
Network Working Group J. Alakuijala
Internet-Draft T. Duong
Intended Status: Informational E. Kliuchnikov
Expires: March 28, 2023 R. Obryk
 Z. Szabadka
 L. Vandevenne
 Google, Inc
 Sep 2022

Shared Brotli Compressed Data Format
draft-vandevenne-shared-brotli-format-09

Abstract

 This specification defines a data format for shared brotli
 compression, which adds support for shared dictionaries, large
 window, patching and a container format to brotli [RFC7932].

 Shared dictionaries and large window support allow significant
 compression gains compared to regular brotli, and patching allows
 smaller patches of binary files.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF). Note that
 other groups may also distribute working documents as Internet-
 Drafts. The list of current Internet-Drafts is at

http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 28, 2023.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Alakuijala et. al. Expires March 28, 2023 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Shared Brotli Data Format Sep 2022

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Purpose . 3
1.2. Intended audience . 3
1.3. Scope . 3
1.4. Compliance . 4
1.5. Definitions of terms and conventions used 4

1.5.1. Packing into bytes 4
2. Shared Brotli Overview . 5
3. Shared Dictionaries . 6

3.1. Custom Static Dictionaries 6
3.1.1. Transform Operations 7

3.2. LZ77 Dictionaries . 9
4. Varint Encoding . 10
5. Shared Dictionary Stream 10
6. Large Window Brotli Compressed Data Stream 13
7. Patching Format Compressed Data Stream 13
8. Shared Brotli Compressed Data Stream 13
9. Shared Brotli Framing Format Stream 14

9.1. Main Format . 14
9.2. Chunk Format . 14
9.3. Metadata Format . 17
9.4. Chunk Specifications 18

9.4.1. Padding Chunk (Type 0) 18
9.4.2. Metadata Chunk (Type 1) 18
9.4.3. Data Chunk (Type 2) 18
9.4.4. First Partial Data Chunk (Type 3) 19
9.4.5. Middle Partial Data Chunk (Type 4) 19
9.4.6. Last Partial Data Chunk (Type 5) 20
9.4.7. Footer Metadata Chunk (Type 6) 20
9.4.8. Global Metadata Chunk (Type 7) 20
9.4.9. Repeat Metadata Chunk (Type 8) 20
9.4.10. Central Directory Chunk (Type 9) 22
9.4.11. Final Footer Chunk (Type 10) 22

10. Security Considerations 23
11. IANA Considerations . 24
12. Informative References 25

 Authors' Addresses . 25

Alakuijala et. al. Expires March 28, 2023 [Page 2]

Internet-Draft Shared Brotli Data Format Sep 2022

1. Introduction

1.1. Purpose

 The purpose of this specification is to extend the brotli compressed
 data format format ([RFC7932]) with new abilities that allow further
 compression gains:

 * Shared dictionaries allow a static shared context between
 encoder and decoder for significant compression gains.

 * Large window brotli allows much larger back reference distances
 to give compression gains for files over 16MiB.

 * Patching allows to create smaller patches of binary files

 * The framing format is a container format that allows to store
 multiple resources, refer to dictionaries, enable patching and
 other filters that improve compression.

 This document is the authoritative specification of shared brotli
 data formats and the backwards compatible changes to brotli, and
 defines:

 * The data format of serialized shared dictionaries

 * The data format of the framing format

 * The encoding of window bits and distances for large window
 brotli in the brotli data format

 * The encoding of shared dictionary references in the brotli data
 format

 * The data format for patching with brotli

1.2. Intended audience

 This specification is intended for use by software implementers to
 compress data into and/or decompress data from the shared brotli
 dictionary format.

 The text of the specification assumes a basic background in
 programming at the level of bits and other primitive data
 representations. Familiarity with the technique of LZ77 coding is
 helpful but not required.

1.3. Scope

https://datatracker.ietf.org/doc/html/rfc7932

Alakuijala et. al. Expires March 28, 2023 [Page 3]

Internet-Draft Shared Brotli Data Format Sep 2022

 This specification defines a data format for shared brotli
 compression, which adds support for dictionaries and extended
 features to brotli [RFC7932].

1.4. Compliance

 Unless otherwise indicated below, a compliant decompressor must be
 able to accept and decompress any data set that conforms to all the
 specifications presented here. A compliant compressor must produce
 data sets that conform to all the specifications presented here.

1.5. Definitions of terms and conventions used

 Byte: 8 bits stored or transmitted as a unit (same as an octet). For
 this specification, a byte is exactly 8 bits, even on machines that
 store a character on a number of bits different from eight. See
 below for the numbering of bits within a byte.

 String: a sequence of arbitrary bytes.

