00
 PPi= 02, 64 bytes of Transport Data, Gt bytes available
 Magic Bytes: 46666d
 Option: Version, Major=1, Minor=0
 Option: WKS: Well-Known Service List 0x0001
 Option: LTO: Link TimeOut 0x64 (1000 ms)

 4.1.2 Target ATR-RESP

 Raw-Data:
 AA 99 88 77 66 55 44 33 22 11 00 00 00 09 03 46
 66 6D 01 01 10 03 02 00 01 04 01 64

 NFCID3t= AA 99 88 77 66 55 44 33 22 11
 DIDt (Target ID)= 00
 BSt= 00
 BRt= 00
 TO= 09, WT= 6363 ms
 PPt= 03, 64 bytes of Transport Data, NAD available, Gt bytes
 available
 Magic Bytes: 46666d
 Option: Version, Major=1, Minor=0
 Option: WKS: Well-Known Service List 0x0001
 Option: LTO: Link TimeOut 0x64 (1000 ms)

4.2 LLCP connection

 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00
 Target: Sending CONNECT, ssap=27 dsap=1, option=SN("com.ietf.tls")
 Rx_i: 05 1B 06 0C 63 6F 6D 2E 69 65 74 66 2E 74 6C 73
 Initiator: Sending ConnectionComplete, ssap=16 dsap=27
 Tx-i: 6D 90
 Target: Sending SYMM, ssap=0 dsap=0
 Rx-i: 00 00

 Urien Expires January 2018 [Page 32]

 LLCPS July 2017

4.3 Target: sending Client Hello

 RecvLLCP Initiator: request size=5, buffer empty, sending SYMM
 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 SendLLCP Target: request size=82 bytes, Waiting for SYMM
 Target: Receiving SYMM, ssap=0 dsap=0
 Target: Sending INFORMATION, ssap=27 dsap=16 Nr=0, Ns=0
 Rx-i: 43 1B 00 16 03 01 00 4D 01 00 00 49 03 01 50 1A
 A9 6B 82 55 1C B5 AD FF BC 87 21 66 5F B5 98 41
 9E 17 33 39 45 F9 78 86 46 D6 F6 75 51 10 20 E7
 0A 41 FE 8C F9 A0 38 D3 28 72 E8 04 7E C2 37 22
 05 13 24 AA DE 2F 6B 67 4C 19 CE A5 7D A0 86 00
 02 00 04 01 00

 RecvLLCP_Initiator: request size=5 bytes, buffer=82 bytes
 RecvLLCP_Initiator: request size=77 bytes, buffer=77 bytes
 RecvLLCP_Initiator: buffer empty, sending RR(1), ssap=16 dsap=27
 Tx-i: 6F 50 01

 SendLLCP_Target: Receiving RR(1), ssap=16 dsap=27
 SendLLCP_Target: empty buffer, Done, Sending SYMM
 Target: Sending SYMM, ssap=0 dsap=0

 Initiator: Receiving SYMM ssap=0 dsap=0
 Rx-i: 00 00

4.4 Inactivity Process

 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 RecvLLCP Target: request size=5 bytes, buffer empty
 Target: Receiving SYMM, ssap=0 dsap=0
 Target: Sending SYMM, ssap=0 dsap=0

 Initiator: Receiving SYMM, ssap=0 dsap=0
 Rx-i: 00 00

4.5 Server: sending Server Hello

 SendLLCP_Initiator: request size=122 bytes
 Initiator: Sending INFORMATION, ssap=16 dsap=27 Nr=1 Ns=0
 Tx-i: 6F 10 01 16 03 01 00 4A 02 00 00 46 03 01 50 1A
 A9 6B 6C 0E 31 E1 F3 0E CD 18 E7 6F 81 BF 5F 3C
 FD DE 00 4C A4 12 AE DC DF E4 FF 82 09 5E 20 E7
 0A 41 FE 8C F9 A0 38 D3 28 72 E8 04 7E C2 37 22
 05 13 24 AA DE 2F 6B 67 4C 19 CE A5 7D A0 86 00

