
Network Working Group JM. Valin
Internet-Draft T. Terriberry
Intended status: Standards Track Mozilla Corporation
Expires: January 13, 2014 K. Vos
 Skype Technologies S.A.
 July 12, 2013

Updates to the Opus Audio Codec
draft-valin-codec-opus-update-00

Abstract

 This document addresses minor issues that were found in the
 specification of the Opus audio codec in RFC 6716 [RFC6716].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 13, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Valin, et al. Expires January 13, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Opus Update July 2013

Table of Contents

1. Introduction . 2
2. Terminology . 2
3. Stereo State Reset in SILK 2
4. Parsing of the Opus Packet Padding 3
5. Resampler buffer . 3
6. Downmix to Mono . 5
7. IANA Considerations . 5
8. Acknowledgements . 5
9. References . 5

 Authors' Addresses . 6

1. Introduction

 This document address minor issues that were discovered in the
 reference implementation of the Opus codec that serves as the
 specification in RFC 6716 [RFC6716]. Only issues affecting the
 decoder are listed here. An up-to-date implementation of the Opus
 encoder can be found at http://opus-codec.org/. The updated
 specification remains fully compatible with the original
 specification and only one of the changes results in any difference
 in the audio output.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Stereo State Reset in SILK

 The reference implementation does not reinitialize the stereo state
 during a mode switch. The old stereo memory can produce a brief
 impulse (i.e. single sample) in the decoded audio. This can be
 fixed by changing silk/dec_API.c at line 72:

 for(n = 0; n < DECODER_NUM_CHANNELS; n++) {
 ret = silk_init_decoder(&channel_state[n]);
 }
 + silk_memset(&((silk_decoder *)decState)->sStereo, 0,
 + sizeof(((silk_decoder *)decState)->sStereo));
 + /* Not strictly needed, but it's cleaner that way */
 + ((silk_decoder *)decState)->prev_decode_only_middle = 0;

 return ret;
 }

https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/html/rfc6716
http://opus-codec.org/
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Valin, et al. Expires January 13, 2014 [Page 2]

Internet-Draft Opus Update July 2013

 This change affects the normative part of the decoder. Fortunately,
 the modified decoder is still compliant with the original
 specification because it still easily passes the testvectors. For
 example, for the float decoder at 48 kHz, the opus_compare
 (arbitrary) "quality score" changes from from 99.9333% to 99.925%.

4. Parsing of the Opus Packet Padding

 It was discovered that some invalid packets of very large size could
 trigger an out-of-bounds read in the Opus packet parsing code
 responsible for padding. This is due to an integer overflow if the
 signaled padding exceeds 2^31-1 bytes (the actual packet may be
 smaller). The code can be fixed by applying the following changes at
 line 596 of src/opus_decoder.c:

 /* Padding flag is bit 6 */
 if (ch&0x40)
 {
 - int padding=0;
 int p;
 do {
 if (len<=0)
 return OPUS_INVALID_PACKET;
 p = *data++;
 len--;
 - padding += p==255 ? 254: p;
 + len -= p==255 ? 254: p;
 } while (p==255);
 - len -= padding;
 }

 This packet parsing issue is limited to reading memory up to about 60
 kB beyond the compressed buffer. This can only be triggered by a
 compressed packet more than about 16 MB long, so it's not a problem
 for RTP. In theory, it _could_ crash a file decoder (e.g. Opus in
 Ogg) if the memory just after the incoming packet is out-of-range,
 but that could not be achieved when attempted in a production
 application built using an affected version of the Opus decoder.

5. Resampler buffer

 The SILK resampler had the following issues:

 1. The calls to memcpy() were using sizeof(opus_int32), but the type
 of the local buffer was opus_int16.

Valin, et al. Expires January 13, 2014 [Page 3]

Internet-Draft Opus Update July 2013

 2. Because the size was wrong, this potentially allowed the source
 and destination regions of the memcpy overlap. We _believe_ that
 nSamplesIn is at least fs_in_khZ, which is at least 8. Since
 RESAMPLER_ORDER_FIR_12 is only 8,that should not be a problem
 once the type size is fixed.

 3. The size of the buffer used RESAMPLER_MAX_BATCH_SIZE_IN, but the
 data stored in it was actually _twice_ the input batch size
 (nSamplesIn<<1).

 The fact that the code never produced any error in testing (including
 when run under the Valgrind memory debugger), suggests that in
 practice the batch sizes are reasonable enough that none of the
 issues above was ever a problem. However, proving that is non-
 obvious.