 Bytes stored within a computer do not have a "bit order", since they
 are always treated as a unit. However, a byte considered as an
 integer between 0 and 255 does have a most- and least-significant
 bit, and since we write numbers with the most-significant digit on
 the left, we also write bytes with the most-significant bit on the
 left. In the diagrams below, we number the bits of a byte so that bit
 0 is the least-significant bit, i.e., the bits are numbered:

 +--------+
 |76543210|
 +--------+

 Within a computer, a number may occupy multiple bytes. All multi-byte
 numbers in the format described here are unsigned and stored with the
 least-significant byte first (at the lower memory address). For
 example, the decimal 16-bit number 520 is stored as:

 0 1
 +--------+--------+
 |00001000|00000010|
 +--------+--------+
 ^ ^
 | |
 | + more significant byte = 2 x 256
 + less significant byte = 8

1.5.1. Packing into bytes

https://datatracker.ietf.org/doc/html/rfc7932

Alakuijala et. al. Expires March 28, 2023 [Page 4]

Internet-Draft Shared Brotli Data Format Sep 2022

 This document does not address the issue of the order in which bits
 of a byte are transmitted on a bit-sequential medium, since the final
 data format described here is byte- rather than bit-oriented.
 However, we describe the compressed block format below as a sequence
 of data elements of various bit lengths, not a sequence of bytes. We
 must therefore specify how to pack these data elements into bytes to
 form the final compressed byte sequence:

 * Data elements are packed into bytes in order of
 increasing bit number within the byte, i.e., starting
 with the least-significant bit of the byte.
 * Data elements other than prefix codes are packed
 starting with the least-significant bit of the data
 element. These are referred to here as integer values
 and are considered unsigned.
 * Prefix codes are packed starting with the most-significant
 bit of the code.

 In other words, if one were to print out the compressed data as a
 sequence of bytes, starting with the first byte at the *right* margin
 and proceeding to the *left*, with the most-significant bit of each
 byte on the left as usual, one would be able to parse the result from
 right to left, with fixed-width elements in the correct MSB-to-LSB
 order and prefix codes in bit-reversed order (i.e., with the first
 bit of the code in the relative LSB position).

 As an example, consider packing the following data elements into a
 sequence of 3 bytes: 3-bit integer value 6, 4-bit integer value 2,
 prefix code 110, prefix code 10, 12-bit integer value 3628.

 byte 2 byte 1 byte 0
 +--------+--------+--------+
 |11100010|11000101|10010110|
 +--------+--------+--------+
 ^ ^ ^ ^ ^
 | | | | |
 | | | | +------ integer value 6
 | | | +---------- integer value 2
 | | +-------------- prefix code 110
 | +---------------- prefix code 10
 +----------------------------- integer value 3628

2. Shared Brotli Overview

 Shared brotli extends brotli [RFC7932] with support for shared
 dictionaries, larger LZ77 window and a framing format.

https://datatracker.ietf.org/doc/html/rfc7932

Alakuijala et. al. Expires March 28, 2023 [Page 5]

Internet-Draft Shared Brotli Data Format Sep 2022

3. Shared Dictionaries

 A shared dictionary is a piece of data shared by a compressor and
 decompressor. The compressor can take advantage of the dictionary
 context to encode the input in a more compact manner. The compressor
 and the decompressor must use exactly the same dictionary. A shared
 dictionary is specially useful to compress short input sequences.

 A shared brotli dictionary can use two methods of sharing context:

 * An LZ77 dictionary. The encoder and decoder could refer
 to a given sequence of bytes. Multiple LZ77 dictionaries
 can be set.

 * A custom static dictionary: a word list with transforms. The
 encoder and decoder will replace the static dictionary data
 with the data in the shared dictionary. The original static
 dictionary is described in Section 8 in [RFC7932]. The original
 data from Appendix A and Appendix B of [RFC7932] will be
 replaced. In addition, it is possible to dynamically switch
 this dictionary based on the data compression context, and/or
 to include a reference to the original dictionary in the custom
 dictionary.

 If no shared dictionary is set the decoder behaves the same as in
 [RFC7932] on a brotli stream.

 If a shared dictionary is set, then it can set any of: LZ77
 dictionaries, overriding static dictionary words, and/or overriding
 transforms.

3.1. Custom Static Dictionaries

 If a custom word list is set, then the following behavior of the RFC
7932 decoder [RFC7932] is overridden:

 Instead of the Static Dictionary Data from Appendix A
 of [RFC7932], one or more word lists from the custom static
 dictionary data are used.

 Instead of NDBITS at the end of Appendix A, a custom
 SIZE_BITS_BY_LENGTH per custom word list is used.

 The copy length for a static dictionary reference must be
 between 4 and 31 and may not be a value for which
 SIZE_BITS_BY_LENGTH of this dictionary is 0.

 If a custom transforms list is set without context dependency, then

https://datatracker.ietf.org/doc/html/rfc7932#section-8
https://datatracker.ietf.org/doc/html/rfc7932#appendix-B
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932#appendix-A
https://datatracker.ietf.org/doc/html/rfc7932#appendix-A

Alakuijala et. al. Expires March 28, 2023 [Page 6]

Internet-Draft Shared Brotli Data Format Sep 2022

 the following behavior of the RFC 7932 decoder [RFC7932] is
 overridden:

 The "List of Word Transformations" from Appendix B is
 overridden by one or more lists of custom prefixes, suffixes and
 transform operations.

 The transform_id must be smaller than the number of transforms
 given in the custom transforms list.

 If the dictionary is context dependent, it includes a lookup table of
 64 word list and transform list combinations. When resolving a static
 dictionary word, the decoder computes the literal context id, as in

section 7.1. of [RFC7932]. The literal context id is used as index in
 the lookup tables to select the word list and transforms to use. If
 the dictionary is not context dependent, this id is implicitely 0
 instead.