 04 00 14 03 01 00 01 01 16 03 01 00 20 83 18 D1

 Urien Expires January 2018 [Page 33]

 LLCPS July 2017

 E3 BC 3A 94 26 91 3D FC F3 8E 01 46 5E 52 8E 67
 A2 66 FC 5F D5 89 78 59 66 14 BA D3 B0

 RecvLLCP_Target: Receiving INFORMATION, ssap=16 dsap=27 Nr=1 Ns=0
 RecvLLCP_Target: sending RR(1), ssap=27 dsap=16
 RecvLLCP_Target: request size=74 bytes
 RecvLLCP_Target: request size=5 bytes
 RecvLLCP_Target: request size=1 byte

 SendLLCP Initiator: Receiving RR(1), ssap=27 dsap=16
 Rx-i: 43 5B 01
 SendLLCP_Initiator: buffer empty, Done

 RecvLLCP_Target: request size=5 bytes
 RecvLLCP_Target: request size=32 bytes, Done, empty buffer

4.6 LLCP Inactivity Process

 RecvLLCP_Initiator: request size=5, empty buffer, sending SYMM
 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 Target: Receiving SYMM, ssap=0 dsap=0
 Target: Sending SYMM, ssap=0 dsap=0

 Initiator: Receiving SYMM ssap=0 dsap=0
 Rx-i: 00 00

4.7 Client: sending Client Finished

 Initiator: Receiving SYMM ssap=0 dsap=0
 Tx-i: 00 00

 SendLLCP_Target: request size=43 bytes, Waiting for SYMM
 Target: Receiving SYMM, ssap=0 dsap=0
 Target: Sending INFORMATION, ssap=27 dsap=16 Nr=1, Ns=1
 Rx-i: 43 1B 11 14 03 01 00 01 01 16 03 01 00 20 57 DD
 DE 29 9E E4 EF DD C5 18 87 50 C6 C7 B9 56 AD FA
 EF 65 B2 24 48 04 2E FE 7D BD 97 E1 F3 3A

 Initiator: Receiving INFORMATION, ssap=27 dsap=16 Nr=1, Ns=1
 RecvLLCP_Initiator: request size= 5 bytes, buffer=43 bytes
 RecvLLCP_Initiator: request size= 1 bytes, buffer=38 bytes
 RecvLLCP_Initiator: request size= 5 bytes, buffer=37 bytes
 RecvLLCP_Initiator: request size=32 bytes, buffer=32 bytes
 RecvLLCP_Initiator: empty buffer, sending RR(2)
 Initiator: Sending RR(2), ssap=16 dsap=27
 Tx-i: 6F 50 02

 Target: Receiving RR(2), ssap=16 dsap=27 Nr=2

 Urien Expires January 2018 [Page 34]

 LLCPS July 2017

 SendLLC_Target: empty buffer, Done, sending SYMM
 Target: Sending SYMM, ssap=0 dsap=0

 Initiator: Receiving SYMM ssap=0 dsap=0
 Rx-i: 00 00

4.8 Exchanging Data

 4.8.1 Sending data from client to server

 RecvLLCP_Initiator: request size=5 bytes, empty buffer, sending SYMM
 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 Target: Receiving SYMM, ssap=0 dsap=0
 SendLLCP_Target: sending 27 bytes
 Target: Sending INFORMATION, ssap=27 dsap=16 Nr=1, Ns=2

 Initiator: Receiving INFORMATION, ssap=27 dsap=16 Nr=1, Ns=2
 Rx-i: 43 1B 21 17 03 01 00 16 C2 D5 18 CB 0D AB 44 E5
 0F 25 DB 83 6D 26 B7 74 E7 90 EF 33 8C FE
 RecvLLCP_Initiator: request size= 5 bytes, buffer=27 bytes
 RecvLLCP_Initiator: request size=22 bytes, buffer=22 bytes
 Initiator: Sending RR(3), ssap=16 dsap=27
 Tx-i: 6F 50 03