 The code can be fixed by applying the following changes to like 70 of
 silk/resampler_private_IIR_FIR.c:

 opus_int16 out[], /* O Output
signal */
 const opus_int16 in[], /* I Input
signal */
 opus_int32 inLen /* I Number of input
samples */
)
 {
 silk_resampler_state_struct *S = (silk_resampler_state_struct *)SS;
 opus_int32 nSamplesIn;
 opus_int32 max_index_Q16, index_increment_Q16;
 - opus_int16 buf[RESAMPLER_MAX_BATCH_SIZE_IN + RESAMPLER_ORDER_FIR_12];
 + opus_int16 buf[2*RESAMPLER_MAX_BATCH_SIZE_IN +
RESAMPLER_ORDER_FIR_12];

 /* Copy buffered samples to start of buffer */
 - silk_memcpy(buf, S->sFIR, RESAMPLER_ORDER_FIR_12 *
sizeof(opus_int32));
 + silk_memcpy(buf, S->sFIR, RESAMPLER_ORDER_FIR_12 *
sizeof(opus_int16));

 /* Iterate over blocks of frameSizeIn input samples */
 index_increment_Q16 = S->invRatio_Q16;
 while(1) {
 nSamplesIn = silk_min(inLen, S->batchSize);

 /* Upsample 2x */
 silk_resampler_private_up2_HQ(S->sIIR,
&buf[RESAMPLER_ORDER_FIR_12], in, nSamplesIn);

 max_index_Q16 = silk_LSHIFT32(nSamplesIn, 16 + 1); /* + 1
because 2x upsampling */
 out = silk_resampler_private_IIR_FIR_INTERPOL(out, buf,
max_index_Q16, index_increment_Q16);
 in += nSamplesIn;
 inLen -= nSamplesIn;

 if(inLen > 0) {

Valin, et al. Expires January 13, 2014 [Page 4]

Internet-Draft Opus Update July 2013

 /* More iterations to do; copy last part of filtered signal to
beginning of buffer */
 - silk_memcpy(buf, &buf[nSamplesIn << 1],
RESAMPLER_ORDER_FIR_12 * sizeof(opus_int32));
 + silk_memmove(buf, &buf[nSamplesIn << 1],
RESAMPLER_ORDER_FIR_12 * sizeof(opus_int16));
 } else {
 break;
 }
 }

 /* Copy last part of filtered signal to the state for the next call */
 - silk_memcpy(S->sFIR, &buf[nSamplesIn << 1], RESAMPLER_ORDER_FIR_12 *
sizeof(opus_int32));
 + silk_memcpy(S->sFIR, &buf[nSamplesIn << 1], RESAMPLER_ORDER_FIR_12 *
sizeof(opus_int16));
 }

6. Downmix to Mono

 The last issue is not strictly a bug, but it is an issue that has
 been reported when downmixing Opus decoded stream to mono, whether
 this is done inside the decoder or as a post-processing on the stereo
 decoder output. Opus intensity stereo allows optionally coding the
 two channels 180-degrees out of phase on a per-band basis. This
 provides better stereo quality than forcing the two channels to be in
 phase, but when the output is downmixed to mono, the energy in the
 affected bands is cancelled sometimes resulting in audible artefacts.

 A possible work-around for this issue would be to optionally allow
 the decoder to not apply the 180-degree phase shift when the output
 is meant to be downmixed (inside or outside of the decoder).

7. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

8. Acknowledgements

 We would like to thank Juri Aedla for reporting the issue with the
 parsing of the Opus padding.

9. References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
 Opus Audio Codec", RFC 6716, September 2012.

Valin, et al. Expires January 13, 2014 [Page 5]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6716

Internet-Draft Opus Update July 2013

Authors' Addresses

 Jean-Marc Valin
 Mozilla Corporation
 650 Castro Street
 Mountain View, CA 94041
 USA

 Phone: +1 650 903-0800
 Email: jmvalin@jmvalin.ca

 Timothy B. Terriberry
 Mozilla Corporation
 650 Castro Street
 Mountain View, CA 94041
 USA

 Phone: +1 650 903-0800
 Email: tterriberry@mozilla.com

 Koen Vos
 Skype Technologies S.A.
 Soder Malarstrand 43
 Stockholm 11825
 SE

 Phone: +46 73 085 7619
 Email: koen.vos@skype.net

Valin, et al. Expires January 13, 2014 [Page 6]