 If a distance goes beyond the dictionary for the current id and
 multiple word list / transform list combinations are defined, then a
 next dictionary is used in the following order: if not context
 dependent, the same order as defined in the shared dictionary. If
 context dependent, the index matching the current context is used
 first, the same order as defined in the shared dictionary excluding
 the current context are used next.

3.1.1. Transform Operations

 A shared dictionary may include custom word transformations, to
 replace those specified in Section 8 and Appendix B of [RFC7932]. A
 transform consists of a possible prefix, a transform operation, for
 some operations a parameter, and a possible suffix. In the shared
 dictionary format, the transform operation is represented by a
 numerical ID, listed in the table below.

 ID Operation
 -- ---------
 0 Identity
 1 OmitLast1
 2 OmitLast2
 3 OmitLast3
 4 OmitLast4
 5 OmitLast5
 6 OmitLast6
 7 OmitLast7
 8 OmitLast8
 9 OmitLast9

https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932#section-7.1
https://datatracker.ietf.org/doc/html/rfc7932#appendix-B

Alakuijala et. al. Expires March 28, 2023 [Page 7]

Internet-Draft Shared Brotli Data Format Sep 2022

 10 FermentFirst
 11 FermentAll
 12 OmitFirst1
 13 OmitFirst2
 14 OmitFirst3
 15 OmitFirst4
 16 OmitFirst5
 17 OmitFirst6
 18 OmitFirst7
 19 OmitFirst8
 20 OmitFirst9
 21 ShiftFirst (by PARAMETER)
 22 ShiftAll (by PARAMETER)

 Operations 0 to 20 are specified in Section 8 in [RFC7932].
 ShiftFirst and ShiftAll transform specifically encoded SCALARs.

 A SCALAR is a 7-, 11-, 16- or 21-bit unsigned integer encoded with 1,
 2, 3 or 4 bytes respectively with following bit contents:

 7-bit SCALAR:
 +--------+
 |0sssssss|
 +--------+

 11-bit SCALAR:
 +--------+--------+
 |110sssss|XXssssss|
 +--------+--------+

 16-bit SCALAR:
 +--------+--------+--------+
 |1110ssss|XXssssss|XXssssss|
 +--------+--------+--------+

 21-bit SCALAR:
 +--------+--------+--------+--------+
 |11110sss|XXssssss|XXssssss|XXssssss|
 +--------+--------+--------+--------+

 Given the input bytes matching SCALAR encoding pattern, the SCALAR
 value is obtained by concatenation of the "s" bits, with the most
 significant bits coming from the earliest byte. The "X" bits could
 have arbitrary value.

 An ADDEND is defined as the result of limited sign extension of
 16-bit unsigned PARAMETER:

https://datatracker.ietf.org/doc/html/rfc7932#section-8

Alakuijala et. al. Expires March 28, 2023 [Page 8]

Internet-Draft Shared Brotli Data Format Sep 2022

 At first the PARAMETER is zero-extended to 32 bits. After this,
 if the resulting value is greater or equal than 0x8000,
 then 0xFF0000 is added.

 ShiftAll starts at the beginning of the word and repetitively applies
 the following transform until the whole word is transformed:

 If the next untransformed byte matches the first byte of the 7-,
 11-, 16- or 21-bit SCALAR pattern, then:

 If the untransformed part of the word is not long enough to
 match the whole SCALAR pattern, then the whole word is
 marked as transformed.

 Otherwise, let SHIFTED be the sum of the ADDEND and the
 encoded SCALAR. The lowest bits from SHIFTED
 are written back into the corresponding "s" bits. The "0",
 "1" and "X" bits remain unchanged. Next, 1, 2, 3 or
 4 not transformed bytes marked as transformed, according to
 the SCALAR pattern length.

 Otherwise, the next untransformed byte is marked as transformed.

 ShiftFirst applies the same transform as ShiftAll, but does not
 iterate.

3.2. LZ77 Dictionaries

 If an LZ77 dictionary is set, then the decoder treats this as a
 regular LZ77 copy, but behaves as if the bytes of this dictionary are
 accessible as the uncompressed bytes outside of the regular LZ77
 window for backwards references.

 Let LZ77_DICTIONARY_LENGTH be the length of the LZ77 dictionary.
 Then word_id, described in Section 8 in [RFC7932], is redefined as:

 word_id = distance - (max allowed distance + 1 +
 LZ77_DICTIONARY_LENGTH)

 For the case when LZ77_DICTIONARY_LENGTH is 0, word_id matches the
 [RFC7932] definition.

 Let dictionary_address be

 LZ77_DICTIONARY_LENGTH + max allowed distance - distance

 Then distance values of <length, distance> pairs [RFC7932] in range
 (max allowed distance + 1)..(LZ77_DICTIONARY_LENGTH + max allowed

https://datatracker.ietf.org/doc/html/rfc7932#section-8
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932

Alakuijala et. al. Expires March 28, 2023 [Page 9]

Internet-Draft Shared Brotli Data Format Sep 2022

 distance) are interpreted as references starting in the LZ77
 dictionary at the byte at dictionary_address. If length is longer
 than (LZ77_DICTIONARY_LENGTH - dictionary_address), then the
 reference continues to copy (length - LZ77_DICTIONARY_LENGTH +
 dictionary_address) bytes from the regular LZ77 window starting at
 the beginning.