 Target: Receiving RR(3), ssap=16 dsap=27
 SendLLC_Target: empty buffer, Done, sending SYMM
 Target: Sending SYMM, ssap=0 dsap=0

 Initiator: Receiving SYMM ssap=0 dsap=0
 Rx-i: 00 00

 4.8.2 Sending data from server to client

 SendLLCP Initiator: request size=27 bytes
 Initiator: Sending INFORMATION, ssap=16 dsap=27 Nr=3 Ns=1
 Tx-i: 6F 10 13 17 03 01 00 16 DC 82 FE B9 EA 1C 63 5C
 AC 8C FE C9 A2 4F 8A FD 54 EE 18 F5 DB 30

 RecvLLCP_Target: request size= 5 bytes
 Target: Receiving INFORMATION, ssap=16 dsap=27 Nr=3 Ns=1
 RecvLLCP_Target: sending RR(2)
 Target: Sending RR(2), ssap=27 dsap=16
 RecvLLCP_Target: request size=22 bytes, buffer=22 bytes, Done

 Initiator: Receiving RR(2), ssap=27 dsap=16
 Rx-i: 43 5B 02
 SendLLCP Initiator: empty buffer, Done

 Urien Expires January 2018 [Page 35]

 LLCPS July 2017

4.9 Closing TLS session, initiated by the Initiator

 Initiator: Sending DISC, ssap=16 dsap=27
 Tx-i: 6D 50

 Target: Receiving DISC, ssap=16 dsap=27
 Target: Sending DM, ssap=27 dsap=16

 Initiator: Receiving DM, ssap=27 dsap=16
 Rx-i: 41 DB 00

5 Example of LLCPS session, Connectionless mode

5.1 Protocol Activation and Parameters Selection

 5.1.1 Initiator ATR-REQ

 Raw-data:
 5C A9 BE E1 C0 35 A0 BF 16 0F 00 00 00 02 46 66
 6D 01 01 10 03 02 00 01 04 01 01 10 64

 NFCID3i= 5C A9 BE E1 C0 35 A0 BF 16 0F
 DIDi (Initiator ID) = 00
 BSi= 00
 BRi= 00
 PPi= 02, 64 bytes of Transport Data, Gt bytes available
 Magic Bytes: 46666d
 Option: Version, Major=1, Minor=0
 Option: WKS: Well-Known Service List 0x0001
 Option: LTO: Link TimeOut 0x64 (1000 ms)

 5.1.2 Target ATR-RESP

 Raw-Data:
 AA 99 88 77 66 55 44 33 22 11 00 00 00 09 03 46
 66 6D 01 01 10 03 02 00 01 04 01 64

 NFCID3t= AA 99 88 77 66 55 44 33 22 11
 DIDt (Target ID)= 00
 BSt= 00
 BRt= 00
 TO= 09, WT= 6363 ms
 PPt= 03, 64 bytes of Transport Data, NAD available, Gt bytes
 available
 Magic Bytes: 46666d
 Option: Version, Major=1, Minor=0
 Option: WKS: Well-Known Service List 0x0001
 Option: LTO: Link TimeOut 0x64 (1000 ms)

 Urien Expires January 2018 [Page 36]

 LLCPS July 2017

5.2 LLCP connection

 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 Target: Setting DSAP to 13 (well known-value), setting ephemeral
 SSAP to 27

5.3 Client Hello

 Target: Receiving SYMM, ssap=0 dsap=0
 Target: Sending UI, dsap=13 ssap=27, 82 bytes