4. Varint Encoding

 A varint is encoded in base 128 in one ore more bytes as follows:

 +--------+--------+ +--------+
 |1xxxxxxx|1xxxxxxx| {0-8 times} |0xxxxxxx|
 +--------+--------+ +--------+

 where the "x" bits of the first byte are the least significant bits
 of the value and the "x" bits of the last byte are the most
 significant bits of the value. The last byte must have its MSB set to
 0, all other bytes to 1 to indicate there is a next byte.

 The maximum allowed amount of bits to read is 63 bits, if the 9th
 byte is present and has its MSB set then the stream must be
 considered as invalid.

5. Shared Dictionary Stream

 The shared dictionary stream encodes a custom dictionary for brotli
 including custom words and/or custom transformations. A shared
 dictionary may appear standalone or as contents of a resource in a
 framing format container.

 A compliant shared brotli dictionary stream must have the following
 format:

 2 bytes: file signature, in hexadecimal the bytes 91, 0.

 varint: LZ77_DICTIONARY_LENGTH, number of bytes for a LZ77
 dictionary, or 0 if there is none.
 The maximum allowed value is the maximum possible sliding
 window size of brotli or of large window brotli.

 LZ77_DICTIONARY_LENGTH bytes: contents of the LZ77 dictionary.

 1 byte: NUM_CUSTOM_WORD_LISTS, may have value 0 to 64

 NUM_CUSTOM_WORD_LISTS times a word list, with the following
 format for each word list:

Alakuijala et. al. Expires March 28, 2023 [Page 10]

Internet-Draft Shared Brotli Data Format Sep 2022

 28 bytes: SIZE_BITS_BY_LENGTH, array of 28 unsigned 8-bit
 integers, indexed by word lengths 4 to 31. The value
 represents log2(number of words of this length),
 with the exception of 0 meaning 0 words of this
 length. The max allowed length value is 15 bits.
 OFFSETS_BY_LENGTH is computed from this as
 OFFSETS_BY_LENGTH[i + 1] = OFFSETS_BY_LENGTH[i] +
 (SIZE_BITS_BY_LENGTH[i] ? (i <<
 SIZE_BITS_BY_LENGTH[i]) : 0)

 N bytes: words dictionary data, where N is
 OFFSETS_BY_LENGTH[31] + (SIZE_BITS_BY_LENGTH[31] ?
 (31 << SIZE_BITS_BY_LENGTH[31]) : 0), first all the
 words of shortest length, then all words of the next
 length, and so on, where for each length there are
 either 0 or a positive power of two amount of words.

 1 byte: NUM_CUSTOM_TRANSFORM_LISTS, may have value 0 to 64

 NUM_CUSTOM_TRANSFORM_LISTS times a transform list, with the
 following format for each transform list:

 2 bytes: PREFIX_SUFFIX_LENGTH, the length of prefix/suffix
 data. Must be at least 1 because the list must
 always end with a zero-length stringlet even
 if empty.

 NUM_PREFIX_SUFFIX times: prefix/suffix stringlet.
 NUM_PREFIX_SUFFIX is the amount of stringlets parsed and
 must be in range 1..256.

 1 byte: STRING_LENGTH, the length of the entry contents.
 0 for the last (terminating) entry of the
 transform list. For other entries STRING_LENGTH
 must be in range 1..255. The 0 entry must be
 present and must be the last byte of the
 PREFIX_SUFFIX_LENGTH bytes of prefix/suffix
 data, else the stream must be rejected as
 invalid.

 STRING_LENGTH bytes: contents of the prefix/suffix.

 1 byte: NTRANSFORMS, amount of transformation triplets.

 NTRANSFORMS times: data for each transform:

 1 byte: index of prefix in prefix/suffix data;
 must be less than NUM_PREFIX_SUFFIX.

Alakuijala et. al. Expires March 28, 2023 [Page 11]

Internet-Draft Shared Brotli Data Format Sep 2022

 1 byte: index of suffix in prefix/suffix data;
 must be less than NUM_PREFIX_SUFFIX.

 1 byte: operation index, must be an index in the table of
 operations listed in the chapter
 "Transform Operations".

 If and only if at least one transform has operation index
 ShiftFirst or ShiftAll:

 NTRANSFORMS times:

 2 bytes: parameters for the transform. If the transform
 does not have type ShiftFirst or ShiftAll, the
 value must be 0. ShiftFirst and ShiftAll
 interpret these bytes as an unsigned 16-bit
 integer.

 if NUM_CUSTOM_WORD_LISTS > 0 or NUM_CUSTOM_TRANSFORM_LISTS > 0
 (else implicitly NUM_DICTIONARIES is 1 and points to the
 brotli built-in and there is no context map)

 1 byte: NUM_DICTIONARIES, may have value 1 to 64. Each
 dictionary is a combination of a word list and a
 transform list. Each next dictionary is used when the
 distance goes beyond the previous. If a CONTEXT_MAP is
 enabled, then the dictionary matching the context is
 moved to the front in the order for this context.

 NUM_DICTIONARIES times: the DICTIONARY_MAP:

 1 byte: index into a custom word list, or value
 NUM_CUSTOM_WORD_LISTS to indicate to use the brotli
 [RFC7932] built-in default word list

 1 byte: index into a custom transform list, or value
 NUM_CUSTOM_TRANSFORM_LISTS to indicate to use the
 brotli [RFC7932] built-in default transform list

 1 byte: CONTEXT_ENABLED, if 0 there is no context map, if 1 a
 context map used to select the dictionary is encoded
 below

 If CONTEXT_ENABLED is 1, a context map for the 64 brotli
 [RFC7932] literals contexts:

 64 bytes: CONTEXT_MAP, index into the DICTIONARY_MAP for

https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932

Alakuijala et. al. Expires March 28, 2023 [Page 12]

Internet-Draft Shared Brotli Data Format Sep 2022

 the first dictionary to use for this context

6. Large Window Brotli Compressed Data Stream

 Large window brotli allows a sliding window beyond the 24-bit maximum
 of regular brotli [RFC7932].

 The compressed data stream is backwards compatible to brotli
 [RFC7932], and may optionally have the following differences:

 Encoding of WBITS in the stream header: the following new
 pattern of 14 bits is supported:

 8 bits: value 00010001, to indicate a large window
 brotli stream

 6 bits: WBITS, must have value in range 10 to 62

 Distance alphabet: if the stream is a large window brotli
 stream, the maximum number of extra bits is 62 and the
 theoretical maximum size of the distance alphabet is
 (16 + NDIRECT + (124 << NPOSTFIX)). This overrides the
 value for the distance alphabet size given in chapter
 3.3. of [RFC7932] and affects the amount of bits in the
 encoding of the Simple Prefix Code for distances as
 described in chapter 3.4 of [RFC7932].
 An additional limitation to distances, despite the
 large allowed alphabet size, is that the alphabet is
 not allowed to contain a distance symbol able to represent
 a distance larger than ((1 << 63) - 4) when its extra
 bits have their maximum value. It depends on NPOSTFIX
 and NDIRECT when this can occur.

 A decoder that does not support 64-bit integers may reject a stream
 if WBITS is higher than 30 or a distance symbol from the distance
 alphabet is able to encode a distance larger than 2147483644.

7. Patching Format Compressed Data Stream

 TBD

8. Shared Brotli Compressed Data Stream

 The format of a shared brotli compressed data stream without framing
 format is backwards compatible with brotli [RFC7932], with the
 following optional differences:

 *) LZ77 dictionaries as described above are supported

https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932

Alakuijala et. al. Expires March 28, 2023 [Page 13]

Internet-Draft Shared Brotli Data Format Sep 2022

 *) Custom static dictionaries replacing or extending the static
 dictionary of brotli [RFC7932] with different words or
 transforms are supported

 *) The stream may have the format of regular brotli [RFC7932],
 or the format of large window brotli as described in section

6, or the format of the patching stream described in
section 7

9. Shared Brotli Framing Format Stream

 A compliant shared brotli framing format stream has the format
 described below.

9.1. Main Format

 4 bytes: file signature, in hexadecimal the bytes 91, 0a, 42, 52.
 The first byte contains the invalid WBITS combination for
 brotli [RFC7932] and large window brotli.

 1 byte: container flags, 8 bits with meanings:

 bit 0 and 1: version indicator, must be 00

 bit 2: if 0, the file contains no final footer, may not contain
 any metadata chunks, may not contain a central directory,
 and may encode only a single resource (using one or more
 data chunks). If 1, the file may contain one or more
 resources, metadata, central directory, and must contain a
 final footer.

 multiple times: a chunk, each with the format specified in section
9.2

9.2. Chunk Format

 varint: length of this chunk excluding this varint but
 including all next header bytes and data. If the value
 is 0, then the chunk type byte is not present and the
 chunk type is assumed to be 0.

 1 byte: CHUNK_TYPE
 0: padding chunk
 1: metadata chunk
 2: data chunk
 3: first partial data chunk
 4: middle partial data chunk
 5: last partial data chunk

https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/rfc7932

Alakuijala et. al. Expires March 28, 2023 [Page 14]

Internet-Draft Shared Brotli Data Format Sep 2022

 6: footer metadata chunk
 7: global metadata chunk
 8: repeat metadata chunk
 9: central directory chunk
 10: final footer

 if CHUNK_TYPE is not padding chunk, central directory or final
 footer:

 1 byte: CODEC:

 0: uncompressed

 1: keep decoder

 2: brotli

 3: shared brotli

 if CODEC is not "uncompressed":

 varint: uncompressed size in bytes of the data contained
 within the compressed stream

 if CODEC is "shared brotli"

 1 byte: amount of dictionary references. Multiple dictionary
 references are possible with the following
 restrictions: there can be maximum 1 serialized
 dictionary, maximum 1 patching file, and maximum 15
 prefix dictionaries (a serialized dictionary may
 already contain one of those, and a patching file
 also takes up a prefix dictionary). Circular
 references are not allowed (any dictionary reference
 that directly or indirectly uses this chunk itself
 as dictionary).

 per dictionary reference:

 1 byte: flags:

 bit 0 and 1: dictionary source:

 00: Internal dictionary reference to a full resource
 by pointer, which can span one or more chunks.
 Must point to a full data chunk or a first
 partial data chunk.

Alakuijala et. al. Expires March 28, 2023 [Page 15]

Internet-Draft Shared Brotli Data Format Sep 2022

 01: Internal dictionary reference to single chunk
 contents by pointer. May point to any chunk with
 contenst (data or metadata). If partial data
 chunk, only this part is the dictionary. In this
 case, the dictionary type is not allowed to be a
 serialised dictionary.