 Initiator: Receiving UI, ssap=27 dsap=13
 Rx-i: 34 DB 16 03 01 00 4D 01 00 00 49 03 01 51 09 2E
 3A CC 72 28 FE F5 D3 6F A8 D9 E7 55 67 6C 3B C3
 7C 6C AF 18 1A 7F C6 81 1A 9D 0F 3D F8 20 04 E2
 26 36 24 92 33 68 48 C7 34 A4 44 E3 70 8C 6C 11
 44 53 54 20 B1 A9 3D 47 A8 3F E5 C5 D5 D2 00 02
 00 04 01 00 90 00

 RecvLLC Initiator: request size=5 buffer size=82
 RecvLLC Initiator: request size=77 buffer size=77
 RecvLLC Initiator: buffer empty

 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 Target: Receiving SYMM, ssap=0 dsap=0
 Target: Sending SYMM, ssap=0,dsap=0

 Rx-i: 00 00

5.4 Server Hello

 SendLLC Initiator: request size=122
 Initiator: Sending UI, ssap=13 dsap=27

 Tx-i: 6C CD 16 03 01 00 4A 02 00 00 46 03 01 51 09 2E
 3A 23 03 7D 28 AF D1 71 B4 0F 60 ED 3D A0 86 4B
 67 36 A8 80 AB 34 78 21 63 1B D8 F5 81 20 04 E2
 26 36 24 92 33 68 48 C7 34 A4 44 E3 70 8C 6C 11
 44 53 54 20 B1 A9 3D 47 A8 3F E5 C5 D5 D2 00 04
 00 14 03 01 00 01 01 16 03 01 00 20 B9 0C 3F E8
 C8 48 F3 8B 1A 1C 59 01 6C C9 A0 7F 33 FB E9 A3
 1E 9E 25 B8 FA AE FE 77 06 51 3D E4

 Target: Receiving UI, ssap=13 dsap=27, 122 bytes

 RecvLLC Target: request size= 5, buffer size= 122

 RecvLLC Target: request size=74, buffer size= 117

 Urien Expires January 2018 [Page 37]

 LLCPS July 2017

 RecvLLC Target: request size= 5, buffer size= 43
 RecvLLC Target: request size= 1, buffer size= 42
 RecvLLC Target: request size= 5, buffer size= 37
 RecvLLC Target: request size=32, buffer size= 32
 RecvLLC Target: empty buffer

 Target: Sending SYMM, ssap=0 dsap=0

 Initiator: Receiving SYMM, ssap=0 dsap=0
 Rx-i: 00 00

5.5 Client Finished

 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 Target: Receiving SYMM, ssap=0 dsap=0

 SendLLC Target: sending 43 bytes
 Target: Sending UI, ssap=27 dsap=13, 43 bytes

 Initiator: Receiving UI, ssap=27 dsap=13, 43 bytes

 Rx-i: 34 DB 14 03 01 00 01 01 16 03 01 00 20 7E 92 D1
 D1 78 C4 39 2D 8D 11 9A DF 0F 0B E5 7C 33 BA DC
 3D B0 33 CD 5E 27 BE A4 6C 62 78 F3 D8

 RecvLLC Initiator: request size=5 buffer size=43
 RecvLLC Initiator: request_size=1 buffer size=38
 RecvLLC Initiator: request_size=5 buffer_size=37
 RecvLLC Initiator: request_size=32 buffer size=32
 RecvLLC_Initiator: buffer empty

 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 Target: Receiving SYMM, ssap=0 dsap=0
 Target: Sending SYMM, ssap=0,dsap=0
 Rx-i: 00 00

5.6 Exchanging Data

 5.6.1 Sending data from client to server

 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 Target: Receiving SYMM, ssap=0 dsap=0
 Target: Sending UI, ssap=27 dsap=13, 27 bytes

 Urien Expires January 2018 [Page 38]