 10: Reference to a dictionary by hash code of a
 resource. The dictionary can come from an
 external source such as a different container.
 The user of the decoder must be able to provide
 the dictionary contents given its hash code (even
 if it comes from this container itself), or treat
 it as an error when the user does not have it
 available.

 11: invalid bit combination

 bit 2 and 3: dictionary type:

 00: prefix dictionary, set in front of the sliding
 window

 01: serialized dictionary in the shared brotli
 format as specified in section 5.

 10: file to apply patching algorithm to. The
 compressed stream then has the format specified
 in section 7.

 11: invalid bit combination

 bit 4-7: must be 0

 if hash-based:

 1 byte: type of hash used. Only supported value: 3,
 indicating 256-bit Highwayhash.

 32 bytes: 256-bit Highwayhash checksum to refer to
 dictionary.

 if pointer based: varint encoded pointer to its
 chunk in this container. The chunk must come earlier
 in the container than the current chunk.

 X bytes: extra header bytes, depending on CHUNK_TYPE. If present,
 they are specified in the subsequent chapters.

Alakuijala et. al. Expires March 28, 2023 [Page 16]

Internet-Draft Shared Brotli Data Format Sep 2022

 remaining bytes: the chunk contents. The uncompressed data
 in the chunk content depends on CHUNK_TYPE
 and is specified in the subsequent sections.
 The compressed data has following
 format depending on CODEC:

 *) uncompressed: the raw bytes

 *) if "keep decoder", the continuation of the compressed
 stream which was interrupted at the end of the previous
 chunk. The decoder from the previous chunk must be used
 and its state it had at the end of the previous chunk
 must be kept at the start of the decoding of this chunk.

 *) brotli: the bytes are in brotli format
 [RFC7932]

 *) shared brotli: the bytes are in the
 shared brotli format specified in section

8

9.3. Metadata Format

 All the metadata chunk types use the following format for the
 uncompressed content:

 Per field:

 2 bytes: code to identify this metadata field. This must be
 two lowercase or two uppercase alpha ascii
 characters. If the decoder encounters a lowercase
 field that it does not recognise for the current
 chunk type, non-ascii characters or non-alpha
 characters, the decoder must reject the data stream
 as invalid. Uppercase codes may be used for custom
 user metadata and can be ignored by a compliant
 decoder.

 varint: length of the content of this field in bytes,
 excluding the code bytes and this varint

 N bytes: the contents of this field

 The last field is reached when the chunk content end is reached. If
 the length of the last field does not end at the same byte as the end
 of the uncompressed content of the chunk, the decoder must reject the
 data stream as invalid.

https://datatracker.ietf.org/doc/html/rfc7932

Alakuijala et. al. Expires March 28, 2023 [Page 17]

Internet-Draft Shared Brotli Data Format Sep 2022

9.4. Chunk Specifications

9.4.1. Padding Chunk (Type 0)

 All bytes in this chunk must be zero, except for the initial varint
 that specifies the remaining chunk length.

 Since the varint itself takes up bytes as well, when the goal is to
 introduce an amount of padding bytes, the dependence of the length of
 the varint on the value it encodes must be taken into account.

 A single byte varint with value 0 is a padding chunk of length 1.
 For more padding, use higher varint values. Do not use multiple
 shorter padding chunks, since this is slower to decode.

9.4.2. Metadata Chunk (Type 1)

 This chunk contains metadata that applies to the resource whose
 beginning is encoded in the subsequent data chunk or first partial
 data chunk.

 The contents of this chunk follows the format described in chapter
 9.3.

 The following field types are recognised:

 id: name field. May appear 0 or 1 times. Has the following
 format:

 N bytes: name in UTF-8 encoding, length determined by the
 field length. Treated generically but may be used as
 filename. If used as filename, forward slashes '/'
 should be used as directory separator, relative paths
 should be used and filenames ending in a slash with
 0-length content in the matching data chunk should be
 treated as an empty directory.

 mt: modification type. May appear 0 or 1 times. Has the following
 format:

 8 bytes: microseconds since epoch, as a little endian signed
 twos complement 64-bit integer

 custom user field: any two uppercase ASCII characters.

9.4.3. Data Chunk (Type 2)

 A data chunk contains the actual data of a resource.

Alakuijala et. al. Expires March 28, 2023 [Page 18]

Internet-Draft Shared Brotli Data Format Sep 2022

 This chunk has the following extra header bytes:

 1 byte: flags:

 bit 0: if true, indicates this is not a resource that should be
 output implicitly as part of extracting resources from
 this container. Instead, it may be referred to only
 explicitly, e.g. as a dictionary reference by hash code
 or offset. This flag should be set for data used as
 dictionary to improve compression of actual resources.

 bit 1: if true, hash code is given

 bits 2-7: must be zero

 if hash code is given:

 1 byte: type of hash used. Only supported value: 3,
 indicating 256-bit Highwayhash.

 32 bytes: 256-bit Highwayhash checksum of the uncompressed
 data

 The uncompressed content bytes of this chunk are the actual data of
 the resource.

9.4.4. First Partial Data Chunk (Type 3)

 This chunk contains partial data of a resource. This is the first
 chunk in a series containing the entire data of the resource.

 The format of this chunk is the same as the format of a Data Chunk
 (chapter 9.4.3) except for the differences noted below.

 The second bit of flags must be set to 0 and no hash code given.

 The uncompressed data size is only of this part of the resource, not
 of the full resource.

9.4.5. Middle Partial Data Chunk (Type 4)

 This chunk contains partial data of a resource, and is neither the
 first nor the last part of the full resource.

 The format of this chunk is the same as the format of a Data Chunk
 (chapter 9.4.3) except for the differences noted below.

 The first and second bits of flags must be set to 0.

Alakuijala et. al. Expires March 28, 2023 [Page 19]

Internet-Draft Shared Brotli Data Format Sep 2022

 The uncompressed data size is only of this part of the resource, not
 of the full resource.

9.4.6. Last Partial Data Chunk (Type 5)

 This chunk contains the final piece of partial data of a resource.

 The format of this chunk is the same as the format of a Data Chunk
 (chapter 9.4.3) except for the differences noted below.

 The first bit of the flags must be set to 0.

 If a hash code is given, the hash code of the full resource
 (concatenated from all previous chunks and this chunk) is given in
 this chunk.

 The uncompressed data size is only of this part of the resource, not
 of the full resource.

 The type of this chunk indicates that there are no further chunk
 encoding this resource, so the full resource is now known.

9.4.7. Footer Metadata Chunk (Type 6)

 This metadata applies to the resource whose encoding ended in the
 preceding data chunk or last partial data chunk.

 The contents of this chunk follows the format described in chapter
 9.3.

 There are no lowercase field types defined for footer metadata.
 Uppercase field types can be used as custom user data.

9.4.8. Global Metadata Chunk (Type 7)

 This metadata applies to the whole container instead of a single
 resource.

 The contents of this chunk follows the format described in chapter
 9.3.

 There are no lowercase field types defined for footer metadata.
 Uppercase field types can be used as custom user data.

9.4.9. Repeat Metadata Chunk (Type 8)

 These chunks optionally repeat metadata that is interleaved between
 data chunks. To use these chunks, it is necessary to also read

Alakuijala et. al. Expires March 28, 2023 [Page 20]

Internet-Draft Shared Brotli Data Format Sep 2022

 additional information, such as pointers to the original chunks, from
 the central directory.

 The contents of this chunk follows the format described in chapter
 9.3.

 This chunk has an extra header byte:

 1 byte: chunk type of repeated chunk (metadata chunk
 or footer metadata chunk)

 This set of chunks must follow the following restrictions:

 It is optional whether or not repeat metadata chunks are
 present.

 If they are present, then they must be present for all
 metadata chunks and footer metadata chunks.

 There may be only 1 repeat metadata chunk per repeated metadata
 chunk.

 They must appear in the same order as the chunks appear in the
 container, which is also the same order as listed in the
 central directory.

 Compression of these chunks is allowed, however it is not allowed
 to use any internal dictionary except an earlier repeat
 metadata chunk of this series, and it is not allowed for a
 metadata chunk to keep the decoder state if the previous chunk
 is not a repeat metadata chunk. That is, the series of
 metadata chunks must be decompressible without using other
 chunks of the framing format file.

 The fields contained in this metadata chunk must follow the following
 restrictions:

 If a field is present, it must
 exactly match the corresponding field of the copied chunk.

 It is allowed to leave out a field that is present
 in the copied chunk.

 If a field is present, then it must be present in *all* other
 repeat metadata chunks when the copied chunk contains this
 field. In other words, if you know you can get the name field
 from a repeat chunk, you know that you will be able to get all
 names of all resources from all repeat chunks.

Alakuijala et. al. Expires March 28, 2023 [Page 21]

Internet-Draft Shared Brotli Data Format Sep 2022

9.4.10. Central Directory Chunk (Type 9)

 The central directory chunk, along with the repeat metadata chunks,
 allow to quickly find and list compressed resources in the container
 file.

 The central directory chunk is always uncompressed and does not have
 the codec byte. It instead has the following format:

 varint: pointer into the file where the repeat metadata chunks are
 located, or 0 if they are not present

 per chunk listed:

 varint: pointer into the file where this chunk begins

 varint: amount of header bytes N used below

 N bytes: copy of all the header bytes of the pointed at chunk,
 including total size, chunk type byte, codec,
 uncompressed size, dictionary references, X extra
 header bytes. The content is not repeated here.

 The last listed chunk is reached when the end of the contents of the
 central directory are reached. If the end does not match the last
 byte of the central directory, the decoder must reject the data
 stream as invalid.

 If present, the central directory must list all data and metadata
 chunks of all types.

9.4.11. Final Footer Chunk (Type 10)

 Chunk that closes the file, only present if in the initial container
 header flags bit 2 was set.

 This chunk has the following content, always uncompressed:

 reversed varint: size of this entire framing format file,
 including these bytes themselves, or 0 if this
 size is not given

 reversed varint: pointer to the start of the central directory,
 or 0 if there is none

 A reversed varint has the same format as a varint, but has its bytes
 in reversed order and is designed to be parsed from end of file
 towards the beginning.

Alakuijala et. al. Expires March 28, 2023 [Page 22]

Internet-Draft Shared Brotli Data Format Sep 2022

 9.4.12. Chunk ordering

 The chunk ordering must follow the rules described below, if the
 decoder sees otherwise, it must reject the data stream as invalid.