 LLCPS July 2017

 Rx-i: 34 DB 17 03 01 00 16 EA 91 72 8A DA 5A DD F0 C7
 6A E0 82 15 B4 8F 5E 72 F6 BE 64 9D 0E

 Initiator: Receiving UI, ssap=27 dsap=13, 27 bytes

 SendLLC Initiator: request size= 5, buffer size=32
 SendLLC Initiator: request size=27, buffer size=27
 SendLLC Initiator: buffer empty

 Initiator: Sending SYMM, ssap=0 dsap=0
 Tx-i: 00 00

 Target: Sending SYMM, ssap=0,dsap=0
 Initiator: Receiving SYMM, ssap=0 dsap=0

 Rx-i: 00 00

 5.6.2 Sending data from server to client

 Initiator: Sending UI, ssap=13 dsap=27, 27 bytes

 Tx-i: 6C CD 17 03 01 00 16 93 48 F4 7F 67 F8 6E A1 94
 15 BB AF D1 BD CA 2D AE 48 0B A6 9B 9D

 Target: Receiving UI, ssap=13 dsap=27, 27 bytes
 Target: Sending SYMM, ssap=0,dsap=0

 RecvLLC Target: request size= 5, buffer size=32
 RecvLLC Target: request size=27, buffer size=27
 RecvLLC Target: buffer empty

 Initiator: Receiving SYMM, ssap=0 dsap=0
 Rx-i: 00 00

5.7 End of Session

 Initiator: Sending DM, ssap=0 dsap=0
 Target: Receiving DM, ssap=0 dsap=0
 Target: Sending SYMM, ssap=0 dsap=0
 Initiator: Receiving SYMM, ssap=0 dsap=0

 Urien Expires January 2018 [Page 39]

 LLCPS July 2017

6 Security Considerations

 To be done.

7 IANA Considerations

8 References

8.1 Normative References

 [TLS 1.0] Dierks, T., C. Allen, "The TLS Protocol Version 1.0", RFC
2246, January 1999

 [TLS 1.1] Dierks, T., Rescorla, E., "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006

 [TLS 1.2] Dierks, T., Rescorla, E., "The Transport Layer Security
 (TLS) Protocol Version 1.1", draft-ietf-tls-rfc4346-bis-10.txt,
 March 2008

 [RFC 5216] B. Aboba, D. Simon, R. Hurst, "EAP TLS Authentication
 Protocol" RFC 5216, March 2008.

 [ECMA340] "Near Field Communication Interface and Protocol (NFCIP-
 1)", Standard ECMA-340, December 2004

 [ISO/IEC 18092] "Information technology - Telecommunications and
 information exchange between systems - Near Field Communication -
 Interface and Protocol (NFCIP-1)", April 2004

 [LLCP] "Logical Link Control Protocol", Technical Specification, NFC
 ForumTM, LLCP 1.1, June 2011

 [SNEP] "Simple NDEF Exchange Protocol", Technical Specification, NFC
 ForumTM, SNEP 1.0, August 2011

 [NDEF] "NFC Data Exchange Format (NDEF)", Technical Specification
 NFC ForumTM, NDEF 1.0, July 2006.

 [ISO7816] ISO 7816, "Cards Identification - Integrated Circuit Cards
 with Contacts", The International Organization for Standardization
 (ISO)

 [IEEE 802.2] IEEE Std 802.2, "IEEE Standard for Information
 technology Telecommunications and information exchange between
 systems Local and metropolitan area networks, Specific requirements,
 Part 2: Logical Link Control", 1998

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc4346-bis-10.txt
https://datatracker.ietf.org/doc/html/rfc5216

 Urien Expires January 2018 [Page 40]

 LLCPS July 2017

8.2 Informative References

 [NPP} "Android NDEF Push Protocol Specification Version 1", February
 2011

9 Authors' Addresses

 Pascal Urien
 Telecom ParisTech
 23 avenue d' Italie
 75013 Paris Phone: NA
 France Email: Pascal.Urien@telecom-paristech.fr

 Urien Expires January 2018 [Page 41]