 Padding chunks may be inserted anywhere, even between chunks for
 which the rules below say no other chunk types may come in
 between.

 Metadata chunks must come immediately before the Data chunks of
 the resource they apply to.

 Footer metadata chunks must come immediately after the Data
 chunks of the resource they apply to.

 There may be only 0 or 1 metadata chunks per resource.

 There may be only 0 or 1 footer metadata chunks per resource.

 A resource must exist out of either 1 data chunk, or 1 first
 partial data chunk, 0 or more middle partial data
 chunks, and 1 last partial data chunk, in that order.

 Repeat metadata chunks must follow the rules of section 9.4.9.

 There may be only 0 or 1 central directory chunks.

 If bit 2 of the container flags is set, there may be only a
 single resource, no metadata chunks of any type, no central
 directory, and no final footer.

 If bit 2 of the container flags is not set, there must be exactly
 1 final footer chunk and it must be the last chunk in the file.

10. Security Considerations

 The security considerations for brotli [RFC7932] apply to shared
 brotli as well.

 In addition, the same considerations apply to the decoding of new
 file format streams for shared brotli, including shared dictionaries,
 the framing format and the shared brotli format.

 The dictionary must be treated with the same security precautions as
 the content, because a change to the dictionary can result in a
 change to the decompressed content.

 The CRIME attack shows that it's a bad idea to compress data from

https://datatracker.ietf.org/doc/html/rfc7932

Alakuijala et. al. Expires March 28, 2023 [Page 23]

Internet-Draft Shared Brotli Data Format Sep 2022

 mixed (e.g. public and private) sources -- the data sources include
 not only the compressed data but also the dictionaries. For example,
 if you compress secret cookies using a public-data-only dictionary,
 you still leak information about the cookies.

 Not only can the dictionary reveal information about the compressed
 data, but vice versa, data compressed with the dictionary can reveal
 the contents of the dictionary when an adversary can control parts of
 data to compress and see the compressed size. On the other hand, if
 the adversary can control the dictionary, the adversary can learn
 information about the compressed data.

 The most robust defense against CRIME is not to compress private data
 (e.g., sensitive headers like cookies or any content with PII). The
 challenge has been to identify secrets within a vast amount of to be
 compressed data. Cloudflare uses a regular expression [CLOUDFLARE].
 Another idea is to extend existing web template systems (e.g., Soy
 [SOY]) to allow developers to mark secrets that must not be
 compressed.

 A less robust idea, but easier to implement, is to randomize the
 compression algorithm, i.e., adding randomly generated padding,
 varying the compression ratio, etc. The tricky part is to find the
 right balance between cost and security, i.e., on one hand we don't
 want to add too much padding because it adds a cost to data, on the
 other hand we don't want to add too little because the adversary can
 detect a small amount of padding with traffic analysis.

 Another defense in addition is to not use dictionaries for cross-
 domain requests, and only use shared brotli for the response when the
 origin is the same as where the content is hosted (using CORS). This
 prevents an adversary to use a private dictionary with user secrets
 to compress content hosted on the adversary's origin. It also helps
 prevent CRIME attacks that try to benefit from a public dictionary by
 preventing data compression with dictionaries for requests that do
 not originate from the host itself.

 The content of the dictionary itself should not be affected by
 external users, allowing adversaries to control the dictionary allows
 a form of chosen plaintext attack. Instead, only base the dictionary
 on content you control or generic large scale content such as a
 spoken language, and update the dictionary with large time intervals
 (days, not seconds) to prevent fast probing.

11. IANA Considerations

 The "HTTP Content Coding Registry" has been updated with the

Alakuijala et. al. Expires March 28, 2023 [Page 24]

Internet-Draft Shared Brotli Data Format Sep 2022

 registration below:

 +-------+-------------------------------------+------------+
 | Name | Description | Reference |
 +-------+-------------------------------------+------------+
 | sbr | Shared Brotli Compressed Data Format| RFCXXXX |
 +-------+-------------------------------------+------------+

12. Informative References

 [RFC7932] Alakuijala, J., Szabadka, Z., "Brotli Compressed Data
 Format", RFC 7932, Google, Inc., July 2016.

http://www.ietf.org/rfc/rfc7932.txt

 [CLOUDFLARE] https://blog.cloudflare.com/a-solution-to-compression-
oracles-on-the-web/

 [SOY] https://developers.google.com/closure/templates/

Authors' Addresses

 Jyrki Alakuijala
 Google, Inc.

 Email: jyrki@google.com

 Thai Duong
 Google, Inc.

 Email: thaidn@google.com

 Evgenii Kliuchnikov
 Google, Inc.

 Email: eustas@google.com

 Robert Obryk
 Google, Inc.

 Email: robryk@google.com

 Zoltan Szabadka
 Google, Inc.

 Email: szabadka@google.com

 Lode Vandevenne (editor)

https://datatracker.ietf.org/doc/html/rfc7932
http://www.ietf.org/rfc/rfc7932.txt
https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-web/
https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-web/
https://developers.google.com/closure/templates/

Alakuijala et. al. Expires March 28, 2023 [Page 25]

Internet-Draft Shared Brotli Data Format Sep 2022

 Google, Inc.

 Email: lode@google.com

Alakuijala et. al. Expires March 28, 2023 [Page 26]

